变量分离的方程word版

合集下载

一阶微分方程ppt

一阶微分方程ppt

特征根的情况
相异实根 r1 r2 相等实根 r1 r2
复根 r1,2 i
通解的表达式
y C1er1x C2er2 x y (C1 C2 x) er1x
y e x (C1 cos x C2 sin x)
15
例1 求微分方程 y 3y 10y 0 满足初始条件
y 6, y 2 的特解.
2
第五节 二阶线性微分方程解的结构
二阶线性微分方程的一般形式:
y P ( x ) y Q ( x ) y f ( x )
其中P(x),Q(x),f(x)为连续函数,f(x)称为自由项.
当 f (x) 0, 称为二阶齐次线性方程. 当f (x) 0, 称为二阶非齐次线性方程.
3
特权福利
特权说明
例2 求微分方程 y 2 y 3 y 0 的通解.
例3 求方程 y 2 y 5 y 0 的通解.
例4



方程
d2 dt
s
2
2
ds dt
s
0
满足初始条件
s(0) 4, s(0) 2 的特解.
17
例2 求微分方程 y 2 y 3 y 0 的通解.
解 特征方程为 r 2 2r 3 0
5
1、二阶齐次线性微分方程解的结构
定理1(解的叠加原理) 设 y1, y2 是方程(1)的两个解,则 y1, y2 的线性组合 y C1 y1 C2 y2( C1, C2是任意常数)也
是方程(1)的解.
问题: y C1y1 C2 y2 是方程(1)的通解吗? 不一定
例如:通过观察可知 y1 ex , y2 3ex , y3 ex 都是方程
( y1 ( y1

(完整word版)线性回归方程的求法(需要给每个人发)

(完整word版)线性回归方程的求法(需要给每个人发)

耿老师总结的高考统计部分的两个重要公式的具体如何应用ˆ+a ˆ=bx ˆ的求法:第一公式:线性回归方程为y(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(x 1+x 2+x 3+⋅⋅⋅+x n )n 1(y 1+y 2+y 3+⋅⋅⋅+y n )n ˆ,有两个方法(3)求变量x 的系数bˆ=法1b∑(x -x )(y -y )iii =1n∑(x -x )ii =1n(题目给出不用记忆)2(x1-x )(y 1-y )+(x 2-x )(y 2-y )+...+(x n-x )(y n-y )][(需理解并会代入数据)=222⎡⎤(x -x )+(x -x )+...+(x -x )2n ⎣1⎦nˆ=法2b∑(x -x )(y -y )iii =1∑(x -x )ii =1n(题目给出不用记忆)2=[x 1y1+x 2y 2+...x ny n]-nx ⋅y,(这个公式需要自己记忆,稍微简单些)2222⎡⎣x 1+x 2+...+x n ⎤⎦-nx ˆˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ-a ˆ=bx ˆ。

可以改写为:y =bx ˆ(y ˆ与y 不做区分)最后写出写出回归方程y例.已知x ,y 之间的一组数据:x0123y1357求y 与x 的回归方程:解:(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(0+1+2+3)=1.541(1+3+5+7)=44ˆ,有两个方法(3)求变量x 的系数b2222⎡⎤(x -x )+(x -x )+(x -x )+(x -x )1234⎣⎦ˆ法1b=(0-1.5)(1-4)+(1-1.5)(3-4)+(2-1.5)(5-4)+(3-1.5)(7-4)5==22227⎡⎣(0-1.5)+(1-1.5)+(2-1.5)+(3-1.5)⎤⎦(x1-x )(y 1-y )+(x 2-x )(y 2-y )+(x 3-x )(y 3-y )+(x 4-x )(y 4-y )][=ˆ=法2b[x 1y1+x 2y 2+...x ny n]-nx ⋅y=[0⨯1+1⨯3+2⨯5+3⨯7]-4⨯1.5⨯4=52222⎡⎤x +x +...+x -nx 12n ⎣⎦2222⎡⎤0+1+2+3⎣⎦7ˆ=4-ˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ=bx ˆ=最后写出写出回归方程y第二公式:独立性检验两个分类变量的独立性检验:525⨯1.5=77525x +77y1a ca +cy2b d总计x 1a +b c +d a +b +c +d注意:数据a 具有两个属性x 1,y 1。

换元法解分式方程(可编辑修改word版)

换元法解分式方程(可编辑修改word版)

1 +2 x x x + 2 x + 2 x x x + 2 x + 2 x x + 2 x1 2 1 2 1 换元法解分式方程毛彩猛换元法,就是引进新的变量,把一个较为复杂的数量关系转化成简单的数量关系的解题技巧。

下面用运用“换元法”了解分式方程的几个例子。

例 1 解方程( x x + 1 ) 2 + 5( x x + 1) + 6 = 0 分析 括号里的分式相同,由这个特点,知可用换元法来解。

x解 设 x + 1 = y ,于是原方程变形为y 2 + 5y + 6 = 0解得y 1 = -3,y 2 = -2 当y 1 = -3时, x x + 1 = -3,解得x 1 = - 3 ; 4当y 2 = -2时, x x + 1 = -2,解得x 2 = - 2 。

3 经检验x 1 = - 3 ,x 4 2 = - 2 均为原方程的根。

3 6 例 2 解方程 x 2 + x= x 2 + x + 1 分析 方程左边分式分母为x 2 + x ,可将右边x 2 + x 看成一个整体,然后用换元法求解。

解 设x 2 + x = y ,则原方程变形为 6 = y + 1 y解得y 1 = -3,y 2 = 2 当y = -3时,x 2 + x = -3,此方程无实根。

当y = 2时,x 2 + x = 2,解得x = -2,x = 1。

经检验,x 1 = -2,x 2 = 1都是原方程的根。

10 例 3 解方程 + = 3分析 这是一个根号里面含有分式的无理方程,也可通过变形后换元求解。

10 解 原方程为 + = 3 设 = y ,则原方程可变形为y + 1 = 10 y 3 解得y 1 = 3,y 2 = 3 当y = 3时, = 3,解得x = 11 1 4⎩⎩ = 当y 2 = 1 时, 3 = 1 ,解得x 3 2= - 9 4 经检验x 1 = 1 ,x 42 = - 9 都是原方程的根。

牛顿—欧拉方程(可编辑修改word版)

牛顿—欧拉方程(可编辑修改word版)

M Ω b bb 牛顿-欧拉方程欧拉方程(Euler equations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于 1750 年,欧拉才成功的用欧拉方程表述了该定律:Ωb = I ‒ 1[M ‒ Ω × ( I Ω )]该方程是建立在角动量定理的基础上的描述刚体的旋转运动时 '刚体所受外力矩 与角加速度 的关系式,大多时候可简写成:Ω' = [M + (I ‒ I )Ω Ω ]/Ix x yy zz y x xx Ω' = [M + (I ‒ I )Ω Ω ]/I y y zz xx x z yy Ω' = [M + (I ‒ I )Ω Ω ]/Ixzzzyyx yzz其中,M x ,M y ,M z 分别为刚体坐标系S b 下三个轴的所受的外力矩, I xx ,I yy ,I zz 分别为刚体三个坐标轴的转动惯量(刚体坐标系下S b )。

欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations):F (t ) = ma (t )M b = Ωb × ( I b Ωb ) + I b Ωb这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。

1. 单质点角动量定理 质点旋转时,有动量定理:F =d (mv ) dtr × F = r × d (mv )对两边叉乘质点位置矢量r :dt b b观察:d (r × mv ) = r × d (mv ) + dr × mv因为:dt dt dt故有:dr× mv = v × mv = 0 dtd (r × mv ) = r × d (mv )dt dtr × F =d (r × mv )dt定义角动量L = r × mv ,可以看出r × F 为外力矩M故有单质点的角动量定理:2. 刚体的角动量定理M =dL dt定义刚体的角动量为:L G =∫L idm其中:L G 下标 G 表示该向量为大地坐标系S G 下的,L i 的下标 i 表示该向量为大地坐标S G 下各个质量元的向量。

高等数学公式、定理最全版

高等数学公式、定理最全版

高等数学公式导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

常微分方程初等解法及其求解技巧

常微分方程初等解法及其求解技巧

目 录摘 要 .............................................................. I 关键词 ............................................................. I Abstract ............................................................. I Key words ........................................................... I 1.前 言 ............................................................ 1 2.常微分方程的求解方法 .............................................. 1 2.1常微分方程变量可分离类型解法 ................................... 1 2.1.1直接可分离变量的微分方程 ................................... 2 2.1.2可化为变量分离方程 ......................................... 2 2.2常数变易法 ..................................................... 7 2.2.1一阶线性非齐次微分方程的常数变易法 ......................... 7 2.2.2一阶非线性微分方程的常数变易法 ............................. 8 2.3积分因子法 .................................................... 13 3.实例分析说明这几类方法间的联系及优劣 ............................ 14 3.1几个重要的变换技巧及实例 .. (15)3.1.1变dx dy 为dy dx................................................15 3.1.2分项组合法组合原则 ........................................ 16 3.1.3积分因子选择 .............................................. 17 参考文献 .......................................................... 18 致 谢 (19)常微分方程初等解法及其求解技巧摘要常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法.关键词变量分离法常数变易法积分因子变换技巧Elementary Solution and Solving Skills of Ordinary DifferentialEquationAbstractOrdinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly.Key wordsVariable separation; constant threats; points factor; transform techniques1.前 言数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程又是数学分析的心脏,它还是高等分析里大部分思想和理论的根源.人所共知,常微分方程从它产生的那天起, 就是研究自然界变化规律、研究人类社会结构、生态结构和工程技术问题的强有力工具.它的发展历史也是跟整个科学发展史大致同步的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性质的研究、化学反应稳定性的研究等.这些问题都可以转化为求常微分方程的解,或者化为研究解的性质的问题.常微分方程具有广泛的社会实践性,无论是在各类学科领域上,还是在实际生产生活中,都有举足轻重的作用.它所涉及范围之广,致使前人对它做了很深入的研究.应用常微分方程理论已经取得了很大的成就,但是,它现有的理论也还远远不能满足需要,还有待进一步的发展,使这门学科的理论更加完善.微分方程是表达自然规律的一种自然的数学语言.它从生产实践与科学技术中产生,而又成为现代科学技术中分析问题与解决问题的一个强有力的工具.人们在探求物质世界某些规律的过程中,一般很难完全依靠实验观测认识到该规律,反而是依照某种规律存在的联系常常容易被我们捕捉到,而这种规律用数学语言表达出来,其结果往往形成一个微分方程,而一旦求出方程的解,其规律则一目了然.所以我们必须能够求出它的解.常微分方程的初等解法,既是常微分方程理论中有自身特色的部分,也与实际问题密切相关;恰当对初等解法进行归类,能正确而又敏捷地判断一个给定的方程属于何种类型,从而能按照所介绍的方法进行分解.总之,常微分方程属于数学分析或基础数学的一个组成部分,在整个数学大厦中占据这重要位置,学好常微分方程基本理论与方法对进一步学习研究数学理论与实际应用均非常重要,因此本文对常微分方程的初等解法进行了简要归纳和分析,主要讨论变量分离方程,非恰当微分方程,线性微分方程,同时结合具体的实例,展示了初等解法在解题过程中的应用及其求解过程中的变换技巧和律. 2.常微分方程的求解方法2.1常微分方程变量可分离类型解法定义 1 如果一阶微分方程具有形式)()(y g x f dx dy=,则该方程称为可分离变量微分方程.若设0)(≠y g ,则可将方程化为dx x f y g dy)()(=.即将两个变量分离在等式两端.其特点是:方程的一端只含有y 的函数与dy ,另一端只含有x 的函数与dx .对于该类程,我们通常采用分离变量的方法来处理。

(完整word版)不定方程的解法与应用

(完整word版)不定方程的解法与应用

摘要不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明.关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题AbstractThe integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life。

This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed。

For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples。

(完整word版)高数定义

(完整word版)高数定义

邻域:设a 和δ是两个实数,且0δ>,满足不等式x a δ-<的实数x 的全体称为a 的δ邻域。

绝对值:数轴上的点a 到原点的距离称为a 的绝对值,记为a 。

正间:即正区间 数轴:规定了原点、正方向和长度的直线称为数轴。

实数:实数由有理数和无理数组成。

有理数包括整数和分数。

函数:设x 和y 是两个变量,若当变量x 在其变动区域D 内取任一数值时,变量y 依照某一法则f 总有一个确定的数值与x 值对应,则称变量y 为变量x 的函数,记作()y f x =。

奇函数:设函数()y f x =在关于原点对称的集合D 上有定义,如果对任意的x D ∈,恒有()()f x f x -=-,则称函数()f x 为奇函数。

偶函数:设函数()y f x =在关于原点对称的集合D 上有定义,如果对任意的x D ∈,恒有()()f x f x -=,则称函数()f x 为偶函数。

定义域:在函数的定义中,自变量x 的变动区域,称为函数的定义域。

值域:在函数的定义中,y 的取值的集合称为函数的值域。

初等函数:由基本初等函数经过有限次的四则运算或复合运算而得到的函数称为初等函数。

三角函数:正弦函数,余弦函数,正切函数,余切函数,正割函数,余割函数合称三角函数。

指数函数:函数xy a =(0,1)a a >≠,称为指数函数。

复合函数:设y 是u的函数()y f u =,u是x 的函数()u x φ=,如果()u x φ=的值哉包含在()y f u =的定义域中,则y 通过u 构成x 的函数,记作()()y f x φ=,这种函数称为复合函数,其中u 称为中间变量。

对数函数:函数log a y x=(0,1)a a >≠,称为对数函数。

反函数:设设y 是x 的函数()y f x =,其值域为G ,如果对于G 中的第一个y 值,都有有一个确定的且满足()y f x =的x值与它对应,则得到一个定义在G 上的以y 为自变量,x 为因变量的新函数,称它为()y f x =的反函数,记作1()x f y -=,并称()y f x =为直接函数。

04第四讲_微分方程word精品文档12页

04第四讲_微分方程word精品文档12页

第四讲 微分方程考纲要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列微分方程:()()n y f x =,(,)y f x y '''=和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.问题1 何谓微分方程、微分方程的阶、解、通解、初始条件、特解、初值问题和微分方程的积分曲线?答 微分方程:含有自变量、未知函数、未知函数的导数的等式. 微分方程的阶(order):微分方程中出现的未知函数的导数的最高阶数.微分方程的解:满足微分方程的函数.微分方程的通解:微分方程的解中含有任意常数,且独立的任意常数的个数等于微分方程的阶数.初始条件:确定微分方程通解中任意常数的值的条件. 微分方程的特解:确定了通解中任意常数的值后所得到的解. 初值问题(Cauchy 问题):微分方程连同初始条件. 一阶微分方程初值问题:(,,)0F x y y '=,00()y x y =.二阶微分方程初值问题:(,,,)0F x y y y '''=,00()y x y =,00()y x y ''=. 微分方程的积分曲线:微分方程的解的图形(通解的图形是一族曲线).问题2 如何求解一阶微分方程?答 一阶微分方程的一般形式是:(,,)0F x y y '=,解出y ':(,)dyf x y dx=,考纲要求掌握变量可分离的微分方程、一阶线性微分方程、.齐次微分方程、伯努利方程的解法.1可分离变量的微分方程:()()dyg x h y dx= 解法 分离变量:()()dy g x dx h y =;两端积分:()()dyg x dx h y =⎰⎰. 2 齐次微分方程:dy y dx x ϕ⎛⎫= ⎪⎝⎭解法 令y u x =,则y xu =,dy du u x dx dx =+,代入方程,得()duu x u dxϕ+=并求解.3 一阶线性微分方程:()()dyP x y Q x dx+= 若()0Q x ≡,则称它是齐次的,否则,称它为非齐次的. 解法(常数变易法) 先解对应齐次线性微分方程()0dyP x y dx+=,求得通解()P x dx y Ce -⎰=; 再令非齐次线性微分方程的解为()()P x dxy C x e -⎰=,代入方程求出()C x .通解公式:()()(())P x dx P x dxy e Q x e dx C -⎰⎰=+⎰ 解的结构:一阶非齐次线性微分方程的通解=对应的齐次线性微分方程的通解+非齐次线性微分方程的特解.4 伯努利方程:()()(0,1)dyP x y Q x y dxαα+=≠.(与一阶线性微分方程比较)解法 方程两边乘以y α-,再令1z y α-=,将方程化为一阶线性微分方程.求解微分方程的步骤是:判断方程的类型并用相应的方法求解. 例 求解下列一阶方程:1.y y x y x +-='22 【C x xy x +=>ln arcsin ,0】 2.)ln (ln x y y y x -=' 【1+=Cx xe y 】3.e e y y x dxdyxy2)(,22=+= 【2ln 2+=x x y 】 4.1)0(,0)cos 2()1(2==-+-y dx x xy dy x 【11sin 2--=x x y 】5.02)(3=--ydx dy y x 【y C y x +-=351】6.ln dy y dx y x=- 7.0)2(2=+-xdy dx y xy 【Cx xy +=2】 问题3 如何求解可降阶的二阶微分方程?答 二阶微分方程(,,,)0F x y y y '''=,解出(,,)y f x y y '''=,考纲要求掌握下列三种类型可降阶方程的解法:1. ()y f x ''=、()()n y f x =型的微分方程 特点:右端仅含x . 解法:积分两次.2. (,)y f x y '''=型的微分方程 特点:右端不显含未知函数y .解法:换元,化为一阶方程求解. 步骤如下: ⑴令y p '=,则dpy p dx'''==,方程化为(,)p f x p '=(这是关于变量x ,p 的一阶方程);⑵解出p ;⑶再由y p '=解出y . 3.(,)y f y y '''=型的微分方程 特点:右端不显含x .解法:换元,化为一阶方程求解. 步骤如下: ⑴令y p '=,则dp dp dy dp y p dx dy dx dy ''===,方程化为(,)dpp f y p dy=(这是关于变量y ,p 的一阶方程);⑵解出p ;⑶再由y p '=解出y . 例1. 解方程20yy y '''-=.【12C x y C e =】2.求微分方程2()y x y y ''''+=满足初始条件(1)(1)1y y '==的特解.3.求初值问题221,(1)1,(1)1yy y y y ''''=+==-的解. 解 令y p '=,则dp dp dy dpy p dx dy dx dy''===, 方程化为221dp ypp dy =+,分离变量,得221pdp dy p y=+,两边积分,得 21ln(1)ln ln p y C +=+,即211p C y +=.将初始条件1,1,1x y y p '====-代入,得12C =,故212p y +=,解得p =p =.再解y '=dx =-,两边积分,得2x C =-+,将初始条件1,1x y ==代入,得22C =,2x =-,即21(45)2y x x =-+.注意 二阶可降阶方程求特解过程中,任意常数出现一个,确定一个,有利于下一步求解.问题4 叙述二阶线性微分方程解的性质、解的结构. 答 二阶线性微分方程的一般形式:()()()y P x y Q x y f x '''++= 若()0f x ≡,则称方程是齐次的,否则称方程是非齐次的. 1.线性微分方程解的性质⑴如果1y 与2y 是齐次方程()()0y P x y Q x y '''++=的两个解,则1122y C y C y =+是此齐次方程的解.⑵如果1y 与2y 是非齐次方程()()()y P x y Q x y f x '''++=的两个解,则12y y -是对应齐次方程()()0y P x y Q x y '''++=的解.⑶(解的叠加原理)设*k y 是线性方程()()()k y P x y Q x y f x '''++=的特解,则*1n k k y =∑是1()()()nk k y P x y Q x y f x ='''++=∑的特解.2线性微分方程解的结构定理1(齐次方程解的结构)如果1y 与2y 是齐次方程()()0y P x y Q x y '''++=的两个线性无关的特解,则1122y C y C y =+是此齐次方程的通解.定理2(非齐次方程解的结构)设*y 是非齐次方程()()()y P x y Q x y f x '''++=的一个特解,1122y C y C y =+是对应的齐次方程()()0y P x y Q x y '''++=的通解,则*1122y y C y C y =++是此非齐次方程的通解.例 设123,,y y y 是)()()(x f y x Q y x P y =+'+''的三个线性无关的解,则其通解为 .【1121231()()y C y y C y y +-+-】问题5 如何求解二阶常系数线性齐次方程0y py qy '''++=?答 先求出它的特征方程20r pr q ++=的两个根,再根据特征根的三种不同情形写出通解(见下表).特征方程20r pr q ++=的根 方程0y py qy '''++=的通解 两个不等实根12,r r 1212e e r x r x y C C =+两个相等实根12r r = 112()e r x y C C x =+两个共轭复根1,2r i αβ=± 12e [cos sin ]x y C x C x αββ=+ 问题6 如何求二阶常系数线性非齐次方程()y py qy f x '''++=的特解?答 考纲要求会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程,由非齐次方程解的结构,只要求出它的一个特解和对应的齐次方程的通解,而齐次方程的通解已经解决,关键是求它的一个特解.1.若()()e x m f x P x λ=,则令*()e k x m y x Q x λ=,其中0,12k λλλ⎧⎪=⎨⎪⎩不是特征根;,是单特征根;,是二重特征根.2.若()e [()cos ()sin ]x m l f x P x x P x x λωω=+,则令**e [()cos ()sin ]k x n n y x Q x x Q x x λωω=+,其中{}max ,n m l =,0,1i k i λωλω+⎧=⎨+⎩不是特征根;,是单特征根.将它们代入非齐次方程,求出多项式中的待定系数,从而求出特解. 例1.求022=-'-''x e y y 满足1)0(,1)0(='=y y 的解.【x e x y 2)21(4143++=】 2.求x x y y cos +=+''的通解.【x x x x C x C y sin 21sin cos 21+++=】3.x x y y sin 12++=+''的特解形式可设为 . 问题7 如何求解欧拉方程2()x y pxy qy f x '''++=? 答 令t x e =,则dy xy Dy dt'==, 222(1)d y dyx y D D y dt dt''=-=-,欧拉方程化为二阶常系数线性方程.例 欧拉方程)0(0242>=+'+''x y y x y x 的通解为 .【221x C x C y +=】 问题8 如何求解含变限积分的方程(积分方程)?答 积分方程通过求导可化为微分方程,这种方程通常含有初始条件(令积分上限等于积分下限).例1.设⎰--=xdt t f t x x x f 0)()(sin )(,)(x f 为连续函数,求)(x f . 解 00()sin ()()xxf x x x f t dt tf t dt =-+⎰⎰,⑴ 两边对求导,得()cos ()()()cos ()xxf x x f t dt xf x xf x x f t dt '=--+=-⎰⎰,⑵两边再对求导,得()sin ()f x x f x ''=--,故)(x f 满足微分方程sin y y x ''+=-,由⑴,⑵得初始条件(0)0,(0)1f f '==.2.函数)(x f 在[0,)+∞上可导,(0)1f =,且满足等式01()()()01xf x f x f t dt x '+-=+⎰, 求()f x '.【e ()1xf x x -'=-+】解 由01()()()01xf x f x f t dt x '+-=+⎰,得 ()1f x '=-,(1)()(1)()()0xx f x x f x f t dt '+++-=⎰,()(1)()()(1)()()0f x x f x f x x f x f x ''''+++++-=, (1)()(2)()0x f x x f x '''+++=,令()f x p '=,(1)(2)0dpx x p dx+++=,21dp x dx p x +=-+, ln ln(1)ln p x x C =--++,即e ()1xC p f x x -'==+, 又()1f x '=-,得1C =-,故e ()1xf x x -'=-+.问题9 如何用微分方程求解应用问题? 答 关键是建立微分方程(包括初始条件). 例题3 应用题1.设)(x f y =是第一象限连接)0,1(),1,0(B A 的一段连续曲线,),(y x M 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点,若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求)(x f 的表达式.【2)1()(-=x x f 】2.设位于第一象限的曲线()y f x =过点1)22,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分.⑴求曲线()y f x =的方程;(2221x y +=)⑵已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示()y f x =的弧长s .【4l 】 解 ⑴曲线()y f x =在点(,)P x y 处的法线方程为1()Y y X x y -=--', 令0X = ,得x Y y y =+',故点Q 的坐标为(0,)x y y +'. 由题设知,0xy y y ++=',即20xdx ydy +=,解得222x y C +=,将1)22代入上式,得1C =,故曲线()y f x =的方程为2221x y +=. ⑵曲线sin y x =在[0,]π上的弧长2022l πππ-===⎰⎰⎰,()y f x =的参数方程为cos ,,2x y θθ=⎧⎪⎨=⎪⎩弧长s θ==⎰.4===⎰. 3.设)(x f 在[1,)+∞上连续,若由曲线()y f x =,直线1,(1)x x t t ==>与x 轴所围成的平面图形绕x 轴旋转一周所成的旋转体体积为2()[()(1)]3V t t f t f π=-,求()y f x =所满足的微分方程,并求该微分方程满足条件229x y ==的解.【2232x y y xy '=-;3(1)1xy x x=≥+】 4.现有一质量为9000kg 的飞机,着陆的水平速度为700km/h 经测试,飞机所受的总阻力与飞机的速度成正比(比例系数为6100.6⨯=k ),问从着陆点算起,飞机滑行的最长距离是多少?【1.05km 】解 【利用22dv d sF ma m m dt dt===建立方程,关键是受力分析】质量9000kg m =,水平速度()v v t =,(0)700km/h v =,飞机所受的总阻力f kv =-,依题意dv kv mdt -=,dv k dt v m =-,两边积分,得ln ln kv t C m=-+,即ekt mv C -=,将(0)700v =代入上式,得700C =,故700ekt mv -=,飞机滑行的最长距离000700()700e e 1.05k k t t mmms v t dt dt k+∞--+∞+∞===-=⎰⎰(km )问题10(数学三) 何谓差分、差分方程、差分方程的阶?如何求解一阶常系数线性差分方程?答 函数()t y f t =的差分1t t t y y y +∆=-.二阶差分2121()2t t t t t t t y y y y y y y +++∆=∆∆=∆-∆=-+. 差分方程:含有差分的等式. 差分方程的阶:下标差的最大值.第 58 页 求解一阶常系数线性差分方程1()t t y py f t +-=的步骤是:⑴先求对应齐次方程10t t y py +-=通解:求出特征方程0r p -=的根r p =,10t t y py +-=通解为t t y Cp =,⑵再求非齐次方程1()t t t m y py P t b +-=的特解*()k t t m y t Q t b =,0,1,b p k b p ≠⎧=⎨=⎩⑶非齐次方程1()t t t m y py P t b +-=通解为*t t t y Cp y =+,例1.设,2t y t =则差分=∆t y .【21t +】2.设t t a y =则差分=∆t y .【(1)t a a -】3.差分方程t t t t y y 21=-+的通解为 .【(2)2t t y C t =+-】4.差分方程1t t y y t +-=的通解为 .【(2)2t t y C t =+-】5.差分方程051021=-++t y y t t 的通解为 .【51(5)()126t t y C t =-+-】 6.某公司每年的工资总额在比上一年增加20%的基础上再追加2百万元,若以t W 表示第t 年的工资总额,则t W 满足的差分方程是 .【1 1.22t t W W +=+】希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。

(完整word)高等数学:常微分方程的基础知识和典型例题

(完整word)高等数学:常微分方程的基础知识和典型例题

常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。

(完整word版)常微分方程教案2

(完整word版)常微分方程教案2

河北民族师范学院课程教案
(章节、专题首页)
河北民族师范学院课程教案
(分页)
c c是任意常数
c
()
P x dx
c e⎰
c c
=,。

4)
c
c是任意的常数,整理后
10)
方程(2.9)如果(2.10)中允许
包含在(2.10)中
代回原来的变量,得到原方程的通解为
c c
1,
c c
=
c
c c 是任意的常数
()()dx P x dx P x dx
dx c ce e dx
-⎫
+⎪⎭⎰⎰+ 2.32)
这就是方程(2.28这种将常数变易为待定函数的方法,通常称为常数变易法。

实际上常数变易法也是一2.29)可将方程()化为变量分离方程。

非齐线性方程的通解是它对应的齐线性方程的通解与它的某个特解之和1(1)x n x ++的通解
c
)c c是任意的常数
例2 求方程
解原方程改写为
c
-
c y
ln) c是任意的常数,另外也是方程的解.
特别的,初值问题
+
()
y Q x 的解为
0()x
x P d ce
ττ
⎰+)一阶非齐线性方程(2.28)的任两解之差必为相应的齐线性方程3)的非零解,而,其中c 为任意常数。

(完整word版)拉普拉斯方程的解

(完整word版)拉普拉斯方程的解



n1

(r)

1


(r ) 0 , r
C

A B ln r 。
r r r
r
3.球坐标
(R, , )

nm
(anm R n

bnm R n1
)
Pnm
(cos
)
cos
m

nm
(cnm R n

d R
nm n1
)
Pnm
(cos
)
sin
m
Pnm (cos ) ——缔合勒让德函数(连带勒让德函数)
3.半径 a,带有均匀电荷分布 的无限长圆柱导体,求导体柱外空间的
电势和电场。
解:电荷分布在无限远,电势零点应选在有限区域,为简单可选在导体
面 r = a 处(即 ((r a) 0) )。
选柱坐标系:
y
对称性分析:
① 导体为圆柱,柱上电荷均匀分布, 一定与 无关。
r
θ
o
x
② 柱外无电荷,电力线从面上发出后, z
导体边界可视为外边界, 给定,或给定总电荷 Q,或给定 S
(接地 0)
S
电荷分布无限,一般在均匀场中,
E

E0ez
E0r cos E0 z (直角坐标或柱坐标)
(2) 内部边值关系:介质分界面上
1 S 2 S
1
1 n
S


2
2 n
S
表面无自由电荷。
设 (x, y) 与 z 无关。 2 2 2 0 (0 x ,0 y b)
x2 y 2

常微分方程讲义word版

常微分方程讲义word版

常微分方程讲义(三)常微分方程的初等积分解法:1、可分离变量方程⎰⎰=⇒=dx x g dy y h y h x g dx dy )()(1)()( 2、齐次方程(一般含有xyy x 或的项) ),(y x f dxdy=,令ux y =,可消去右边的x 则)(),(u f ux x f u dxdux ==+例:xyxtg y xy =-'例:344322xy x y y x dx dy --=例:222y x xy dx dy +=例:1)0(,3222=-=y y x xy dx dy 例:22y x y dxdyx-+=3、一阶线性非齐次方程⇒+=)()(x b y x a dxdy常数变易法或])([)()(⎰+⎰⎰=-C dx e x b e y dxx a dxx a例:e y e y dxdyxx ==-+)1(,0 例:1)1()1(++=-+n x x e ny dx dyx例:211'x xyy --=例:21222sin 22sin 1x e y x dxdy y x ++=+4、贝努利方程n y x b y x a dxdy)()(+= 令n y z -=1,则dxdy y n dx dz n --=)1(,代入得:)()1()()1()()(1x b n z x a n dxdz x b y x a dx dy y n n +++=⇒+=-- 可将伯努力方程化成一阶线性非齐次例:)1(22y x xy dxdy+= 例:xyy x dx dy -=sin 12例:0)]ln 1([3=++-dx x xy y xdy 例:0)sin (cos 4=+-dx y x y xdy 例:211y y x dx dy -+-= 当)(x b 为常数时,可直接运用常数变易法,该贝努利方程已变为一种一阶线性非齐次的特例 5、全微分方程0),(),(=+dy y x N dx y x M第一种情况:若xNy M ∂∂=∂∂则⎰⎰+=yy xx d x N d y M y x u 0),(),(),(0ηηξξ或⎰⎰+=yy xxd x N d y M y x u 0),(),(),(0ηηξξ方程解为C y x u =),(,其中),(00y x 在定义域内任取 例:0=+xdy ydx 、0=±ydy xdx 例:022=+-yx ydx xdy例:0)1()1(=-++dy yx e dx e yx y x例:0112222=+-+-xdx dy y x xdx y x y 例:dx y x dy y x dx y x )()()(22+=++- 例:0)()(5445=-+-dy y x x dx y x y 例:0)22()522(32=++++dy x x dx y y x 第二种情况:若xNy M ∂∂≠∂∂则找积分因子1、只存在与x 有关的积分因子的充要条件是)()(1x xNy M N φ=∂∂-∂∂,积分因子⎰=dxx e x )()(φμ2、只存在与y 有关的积分因子的充要条件是)()(1y yMx N M ψ=∂∂-∂∂,积分因子⎰=dyy e y )()(ψμ例:0)12(4322=-+dy y x dx y x 例:0)(344=-+dy xy dx y x 例:0)52()34(324=+++dy xy x dx y xy * 微分方程解法的不确定性与灵活性:xydx dy = ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧方程“凑”的思路:全微分贝努力方程一阶线性非齐次方程齐次方程可分离变量方程“分”的思路:6、可降阶的二阶微分方程第一类:)(22x f dxyd =例:1)0(',1)0(,1'')1(2-===+y y y x第二类:),(22dx dy x f dxy d =,令dx dpdx y d p dx dy ==22,则例:xy y xy 'ln '''=例:01)'('')1(22=+++y y x 例:x e y y =-'''第三类:),(22dx dyy f dxy d =,令dy dp p dx y d p dx dy ==22,则例:1)0(',0)0(,0''2===-y y e y y 例:2)0(',0)0(,0'''===-y y e y y y例:求方程0''2)'(2=+yy y 的在点)1,1(与直线x y =相切的积分曲线 可降阶微分方程解法的灵活性:例:0)'('''3=++y y y ,令dy dpp dxy d p dx dy ==22,则例:0)'(1''2=-+y y ,令dx dydxy d p dx dy ==22,则微分方程的近似解:Picca 序列给定微分方程⎪⎩⎪⎨⎧===00|),(y y y x f dx dyx x ,则有 在),(00y x 处的第1次近似:⎰+=xx dx y x f y y 0),(001在),(00y x 处的第2次近似:⎰+=xx dx y x f y y 0),(102…………在),(00y x 处的第n 次近似:⎰-+=xx n n dx y x f y y 0),(10例:求微分方程⎪⎩⎪⎨⎧==1)1(y x ydx dy ,当2=x 时,y=?精确方法Picca 近似:精度与误差例:求微分方程⎪⎪⎩⎪⎪⎨⎧==2)1()ln(sin πy y dxdy的Picca 逼近数列微分方程的初值问题解的存在唯一性:⎪⎩⎪⎨⎧==00),(y y y x f dx dyx定理1:设函数),(y x f 在矩形区域},:),{(:00b y y a x x y x R ≤-≤-上连续;且对R 上任意两点),(),,(21y x y x ,满足Lipschitz 条件:2121),(),(y y L y x f y x f -≤-。

分离变量法在求解波动方程的举例

分离变量法在求解波动方程的举例

分离变量法在求解波动方程的举例下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!概述波动方程是描述波动现象的一种数学模型,而分离变量法是求解偏微分方程的一种常用方法。

高等数学(同济第七版)(上册)_知识点总结

高等数学(同济第七版)(上册)_知识点总结

...高等数学(同济第七版)上册-知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较f(x)设l imf(x)0,limg(x)0且llimg(x)(1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[g(x)],称g(x) 是比f(x)低阶的无穷小。

(2)l≠0,称f(x)与g(x)是同阶无穷小。

(3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x)2.常见的等价无穷小当x→0时sinx~x,tanx~x,arcsinx~x,arccosx~x,1-cosx~x^2/2,xe-1~x,ln(1x)~x,(1x)1~x二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g(x)≤f(x)≤h(x)若limg(x)A,limh(x)A,则l imf(x)A2.两个重要公式sinx公式11limx0x1/x公式2xelim(1)x03.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x0时,有以下公式,可当做等价无穷小更深层次xe 1x2x2!3x3!...nxn!no(x )sinxx3x3!5x5!... (n1)(2nx2n11)!2no(x1)WORD格式可编辑版...cosx12x2!4x4!... (2nxnox2n1)(2n!)ln(1x)x2x23x3... (nxnox n11)(n)(1x)1x (1)2!2x n ox n(1)...((n1))x...(n!)arctanxx3x35x5... (2n1xnox2n11)(2n11)5.洛必达法则定理1设函数f(x)、F(x)满足下列条件:(1)lim()0fxxx0 ,limF(x)0xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limxx0Fx)(f(x)f(x)存在(或为无穷大),则limlimxx0FFx(x)xx()这个定理说明:当f(x)limx0Fxx()存在时,f(x)limxx0Fx()也存在且等于f(x)limxx0F(x);当f(x) limxx()0Fx 为无穷大时,f(x)limx()x0Fx也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(LHospital)法则.型未定式定理2设函数f(x)、F(x)满足下列条件:(1)lim()fxxx0 ,limF(x)xx;(2)f(x)与F(x)在x的某一去心邻域内可导,且F(x)0;(3)f(x)limx)x0F(x存在(或为无穷大),则f(x)f(x)limlimxx0F(x)x x F(x)注:上述关于x时未定式型的洛必达法则,对于x时未定式型x同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“0”和“”型的未定式,其它的未定式须先化简变形成“0”或“”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限WORD格式可编辑版...f(xx)f(x)00'基本公式()limfx0x0x(如果存在)3.利用定积分定义求极限基本格式1n1klimf()f(x)dxnnnk1(如果存在)三.函数的间断点的分类函数的间断点分为两类:(1)第一类间断点设x是函数y=f(x)的间断点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6单元 变量分离的方程
一. 教学目标
1. 进一步掌握理解变量分离法,并且能够熟练的运用分离变量法解常微分方程。

2. 对某些本身不可分离变量的方程能够通过适当变换后,将原方程转换为可分离变量的方程。

二. 知识点
1. 分离变量法
三. 教学重点、难点
对分离变量法的学习是本单元的重点,也是难点
考虑微分方程
0),(),(=+dy y x Q dx y x P (2.2.1)
若函数),(),(y x Q y x P 和均可分别表示为x 的函数与y 的函数的乘积,则称(2.2.1)为变量分离的方程.因此,变量分离的方程可以写成如下形式:
0)()()()(11=+dy y Y x X dx y Y x X (2.2.2)
变量分离的方程的特点是:),(),(y x Q y x P 和可以分别表示为x 的函数与y 的函数的乘积. 问题是:对(2.2.2)如何求解?
一般来说,(2.2.2)不一定是恰当方程.为此先考虑一个特殊情形:
0)()(=+dy y Y dx x X (2.2.3)
(2.2.3)显然是一个恰当方程,它的通积分为
C dy y Y dx x X =+⎰⎰)()( (2.2.4)
由对方程(2.2.3)的求解过程,不难想到,当0)()(11≠y Y x X 时,若用因子)()(11y Y x X 去除(2.2.2)式的两侧,得到
0)
()()()(11=+dy y Y y Y dx x X x X (2.2.5) 这种变形过程叫做分离变量。

分离变量后的方程(2.2.5)已具有(2.2.3)的形式,故通积分为
C dy y Y y Y dx x X x X =+⎰⎰)
()()()(11 (2.2.6) 附注1:当0)()(11≠y Y x X 时,用求解方程(2.2.5)来代替求解方程(2.2.2)是合理的,因为此时方程(2.2.2)与方程(2.2.5)是同解的.
附注2:若a x =(或b y =)是方程0)(1=x X (或0)(1=y Y )的一个根,把它代入(2.2.2)式验证,可知a x =(或b y =)是方程(2.2.2)的解.这个解一般会在由(2.2.2)化为(2.2.5)时丢失,故有时不包含在通积分(2.2.6)中,必须补上.
例1 求解微分方程
0)1)(1(2
2=+-+xydy dx y x (2.2.7)
解 当0)1(2≠-y x 时,方程(2.2.7)可改写为等价的方程 01
122=-++dy y y dx x x , 积分得
C y x x ln 1ln )ln(222=-++,
即 C y e
x x =-1222,
亦即 222
1x
e C y x
-⋅+= (2.2.8) 其中0≠C .显然1,0±==y x 都是方程的解.若允许(2.2.8)中的C 可取零值,则特解1±=y 可含于(2.2.8)中.因此方程(2.2.7)的通积分为 2221x e C y x -⋅
+=, 其中C 为任意常数; 外加特解0=x .
例2 求微分方程)1(d d 2y x x
y y -=的通解. 解 当1±≠y 时,分离变量得
x x y y y d d 12=-,等式两端积分得 12d d 1C x x y y y +=-⎰⎰, 1222
11ln 21C x y +=-, 1222e ,
e 1C x C C y --±==-
方程的通解为 2
e 12x C y --=。

显然012=-y 即1±=y 是原方程的解,而此解可在通解中令0=c 得到.
例3 求下列微分方程的所有常数解:
(1)0d )1(1)d (22=-+-y x y x y x ;
(2)
y x x
y sin d d 2=: (3)y x x y tan d d 2=。

解 (1)由012=-y ,得1±=y ;由012
=-x ,得1±=x 。

所以方程的所有常数解为1,1±=±=x y 。

(2)由0sin =y ,得πk y =, ,2,1,0±±=k ,所以方程的所有常数解为πk y =, ,2,1,0±±=k 。

(3)由0tan =y ,得πk y =, ,2,1,0±±=k ,所以方程的所有常数解为πk y =, ,2,1,0±±=k 。

例4 求解微分方程
31
'23y y = (2.2.9) 并作出积分曲线族的图形.
解 当0≠y 时,将(2.2.9)改写为dx y dy
2
331
=,两边积分,得 C x y +=3
2, (0≥+C x ),
或 32)(C x y +=, (C x -≥) (2.2.10)
最后,还有特解0≡y ,它不包含在(2.2.10)之中.
利用方程(2.2.9)并参照通积分(2.2.10),可以作出积分曲线族的图形。

由图形不难看出,过x 轴上的每一点)0,(x P ,都有无穷多条积分曲线通过.很显然每一条这样的积分曲线都由两部分拼合而成:左半部分是与x 轴重合的直线段,右半部分可以是x 轴,也可以是向上或向下延伸的半立方抛物线.左右两部分在接合点相切.
总之,微分方程(2.2.9)满足初值条件00)(y x y =的解,当00≠y 时是局部唯一的;而当00=y 时是局部不唯一的.
我们把变量分离的方程的求解方法叫做变量分离法.变量分离法是解一阶方程的基础方法,对于一个微分方程能否用分离变量法求解,关键在于寻找把它转化为可分离变量方程的途径.
1.求解下列微分方程:
(1) 221xy y x dx
dy +++=;
解 分离变量,得
dx x y
dy )1(12+=+, 积分后得通积分
C x x y ++
=22
1arctan , 故通解为 )21tan(2C x x y ++
=. (2) 2)2cos (cos y x dx
dy =; 解 分离变量,得
xdx y dy 22cos 2cos =, 积分后得通积分
C x x y =--2sin 2
12tan . 此外由02cos =y 可求得特解4
2ππ+=n y . (3) 21y dx
dy x -=; 解 分离变量,得
x
dx y dy
=-2
1, 积分后得通积分 C x y =-ln arcsin .
此外还有特解1±=y .
(4) y x
e
y e x dx dy +-=-. 解 分离变量,得
dx e x dy e y x y )()(--=+,
积分后得通积分
C e e x y x y =-+--)(222.
2.求解下列微分方程的初值问题:
(1)0=+-dy ye xdx x
,1)0(=y ;
解 将方程改写为 0=+ydy dx xe x ,积分后得通积分
C y e xe x x =+
-22
1. 由初值条件1)0(=y ,得21-=C . 所以初值问题的解为01)1(22
=++-y e x x . (2) 21ln y
x dx dy +=,0)1(=y ; 解 分离变量,得 dx x dy y ln )1(2=+,
积分后得通积分 C x x x y y +-=+ln 3
13. 由初值条件0)1(=y ,得1=C .
所以初值问题的解为 01ln 313=-+-+
x x x y y . (3)321xy dx
dy x =+,1)0(=y ; 解 将方程改写为 231x xdx
dy y +=,
积分后得通积分 C x y
=++22121. 由初值条件1)0(=y ,得3=C . 所以初值问题的解为
312122=++x y .
(注:本资料素材和资料部分来自网络,仅供参考。

请预览后才下载,期待您的好评与关注!)。

相关文档
最新文档