初三数学解直角三角形的应用

合集下载

解直角三角形的应用ppt课件

解直角三角形的应用ppt课件

A
DF 30°
AF 6x 6 3 10.4
10.4 > 8没有触礁危险
7
修路、挖河、开渠和筑坝时,设计图纸上都要 注明斜坡的倾斜程度.
坡面的铅垂高度(h)和水平长度(l)的比 叫做坡面坡度(或坡比). 记作i , 即 i = h.
l 坡度通常写成1∶m的形式,如 i=1∶6.坡面与 水平面的夹角叫做坡角,记作a,有 i= h = tan a.
(2)加宽后水坝的横截面面积增加了 多少?(精确到0.01)
2.0
C
D
1:2.5 1:2


A
B
E
F
17
1.在解直角三角形及应用时经常接触到 的一些概念(方位角;坡度、坡角等)
2.实际问题向数学模型的转化 (解直角三角形)
18
利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角 三角形的问题); (2)根据条件的特点,适当选用锐角三角形函数等去解直角三角 形; (3)得到数学问题的答案; (4)得到实际问题的答案.
19.4.6
15
作DE⊥AB,CF⊥AB,垂足分别为E、 F.由题意可知
DE=CF=4.2(米),CD=EF=12.51(米).
在Rt△ADE中,因为 i DE 4.2 tan 32
AE AE
所以 AE 4.2 6.72(米)
在Rt△BCF中,同理可得
tan 32
BF 4.2 7.90(米) tan 28
移动.以O为原点建立如图12所示的直角坐标
系.
y/km

A

C
x/km
O

九年级数学《解直角三角形应用(航海)》课件

九年级数学《解直角三角形应用(航海)》课件

∵ PBA=90°, BPA=30°, PA=160米
∴AB=80米〈100米

∴受影响。

以A为圆心,100米为半径作圆弧,与
B
导 入
PN交于点C、D。 连接AC,AD。
∵AC=100米,AB=80米
∴BC=60米 ∴CD=2BC =120米
MP
C
30° 160
DN
A· Q
∵v=18千米/小时=5米/秒
答:没有触礁的危险。
思考:同学们还可以如何构建方程?
巩 一架外国侦察机沿ED方向侵入我国领空进行非法侦

察,我空军派出战斗机沿AC方向与外国侦察机平行 飞行,进行跟踪监视,我机在A处与外国侦察机在B
练 处的距离为50米,CAB为30°。这时外国侦察机突

然转向,以偏左45°的方向飞行,我机继续沿AC方
行20海里到达D点,这时测得灯塔A在北偏东30°,如果 渔船不改变航向,继续向东捕捞,有没有触礁的危 险?为什么?
合作探究,学会质疑
根据自学思考题,师友对议再组议交流上面问题
展 示
海中有一灯塔A,它的周围12海里有暗礁。渔船跟踪鱼 群,由西向东航行,在B点测得灯塔A在北偏东60°。 航行20海里到达D点,这时测得灯塔A在北偏东30°,
向以400米/秒的速度飞行。 外国侦察机在C点故意撞击我战 斗机,使我机受损。问外国侦察
C
D
45°
F
·B

∟ ︶
机由B到C的速度是多少?
30°50
( 21.414, 31.732, 62.449,结果保留整数)
A
E
当 台风是一种自然灾害,它以台风中心为圆心,在周围

冀教版九年级数学上册《解直角三角形的应用》PPT精品教学课件

冀教版九年级数学上册《解直角三角形的应用》PPT精品教学课件
在图中,α=30°,β=60°.Rt△ABD中,
α=30°,AD=120,所以利用解直角
三角形的知识求出BD;类似地可以求
出CD,进而求出BC.
随堂练习
解:如图,α = 30°,β= 60°, AD=120.
∵ tan =


, tan =


3
40 3
3
CD AD tan 120 tan 60 120 3 120 3
随堂练习
1.如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6 m的
位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5 m,则旗杆AB的高度
9.5
约为______m.(精确到0.1
m,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
BD AD tanα 120 tan 30 120
BC BD CD 40 3 120 3
160 3 277.1
答:这栋楼高约为277.1m.
解直角三角形的
26.4
应用
第2课时
知识回顾
直角三角形中诸元素之间的关系:
(1)三边之间的关系:a2+b2=c2 (勾股定理);
B
(2)锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:sin A
a
b
a
, cos A , tan A .
c
c
b
c
a
A
b
C
情景导入
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
B
A

中考数学专题复习——解直角三角形的实际应用的基本类型课件

中考数学专题复习——解直角三角形的实际应用的基本类型课件

) D.6 3 m
2.(202X·益阳中考)南洞庭大桥是南益 高速公路上的重要桥梁,小芳同学在校 外实践活动中对此开展测量活动.如 图,在桥外一点A测得大桥主架与水面的交汇点C的俯角 为α,大桥主架的顶端D的仰角为β,已知测量点与大桥
主架的水平距离AB=a,则此时大桥主架顶端离水面的高
CD为 ( C )
【核心突破】 【类型一】 仰角俯角问题 例1(202X·天津中考)如图,海面上一艘 船由西向东航行,在A处测得正东方向上 一座灯塔的最高点C的仰角为31°,再向东继续航行30 m
到达B处,测得该灯塔的最高点C的仰角为45°,根据测 得的数据,计算这座灯塔的高度CD(结果取整数). 参考数据:sin 31°≈0.52,cos 31°≈0.86, tan 31°≈0.60.
____2_2____海里(结果保留整数).(参考数据sin 26.5° ≈0.45,cos 26.5°≈0.90,tan 26.5°≈0.50, 5 ≈ 2.24)
5.(202X·上海宝山区模拟)地铁10 号线某站点出口横截面平面图如图 所示,电梯AB的两端分别距顶部9.9 米和2.4米,在距电梯起点A端6米的P处,用1.5米高的测 角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度 与长度.
解直角三角形的实际 应用的基本类型
【主干必备】 解直角三角形的实际应用的基本类型
应用 类型
图示
测量方式
解答要点
仰角 俯角 问题
(1)运用仰角测距离. (2)运用俯角测距离. (3)综合运用仰角俯 角测距离.
水平线与竖直 线的夹角是 90°,据此构 造直角三角形.
应用 类型
坡度 (坡 比)、 坡角 问题
A.asinα+asinβ C.atanα+aβ D. a a

解直角三角形的应用(19张ppt)课件

解直角三角形的应用(19张ppt)课件

选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。

九年级数学解直角三角形的应用

九年级数学解直角三角形的应用

直角三角形中,斜边上的中线 等于斜边的一半。
三角函数的概念
正弦(sin)
正切(tan)
直角三角形中锐角的对边与斜边的比 值。
直角三角形中锐角的对边与邻边的比 值。
余弦(cos)
直角三角形中锐角的邻边与斜边的比 值。
特殊角的三角函数值
30度
01
sin=1/2,cos=√3/2,tan=√3/3
45度
学习目标
掌握解直角三角形的 基本方法,包括利用 勾股定理、三角函数 等求解。
培养数学逻辑思维和 推理能力,增强数学 素养。
理解解直角三角形在 解决实际问题中的应 用,提高解决实际问 题的能力。
02 基础知识回顾
直角三角形的性质
直角三角形中,直角所对的边 是斜边,其余两边为两腰。
直角三角形中,两锐角互余, 即两个锐角的和为90度。
06 总结与回顾
本章重点回顾
掌握解直角三角形的基本概念和性质。海等领域。
理解正弦、余弦、正切等三角函数的 意义和性质。
学习方法总结
注重基础知识的学习和掌握,理解概念和性质。 多做练习题,加深对知识的理解和运用。
结合实际应用,提高解决实际问题的能力。
综合练习题
1、题目
在 Rt△ABC 中,∠C = 90°,AC = 6,BC = 8,将 Rt△ABC 对折使点 A 与点 B 重合,折痕为 MN,则 tan∠ANB 的值是 _______.
2、题目
在 Rt△ABC 中,∠C = 90°,AC = 6,BC = 8,将 Rt△ABC 对折使点 A 与点 B 重合,折痕为 MN,则 sin∠ANB 的值是 _______.
实例
已知直角三角形两条直角 边分别为3和4,则斜边长 度为5。

解直角三角形的应用题型

解直角三角形的应用题型

解直角三角形的应用题型直角三角形是初中数学中一个重要的概念,也是解决实际问题中常用的基本图形之一。

在应用题中,我们经常需要用到直角三角形的性质和定理,以解决各种实际问题。

下面列举一些常见的直角三角形应用题型。

1. 求斜边长已知直角三角形的一条直角边和另一条边的长度,求斜边长。

这类问题可以用勾股定理解决,即斜边的长度等于直角边长度的平方加上另一条边长度的平方的平方根。

例题:已知直角三角形的一个直角边为3,另一条边长为4,求斜边长。

解:斜边长等于3的平方加上4的平方的平方根,即√(3+4)=√25=5。

2. 求角度已知直角三角形两个角度,求第三个角度。

由于直角三角形的内角和为180度,因此第三个角度可以用90度减去已知的两个角度得到。

例题:已知直角三角形两个角度分别为30度和60度,求第三个角度。

解:第三个角度等于90度减去30度和60度的和,即90-30-60=0度。

3. 求高已知直角三角形的斜边和一条直角边,求高。

我们可以通过求出这个三角形的面积以及底边长度来求出高,也可以利用正弦定理或余弦定理求出高。

例题:已知直角三角形的斜边长为5,直角边长为3,求高。

解:利用勾股定理可求出这个三角形的面积为(3*4)/2=6。

利用面积公式S=1/2*底边长*高,可得高为(2*6)/3=4。

4. 求面积已知直角三角形的两条直角边长度,求面积。

我们可以利用面积公式S=1/2*底边长*高求出面积。

例题:已知直角三角形的两条直角边长分别为4和3,求面积。

解:利用面积公式S=1/2*4*3,可得面积为6。

以上是直角三角形应用题的一些常见类型,希望能对大家的学习有所帮助。

初三数学解直角三角形的应用题

初三数学解直角三角形的应用题

解直角三角形应用题考点一、直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

∠A=30°可表示如下: ⇒BC=21AB ∠C=90°3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°可表示如下: ⇒CD=21AB=BD=AD D 为AB 的中点 4、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD AD CD •=2⇒AB AD AC •=2 CD ⊥AB AB BD BC •=2 6、常用关系式由三角形面积公式可得: AB •CD=AC •BC考点二、直角三角形的判定 〔3~5分〕1、有一个角是直角的三角形是直角三角形。

2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

考点三、锐角三角函数的概念 〔3~8分〕 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即casin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即cbcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数〔1〕互余关系sinA=cos(90°—A),cosA=sin(90°—A) tanA=cot(90°—A),cotA=tan(90°—A) 〔2〕平方关系1cos sin 22=+A A5、锐角三角函数的增减性 当角度在0°~90°之间变化时,〔1〕正弦值随着角度的增大〔或减小〕而增大〔或减小〕 〔2〕余弦值随着角度的增大〔或减小〕而减小〔或增大〕 〔3〕正切值随着角度的增大〔或减小〕而增大〔或减小〕 〔4〕余切值随着角度的增大〔或减小〕而减小〔或增大〕 考点四、解直角三角形 〔3~5〕 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的元素求出所有未知元素的过程叫做解直角三角形。

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学[解直角三角形及其应用--知识点整理及重点题型梳理]

苏教版九年级下册数学重难点突破知识点梳理及重点题型巩固练习解直角三角形及其应用—知识讲解【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.求∠要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】 类型一、解直角三角形1.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a =4; (2)a =1,b =【答案与解析】(1)∠A =90°-∠B =90°-60°=30°.由tan bB a =知,tan 4tan 60b a B ==⨯=° 由cos a B c =知,48cos cos 60a c B ===°.(2)由tan bB a==B =60°,∴ ∠A =90°-60°=30°.∵ 222a b c +=,∴ 2c ==.【总结升华】解直角三角形的两种类型是:(1)已知两边;(2)已知一锐角和一边.解题关键是正确选择边角关系.常用口诀:有弦(斜边)用弦(正弦、余弦),无弦(斜边)用切(正切). (1)首先用两锐角互余求锐角∠A ,再利用∠B 的正切、余弦求b 、c 的值;(2)首先用正切求出∠B 的值,再求∠A 的值,然后由正弦或余弦或勾股定理求c 的值. 举一反三:【课程名称:解直角三角形及其应用 395952 :例1(1)-(3)】【变式】(1)已知∠C=90°,,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ;【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=2.(2015•湖北)如图,AD 是△ABC 的中线,tanB=,cosC=,AC=.求:(1)BC 的长;(2)sin ∠ADC 的值.【答案与解析】解:过点A 作AE ⊥BC 于点E , ∵cosC=,∴∠C=45°,在Rt△ACE中,CE=AC•cosC=1,∴AE=CE=1,在Rt△ABE中,tanB=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.【总结升华】正确作出辅助线构造直角三角形是解题的关键,注意锐角三角函数的概念的正确应用.类型二、解直角三角形在解决几何图形计算问题中的应用3.(2016•盐城)已知△ABC中,tanB=,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:CD=2:1,则△ABC面积的所有可能值为.【思路点拨】分两种情况,根据已知条件确定高AD的长,然后根据三角形面积公式即可求得.【答案】8或24.【解析】解:如图1所示:∵BC=6,BD:CD=2:1,∴BD=4,∵AD⊥BC,tanB=,∴=,∴AD=BD=,∴S△ABC=BC•AD=×6×=8;如图2所示:∵BC=6,BD:CD=2:1,∴BD=12,∵AD⊥BC,tanB=,∴=,∴AD=BD=8,∴S△ABC=BC•AD=×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为8或24.【总结升华】本题考查了解直角三角形,以及三角函数的定义,三角形面积,分类讨论思想的运用是本题的关键.举一反三:【课程名称:解直角三角形及其应用395952:例2】【变式】(2015•河南模拟)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为多少?【答案与解析】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD 的坡度为i =i =铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案与解析】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==.(2)在Rt △DEC 中,∵ tan 3DE C EC ∠==,∴ ∠C =30°.又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=55FB =+,解得5 3.66(m)FB ==. 答:改建后需占路面的宽度FB 的长约为3.66 m .【总结升华】(1)解梯形问题常作出它的两条高,构造直角三角形求解.(2)坡度是坡面的铅直高度与水平宽度的比,它等于坡角的正切值.5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.11.73).【答案与解析】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52,CE =AC ·cos ∠ACE =5×cos 30在Rt △BCE 中,∵ ∠BCE =45°,∴ 551)22AB AE BE =+=+=≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【总结升华】此题将实际问题抽象成数学问题是解题关键,从实际操作(用三角形板测得仰角、俯角)过程中,提供作辅助线的方法,同时对仰角、俯角等概念不能模糊.。

九年级数学上册24.4第三课时解直角三角形的应用教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

九年级数学上册24.4第三课时解直角三角形的应用教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件
7/7
数学
新课标(HS) 九年级上册
1/7
24.4 解直角三角形
第3课时 解直角三角形应用(二)
2/7
第3课时 解直角三角形应用(二)
新知梳理
► 知识点 坡角与坡度(坡比)
概念:如图 24-4-40,通常把坡面的铅垂高度 h 和水平
长度 l 的比叫做坡面的坡度(或坡比),记作 i,即 i=hl .坡度通
6/7
第3课时 解直角三角形应用(二)
[归纳总结] 解坡度问题的一般规律:(1)正确理解坡度 与坡角的关系:tanα=i=hl ;
(2)水渠、堤坝的横断面一般是梯形,解这类问题通常将 梯形分割成直角三角形和矩形;
(3)由不同的坡比构建不同的直角三角形求解,此类题 目的条件多,线条多,解法多,应抓住关键条件,看“有用” 线段,选择比较简便的解法.
米,坝顶宽BC=6米,依据条件求: (1)斜坡AB坡角α(准确到1′); (2)坝底宽AD和斜坡AB长(准确到0.1米).
图24-4-41
4/7
第3课时 解直角三角形应用(二)
[解析] 梯形问题,首先应作辅助线结构直角三角形,再利 用条件解直角三角形.
解:分别过 B、C 两点作 BE⊥AD 于 E,CF⊥AD 于 F, 则四边形 BCFE 为矩形,∴BE=CF,BC=EF.
(1)在 Rt△BAE 中,i1=1∶3,即 tanα=ABEE=13, ∴α≈18°26′.
5/7
第3课时 解直角三角形应用(二)
(2)在 Rt△ABE 中,i1=1∶3,BE=23 米, ∴AE=3BE=3×23=69(米), AB= AE2+BE2= 692+232 = 5290≈72.7(米). 在 Rt△CDF 中,i2=1∶2.5,CF=BE=23 米, ∴DF=2.5CF=2.5×23=57.5(米). ∴AD=AE+EF+FD=AE+BC+FD=69+6+57.5 =132.5(米).

九年级数学-解直角三角形及其应用

九年级数学-解直角三角形及其应用

第26讲 解直角三角形及其应用知识导航1.在直角三角形中,由已知元素(直角除外)求其他所有未知元素的过程,叫做解直角三角形. 2.直角三角形边角之间的关系:Rt △ABC 中,∠C =90°,则有:(1)a 2+b 2=c 2;(2)∠A +∠B =90°;(3)sin A =cos B =a c ,cos A =sin B =bc ,tan A =a b ,tan B =b a. 3.解直角三角形实际应用时常用的概念:(1)仰角、俯角;(2)方向角;(3)坡角、坡度.【板块一】解直角三角形及实际应用方法技巧1.灵活运用边角关系求边与角;2.若所求解的直角三角形“不可直接解”,应注意设元,借助方程来解决; 3.如果图形中没有直角时,要添加垂线将其转化为直角三角形求解. ▶题型一 可直接解直角三角形【例1】在△ABC 中,∠C =90°,根据下列条件解直角三角形: (1)c =2,∠A =30°; (2)a =b =9; (3)∠A =2∠B ,c -b =4.【解析】(1)∵∠A =30°,∠B =60°.∴a =c sin ∠A =2×12=1.b =c cos ∠A =2(2)由勾股定理得c=tan ∠A =ab.∴∠A =30°.∴∠B =90°-∠A =60°.(3)∵∠A =2∠B ,∠A +∠B =90,∴∠A =60°,∠B =30°.∴c =20,c -b =4.∴b =4,c =8.∴a=【点评】在已知条件中,如有针边,用正弦或余孩,无针边时用正切,求边时,要灵活运用三角函教和勾股定理.▶题型二 “不可直接解直角三角形”——设元、借助方程求解【例 2】如图,在四边形ABCD 中,AB ∥DC ,∠A =90°,∠B =120°,ADAB =6,点E 是边AB 上一动点,且∠DEC =120°,求AE 的长.【解析】过点C 作CH ⊥AB 交AB 的延长线于点H ,则CH =AD∵∠ABC =120°,∴∠CBH =60°,∴BH =tan CH CBH ∠=1,BC =cos CH CBH ∠=2,又AB =6,∴CD =AH =7.易证△BCE ∽△ED C .∴BE EC =CEDC,∴CE 2=BE ·DC ,设BE =x .∴CE 2=7x .在Rt △CEH 中,CE 2=EH 2+CH 2=(x +1)2+2=7x ,∴解得x =1或4.当x =1时,AE =5;当x =4时,AE =2.∴AE 的长为5或2. ▶题型三 “化斜为直“解斜三角形【例3】在△ABC 中,AB =8,∠ABC =30°,AC =5,求BC 的长.EDCBAHABCDE【解析】当△ABC是钝角三角形时,如图1,作AH⊥BC于点H.在Rt△ABH中.AH=AB·sin∠ABC=4.∴BH=Rt△AHC中.HC=3.∴BC=3.当△ABC是纯角三角形时,如图2,同上可求得BC=3.综上所述,BC=3或3.【点评】1.解斜三角形时,要结合已知条件恰当地引垂线,构造可解的直角三角形;2.已如三角形的两边及某中一边的对角(为锐角),注意分类讨论.▶题型四方位角、俯角、仰角、坡角等的应用【例4】如图,一般渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,岛礁P正东方向上的避风港继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向,为了在合风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行多少小时即可到达?(结果保留根号)【解析】过点P作PQ⊥AB交AB的延长线于点Q.过点M作MN⊥AB交AB的延长线于点N,在直角△AQP 中.∠P AQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ,所以BQ=PQ-90.在直角△BPQ中,∠BPQ=30°,则BQ=PQ·tan30PQ,所以PQ-90PQ,所以PQ=45(3,所以MN=PQ=45(3,在直角△BMN中.∠MBN=30°,所以BM=2MN=90(3,所以t=(90375=小时).【占评】1.将实际问题转化为数学模型,再将数学模型转化为解直角三角形问题;2.当图中无直角三角形时,通过作垂线,可把问题转化为解直角三角形.【例5】某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处调得真立于地面的大树顶端C的仰角为36°,然后沿同一副面的斜坡AB行走13米至放顶B处,然后两沿水平方向行走6米至大树脚底店D处,涂料面AB的城度(或坡比)=1:2:4,那么大树CD的高度约为多少?(结果保留小数点后一位,参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)图2图1H HCABAB C避风港北PA BMNMBAPQ北避风港EDCBA ABCDEF【解析】过点B作BF⊥AE于点F,则FE=BD=6米,∴DE=BF,∵鞋面AB的放度i=1:2:4,∴AE =2.4BF.设BF=x米,则AF=2.4x米,在RT△ABF中,由勾股定理得x2+(2.4x)2=132,解得x=5,∴DE=BF=5米,AF=12米.∴AE=AF+FE=18米,在Rt△ACE中,CE=AE·tan36°=18×0.73=13.14米.CD=CE-DE=13.14-5≈8.1米.针对练习11.如图,一般海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P2.如图,在△ABC中,∠C=90°,∠A的平分线AD=4,∠DAC=30°,解Rt△AB C.解:∵AD平分∠CAB,∠DAC=30°,∴∠BAD=30°,∠CAB=60°,∵∠C=90°,∴∠B=30°,∴∠B=∠BAD,∴BD=AD=4,∴在Rt△ACD中,CD=12AD=2,∴AC=AD cos30°=AB=2AC =BC=BD+CD=6.3.如图,在△ABC中,AB=AC,tan∠ACB=2,点D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,求AD的长.解:过点D作DH⊥BC于点H,过点A作AM⊥BC于点M,过点D作DG⊥AM于点G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=AMCM=2,∴AM=2a,AC=a,S△BDC=12BC·DH=BAPDCBADCBA12·2a ·DH =10,∴DH =10a ,易证四边形DHMG 为矩形,△ADC ≌△CDH ,∴DG =DH =MG =10a,∴AG =CH =a +10a ,∴AG =CH =a +10a ,∴AM =AG +MG ,即2a =a +10a +10a,∴a 2=20,在Rt △ADC中,AD 2+CD 2=AC 2,又AD =CD ,∴2AD 2=5a 2=100,AD =4.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48°,测得底部C 处的俯角为58°,求甲、乙两座建筑物的高度AB 和D C .(结果取整数)(参考数据:tan 48°≈1.11,tan 58≈1.60)解:过点D 作DE ⊥AB ,垂足为点E ,则∠AED =∠BED =90°,由题意可知BC =78m ,∠ADE =48°,∠ACB =58°,∠ABC =90°,∠DCB =90°,可得四边形BCDE 为矩形,∴ED =BC =78m ,DC =E B .在Rt △ABC 中,tan ∠ACB =ABBC ,∴AB =BC ·tan 58≈78×1.60≈125(m ). 在Rt △AED 中,tan ∠ADE =AEED,∴AE =ED ·tan 48°≈78×1.11≈87(m ).∴EB =AB -AE =125-87=38(m ),∴DC =EB =38m答:甲建筑物的高度约为125m ,乙建筑物的高度约为38m .5.为了测量竖直旗杆的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得点B ,E ,D 在同一水平线上,如图所示。

九年级数学 解直角三角形的应用

九年级数学 解直角三角形的应用

九年级数学解直角三角形的应用一、教学目标知识目标:了解仰角、俯角概念,能应用解直角三角形解决观测中的实际问题.帮助学生学会把实际问题转化为解直角三角形问题,从而把实际问题转化为数学问题来解决.能力目标:逐步培养学生分析问题、解决问题的能力.渗透数学建模及方程思想和方法,能将实际问题中的数量关系转化为直角三角形中元素之间的关系.情感与价值观:渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识,同时激发学生对自己家乡的热爱之情及自豪感,更好的激励学习.二、教学重点、难点1.重点:应用解直角三角形的有关知识解决观测问题.2.难点:能够准确分析问题并将实际问题转化为数学模型.三、教学过程1.导入新课[设计说明:明确本节课学习目标,复习解直角三角形的概念及相关方法原则,为接下来的学习做好充分准。

]展示学习目标,交流课前预习内容:解直角三角形中常用的数量关系及相关原则方法.(课前布置预习作业,角、边共同回答,其它直接交流,强调三角函数关系形式灵活,可写为比的形式,也可写为乘积形式)(解直角三角形原则(1)、(2)学生齐声回答)(交流自己添加条件解直角三角形问题挑选所给条件不同形式的作业展示,主要是“一边一角”,“两边”等类型,归纳强调已知条件至少有一个必须是边)2.例题分析[设计说明:联系实际,对问题情境的理解需要学生具有一定的空间想象能力,在审题过程中自然引出仰角、俯角概念,逐步向学生渗透数学建模思想,帮助学生从实际问题中,抽象出数学模型,将实际问题转化为数学问题来解决。

例1讲解,先引导学生分析,然后借助多媒体逐步展示解题过程,规X书写格式,α强调解题完整性。

变题1与例1是交换β450米题目条件与结论,情境不变,分别求桥长与飞机高。

变题2-3情境有所变化,由测桥变为测楼,所求问题是飞机高及飞机到楼房距离。

以上问题的解题关键在于转化实际问题为数学问题,着重是示意图的画法及让学生说出题中每句话对应图中的哪条边或哪个角(包括已知什么和求什么),进而利用解直角三角形知识解决问题,并在解题后及时加以归纳,挖掘图形结构及条件的特点。

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

中考数学复习:专题7-12 解直角三角形在实际生活中的应用

专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。

若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。

三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。

湘教版九年级(初三)数学上册解直角三角形的应用_课件1

湘教版九年级(初三)数学上册解直角三角形的应用_课件1
PB
∴PB ≈ 289(m) 答:小亮与妈妈相距约289米.


分析:在直角三角形 ABC中,已知了坡度即角α 的正切可求出坡角α,然后 用α的正弦求出对边BC的长.

CALeabharlann ●B解:用α 表示坡角的大小, 由题意可得
tana = 1 = 0.5 , 2
因此α ≈26.57°.
在Rt△ABC中,
∠B =90°,∠A = 26.57°,AC =240 ,
因此 sina =
3 1.732.
解:大树AB的高约为8.4米.
A
D
30
F
60
G B
C
E
中考试题
3.为促进我市经济的快速发展,加快道路建设,某高速
公路建设工程中需修隧道AB,如图,在山外一点C测得BC距 离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的 长.(参考数据:sin54°≈0.81,cos54°≈0.59, tan54°≈1.38, 3 ≈1.73,精确到个位)
∵ BD = 3500 m, AE = 1600 m,
AC⊥BD,∠BAC = 40°,
在Rt△ABC中,
BC BD - AE 0 tanBAC = = = tan 40 AC AC 3500 - 1600 0.8391,即AC 2264 (m ) AC
因此, A,B两点之间的水平距离AC约为2264 m.
解:过点C作CD⊥AB于D, ∵BC=200m,∠CBA=30°, 1 ∴在Rt△BCD中,CD= 2BC=100m, BD=BC•cos30°≈173(m),
在Rt△ACD中,AD≈74(m),
∴AB=AD+BD=173+74=247(m). 答:隧道AB的长为247m.

《解直角三角形的应用》数学教学PPT课件(3篇)

《解直角三角形的应用》数学教学PPT课件(3篇)

1. 在直角三角形中,任一锐角的三角函数只与角的大小有 关,而与直角三角形的大小无关. 2. 在直角三角形中,已知一条边和一个角,或已知两条边, 就可以求出其他的边和角
3. 有些关于图形的实际问题,我们可以结和已知条件,恰 当地构造出直角三角形,画出图形,将实际问题转化为解直 角三角形的问题.
温故知新
A
的测角仪测得东方明珠塔顶的仰
角为60°48 ′.
根据测量的结果,小亮画 了一张示意图,其中 AB 表示 东方明珠塔, DC 为测角仪 的支架,DC= 1.20 米,
CB= 200米,∠ADE=60°48'.
根据在前一学段学过的长 D
E
方形对边相等的有关知识,你 C
B
能求出AB 的长吗?
解:根据长方形对边相等,EB=DC,DE=CB. A
例2 如图,某直升飞机执行海
上搜救任务,在空中A 处观测
到海面上有一目标B ,俯角是
α= 18°23 ' ,这时飞机的高度 为1500 米,求飞机A与目标B的 B 水平距离(精确到1 米).
α
A
C
解:设经过B点的水平线为BC,作AC⊥BC,垂足为C . 在Rt△ABC中,AC=1500 米,∠ABC=∠α= 18°23 ' .
因此,该船能继续安全地向东航行.
课堂练习
1.如图,某厂家新开发的一种电动车的大灯A射出的光线AB,AC 与地面MN所形成的夹角∠ABN, ∠ACN分别为8°和15°, 大灯A与地面的距离为1m,求该车大灯照亮地面的宽度BC (不考虑其他因素,结果精确到0.1m).
2. 一种坡屋顶的设计图如图所示. 已知屋顶的宽度 l为10m, 坡屋顶的高度h为3.5m. 求斜面AB的长度和坡角α(长度精 确到0.1m,角度精确到1°).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
初三数学 解直角三角形的应用
一、选择题:
1.已知等腰三角形底边上的高等于腰的
2
1,则项角为 ( )
(A ) 300 (B ) 450 (C ) 600 (D ) 900
2.菱形ABCD 的对角线AC=10,BD=6,则 tan 2
A
= ( )
(A ) 53 (B ) 54
(C ) 34
3 (D )以上都不对
3.在高出海平面100米的山岩上一点A ,看到一艘船B 的俯角为300,则船与山脚的
水平距离为 ( )
(A ) 50米 (B )200米 (C )1003米 (D )33100

4.正方形的对角线长为3,则正方形的面积为 ( ) (A ) 9 (B )
23 (C )26 (D )2
3
5.如果三角形的斜边长为4,一条直角边长为23,那么斜边的高为 ( ) (A ) 23 (B )
2
3
(C )3 (D )2 6.Rt △ABC 中,∠C=900,斜边AB 的坡度为1:2,若BCAC ,则BC :AC :BA 等于 ( ) (A ) 1:2:5(B )1:3:2 (C ) 1:5:3 (D )1:2:5
7.若从山项A 望地面C 、D 两点的俯角分别为450、300,C 、D 与山脚B 共线,若CD=100米,那么山高AB 为 ( ) (A ) 100米 (B ) 50米 (C ) 502米 (D ) 50(13+)米 8.已知△ABC 中,AD 是高,AD=2,DB=2,CD=23,则∠BAC= ( ) (A) 1050 (B) 150 (C) 1050或150 (D) 600
9.已知△ABC 中,∠ABC=900
,∠ACB=450
,D 在BC 的延长线上,且CD=CA ,则cot
2
450的值为 ( ) (A ) 12+ (B ) 2 (C )
212+ (D )2
1
2- 10.已知:△ABC 中,∠BCA=900,CD ⊥AB 于D ,若AD=1,AB=3,那么∠B 的余弦值为
( ) (A )
32 (B ) 36 (C ) 37 (D )2
6
二、填空题:
1.若地面上的甲看到高山上乙的仰角为200,则乙看到甲的俯角为 度。

2.已知一斜坡的坡度为1:3,则斜坡的坡度为 。

3.已知一斜坡的坡度为1:4,水平距离为20米,则该斜坡的垂直高度为 。

4.在山坡上种树,要求株距为5.5米,测得斜坡的倾斜角为300,则斜坡上的相邻两株间的坡面距离是 米。

5.已知直角梯形ABCD 中,AB ∥CD ,∠D =900,AC ⊥BC ,若AC =3,BC =3,则AB= 。

6.已知锐角△ABC 中,AD ⊥BC 于D ,∠B =450,DC=1,且ABC S ∆=3,则AB= 。

7.已知菱形的两条对角线分别是8和838.已知如图,将两根宽度为2cm 则阴影部分面积为 。

9.如图所示,某建筑物BC 直立于水平地面,AC=9 AB ,使每阶高不超过20厘米,则阶梯至少要建 阶。

(最后一阶的高不足20厘米时,按一阶计算;3取1.732)
三、解答题:
1. 已知如图,Rt △ABC 中,∠ACB =900,D 是AB 的中点,
sin α=3
2,AC =54,求ABC S ∆ 。

2.已知如图:四边形ABCD 中,∠B =∠D =900,∠BAD =600,且BC
=11,CD =2,求AC 的长。

3.我人民解放军在进行“解放一号”军事演习时,于海拔高度为600米的某海岛顶
端A 处设立了一个观察点(如图)上午九时,观察员发现“红方C 舰”和“蓝方D 舰”
与该岛恰好在一条直线上,并测得“红方C 舰”的俯角为300,测得“蓝方D 舰”的俯角为80,请求出这时两舰之间的距离。

A B C
αA B C
D
D C
B
A
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
(参考数据:12.78cot ,14.08tan ,73.1300===)
4.如图所示,一勘测人员从B 出发,沿坡度为150的坡面以5千米/时的速度行至D 点,用了12分钟,然后沿坡度为200的坡面以3千米/时行至山顶A 处,用了10分钟,求山高(即AC 的长度)及A 、B 两点的水平距离。

(即BC 的长度)(精确到0.01千米)
(sin150=0.2588 , cos150=0.9659 , sin200=0.3420 , cos200=0.9397)
5.在生活中需要测量一些球(如足球、篮球……)的直径,某校研究学习小组,通
过实验发现下面的测量方法:如图所示,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB ,设光线DA 、CB 分别与球相切于点E 、F ,则EF 即为球的直径,若测得AB 的长为41.5cm ,∠ABC=370
,请你计算出球的直径(精确到1cm )。

6.某村计划开挖一条长1500底宽1.2米,坡角为450(如图所示)米,结果比原计划提前47.在半径为27m 的圆形广场中央点O 呈圆锥形,其轴截面SAB 的顶角为1200
确到0.1m )。

(5,732.13,414.12===00
830
D B C
A E D C
B A O
S
B
A。

相关文档
最新文档