高中数学《导数的概念》公开课优秀教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:导数的概念
一、教学内容解析
《导数的概念》是《选修2-2》第一章第1.1节中第1.1.2小结的内容,是高中数学的一节概念课.数学学习离不开推理,推理离不开判断,而判断是以一切概念为基础的.因此,数学教师必须要重视概念的教学.
纵观《导数及其应用》这章内容,导数以高起点,高观点和更一般的方法简化了中学数学中许多与函数相关的问题.导数的出现也为我们今后微积分的发展提供了方法和工具,从而使得它在其它学科领域也有了广泛的应用.但我们又不能将导数作为一种规则和步骤来学习,否则,学生很难体会导数的思想及其内涵,这样导数概念的学习就至关重要.
一般地,导数概念学习的起点是极限,但就高中学生的认知水平而言,他们很难理解极限的形式化定义.因此,我们对导数概念的引入从变化率入手,用形象直观的“逼近”方法定义导数.
我们将导数概念的建立分为两个阶段,在明确瞬时速度含义的基础上,将瞬时速度一般化,即抽象为一般的函数,从而形成导数的概念.
第一阶段:明确瞬时速度的含义及平均速度与瞬时速度的区别和联系.让学生在观察实验的同时,体会当||t ∆变小,趋于0时,
t
s
∆∆趋于一个定值,这个定值就是瞬时速度.在经历平均速度到瞬时速度的过程中,第一次体会逼近的数学思想.
第二阶段,将平均速度和瞬时速度抽象为一般的表达式,完全转化为数学问题,在揭示研究瞬时变化率必要性的同时,用类比的思想方法,经历从平均变化率到瞬时变化率的过渡,再次体会逼近的思想方法.最后,建立导数的概念.
因此,根据以上对教学内容的分析,确立本节课的教学重点:在充分经历导数概念的建立过程中,体会逼近的数学思想,理解导数的思想及其内涵. 二、教学目标
1.在导数概念建立的过程中,引导学生通过观察、数值逼近、几何直观感受、解析式抽象、类比等方法体会数学概念的发生和形成.
2.理解导数的概念,初步掌握导数的计算方法,并在具体数学问题中进一步理解导数的概念.
3.通过对瞬时速度、瞬时变化率的探索,激发学生对本部分内容学习的兴趣. 三、学生学情分析
1.导数是对变化率的一种“度量”.实际生活中,学生最为熟悉的一种变化率就是物体的运动速度.学生在1.1.1小结学习了导数的物理意义,掌握了变化率,在高一年级的物理课程中学习过瞬时速度,因此,学生已经具备了一定的认知基础,他们不会对新知识感到无所适从.
2.可能存在的问题:(1)“逼近”的思想对于学生而言,还是比较陌生,需要精心设计教学活动,比如借助物理知识等,激发学生的兴趣,从学生已有的知识背景出发,帮助学生经历从平均速度到瞬时速度,从平均变化率到瞬时变化率的过渡.(2)使学生能通过观察发现:运动的物体在某一时刻的平均速度在时间间隔越来越小时,逐渐趋于一个不变的常数,而且这个常数就是物体在这一时刻的瞬时速度.这个过程学生难以想象,同时数值逼近的运算繁琐,但又不能采取简单的方式告知学生,而是要学生通过实际的计算,在计算过程中,充分感知当||t ∆趋于0时,
t h ∆∆趋于一个定值;当||x ∆趋于0时,x
y
∆∆趋于一个定值.(3)在实际教学中,学生需要用到思想方法和表达形式的迁移,即把从平均速度到瞬时速度过渡中所运用的“逼近”的思想方法迁移到从平均变化率到瞬时变化率的过渡,从对一个具体函数在一个确定点的瞬时变化率的表达式迁移到任意一个函数在任意一点的瞬时变化率的表达,这样的探究方法可能会导致学生的不适应而产生困难.
因此,如何引导学生根据生活中具体的实例,结合已有的知识经验,通过“逼近”的方法,由特殊到一般,用类比的方法归纳探究出导数的概念是本节课的难点. 四、教学策略分析
根据学生情况,为了完成本节课的教学目标,突破教学重难点,主要采取教师问题引导,学生自主探究、归纳的教学方法.具体的策略有:
1.从具体到抽象的教学方法.学生由生活中的具体实例和已有的知识背景出发,历经平均速度到瞬时速度的过渡,再把物体的运动变化量抽象为一般的函数,从而得到瞬时变化率的概念.
2.从特殊到一般的教学方法.让学生在知道2=t 是的瞬时速度以后,直观地理解运动员在任意时刻t 的瞬时速度.同样,在学生探究出一个指定函数在某一点处的瞬时变化率之后,可以归纳出一般函数在任意一点的瞬时变化率.
3.几何直观感受.通过几何画板的演示让学生形象的感知“逼近”.
4.利用计算器进行分组合作,取不同的t ∆,x ∆,计算t h ∆∆以及x
y
∆∆的值.
计时间学内容
15分钟
1
回
顾
复
习
实
例
研
究
讲授:上节课我们通过气球膨胀率、高台跳水的实例,
建立起了平均变化率的概念.也请大家计算了高台跳水运动员
在
49
65
0≤
≤t这段时间里的平均速度.
经过计算,大家发现运动员在
49
65
0≤
≤t这段时间里的
平均速度是0.难道说运动员在这段时间是静止的?
显然,运动员在这段时间里不是静止的.由此可见,用平均
速度描述运动员的运动状态是有一定的局限性.所以我们说
“平均速度”只能粗略地描述运动员的运动状态.还有一种速
度,它能更精确地刻画运动员在每个时刻的运动状态,我们
称之为:瞬时速度.
那如何求运动员的瞬时速度呢?比如,高台跳水运动员
在s
t2
=时的瞬时速度是多少呢?大家有没有好的想法?
讲授:我们来看物理中测瞬时速度的小视频.
问:观看的时候思考仪器在测量瞬时速度时的工作原理
是什么?
问:这里所得的真是瞬时速度吗?为什么?
.
问:对,也就是我们很难测量到真正的瞬时速度,我们
测量到的是千分之一,万分之一秒,以致更短时间间隔内的
学生思考.
学生思考.找
不到好的方法来求
运动过程中的瞬时
速度.
根据已有的物
理知识,学生回答
仪器是通过测量气
轨上滑块在t∆时
间内滑过的距离
s∆,用
s
t
∆
∆
计算而
得.
学生回答不是.
答:时间间隔越
组织学
生讨论、交
流计算结
果,激发学
生的求知
欲.明确本
节课的教学
内容.
平均速
度为0?通
过计算结果
与学生的认
知产生冲
突.
在实例观
察中,感受
逼近的思
想,为求瞬
时速度奠定
基础.