相对运动绝对运动牵连运动

合集下载

理论力学 第八章

理论力学 第八章

x o ' = x o ' (t ) 牵连运动方程 y o ' = y o ' ( t ) = ( t )
动系与定系之间的坐标变换关系
x = xO′ + x′ cos y′sin y = yO′ + x′ sin + y′ cos
沿半径为r的圆 例8-1 点M相对于动系 Ox′y′ 沿半径为 的圆 相对于动系 周以速度v作匀速圆周运动 圆心为O 作匀速圆周运动(圆心为 周以速度 作匀速圆周运动 圆心为 1 ) ,动系x′y′ O Oxy 以匀角速度ω绕点 作定轴转动, 相对于定系 以匀角速度 绕点O作定轴转动, 绕点 作定轴转动 如图所示。 重合, 重合。 如图所示。初始时x′y′ 与 与 重合 O Oxy 重合,点M与O重合。 的绝对运动方程。 求:点M的绝对运动方程。 的绝对运动方程
. 已知: 已知 ω, OA, = r, OO1 = l, OA水平 求: ω1 = ?
解:
1.动点:滑块A . 动系:摇杆AB 2. 运动分析 绝对运动:绕O点的圆周运动
相对运动:沿O1B的直线运动 牵连运动:绕O1轴定轴转动
√ √ √
3.
ve = va sin = ωr
r
2 2
l +r ve r2ω ∴ω1 = = 2 2 O A l +r 1
4. 绝对运动方程 vt vt x = x′ cos y′ sin = r1 cos r cosωt r sin r sin ωt y = x′ sin + y′ cos = r1 cos vt sin ωt + r sin vt co-3 用车刀切削工件的直径端面,车刀刀尖 M沿水平轴 作往复运动,如图所示。设oxy为定坐 沿水平轴x作往复运动 沿水平轴 作往复运动,如图所示。 为定坐 标系,刀尖的运动方程为 x = bsin (ωt ) 。工件以 标系, 逆时针转向转动。 等角速度 ω逆时针转向转动。 求:车刀在工件圆端面上切出的痕迹。 车刀在工件圆端面上切出的痕迹。

转动参考系

转动参考系

第四章转动参照系本章应掌握①转动参照系中的速度、加速度计算公式及有关概念;②转动参照系中的动力学方程;③惯性力的有关概念、计算公式;④地球自转产生的影响。

第一节平面转动参照系本节应掌握:①绝对运动、相对运动、牵连运动的有关概念及相互关系;特别是科里奥利加速度的产生原因;②平动转动参照系中的速度和加速度。

一、绝对运动、相对运动、牵连运动有定系οξηζ,另一平面以角速度ω绕轴旋转,平板上固定坐标系oxyz,oz轴与οζ轴重合。

运动质点P相对板运动。

由定系οξηζ看到的质点的运动叫绝对运动;动系oxyz看到的质点运动叫相对运动;定系上看到的因动系转动导致质点所在位置的运动叫牵连运动。

绝对速度、加速度记为;相对速度、加速度记为V',a'。

二、平动参照系中的速度、加速度1、v和a的计算公式速度:(为牵连速度)加速度:其中,牵连加速度a l为:(转动加速度+向心加速度)科里奥利加速度:2、科里奥利加速度a c①它产生条件是:动系对定系有转动;质点相对动系的运动速度不为零,而且运动方向与转轴方向不平行。

②它产生原因是:科氏加速度的产生在于牵连运动与相对运动的相互影响:从静止系看来,一方面牵连运动使相对速度发生改变,另一方面,相对运动也使牵连速度中的发生改变,两者各贡献,结果科氏加速度为。

三、平面转动参照系问题解答例关键是分清定系,动系和运动物体;然后适当选取坐标系,按公式计算。

[例1]P263 4.1题等腰直角三角形OAB,以匀角速ω绕点O转动,质点P以相对速度沿AB边运动。

三角形转一周时,P点走过AB。

求P质点在A 点之速度、加速度(已知AB=b)解:(1)相对动系(直角三角形)的速度v r=b/T=b/(2π/ω)=bω/2π(方向)A点的牵连速度(方向垂直)由V=V r+V e,利用矢量合成法则,得到(2)加速度,因匀速,所以相对加速度α'=0 又匀角速转动,所以角加速牵连加速度,大小,方向沿科氏加速度注意到,所以其大小方向与AB边垂直(见图4.1.1)由,利用矢量合成法则则得到:与斜边的夹角第二节空间转动参照系本节要求:①掌握空间转动参照系中绝对、相对、牵连变化率等概念;②掌握空间转动参照系中的速度V、加速度a的计算公式。

理论力学(第6章)

理论力学(第6章)

t 已知:O1A=O2B=18cm,AB=O1O2=2R,R=18cm , 18 t2 求: va , aa s BM
π
加速度合成定理的矢量形式向 直角坐标轴x、y上投影,得:
π aax a a cos 6.67cm / s 2 6 π n n aay ar ae sin 20cm / s 2 6
绝对:大圆周(半径R)
相对:沿OA的直线运动 牵连:定轴转动(绕o轴)
2.速度分析 v a ve 大小 ? 方向 √
ve va 2Rω cos

vr
OM√?√ Nhomakorabeavr ve tan 2 R ω sin ω t
6.3 牵连运动为平移时点的加速度合成定理
点的加速度合成定理:
解:(1) 动点:取顶杆AB的A点 动系:固连在凸轮上。 绝对运动:沿AB竖直方向 的平移。 相对运动:A点沿凸轮边 缘的圆周运动。 牵连运动:动系凸轮沿水 平面向右平移。
已知:
v0
30
2.速度分析
va ve vr
由几何关系可以得到:

3 vB vA v tan 30 v 3
例6-5 平面机构中直杆O1A、O2B平行且等长,分别 绕O1、O2轴转动,直杆的A、B连接半圆形平板,动 点M沿半圆形平板ABD边缘运动,起点为点B。已知 π t, O1A=O2B=18cm,AB=O1O2=2R,R=18cm , 18 t2 。 s BM
求:当 t 3s 时, 动点M的绝对速度 和绝对加速度。

方向竖直向上
例6-2 刨床的急回机构如图所示。曲柄OA的一端 A与滑块用铰链连接。当曲柄OA以匀角速度ω绕固 定轴O转动时,滑块在摇杆O1B上滑动,并带动杆 O1B绕定轴O1摆动。设曲柄长为OA=r,两轴间距 离OO1=l。 B 求: O ① 曲柄在水平位 A 置时摇杆的角 速度 1 。 ② 滑块A对于摇 杆 的相对角 O1 速度

理论力学第八章点的合成运动和例题讲解

理论力学第八章点的合成运动和例题讲解
MM ' 为绝对位移 M1M ' 为相对位移
MM' = MM1 + M1M'
MM' = MM1 + M1M' 将上式两边同除以△t, 取△t →0时的极限,得
lim M M lim M M 1 lim M 1 M t 0 t t 0 t t 0 t
va vevr
即在任一瞬时动点的绝对速度等于其牵连速度与相对速度 的矢量和,这就是点的速度合成定理。 说明:① 点的速度合成定理适用于牵连运动(动系的运动)为
O1B的角速度1。
解:取OA杆上A点为动点,摆杆O1B 为动系,基座为静系。
绝对速度va = r ,方向 OA
相对速度vr = ? 方向//O1B 牵连速度ve = ? 方向O1B
由速度合成定理 va vevr作出速度平行四边形 如图所示。
ve vasin r
r r2 l2
r 2 r2 l2

1. 绝对运动:动点相对于静系的运动。 2. 相对运动:动点相对于动系的运动。 点的运动 3. 牵连运动:动系相对于静系的运动。 刚体的运动 在任意瞬时,动坐标系中与动点相重合的点叫牵连点。
绝对运动中动点的速度与加速度称绝对速度 v a 与绝对加速度 a a 相对运动中动点的速度和加速度称相对速度 v r 与相对加速度 a r
§8-2 点的速度合成定理
点的速度合成定理将建立动点的绝对速度、相对速度和牵连 速度之间的关系。
设有一动点M按一定规律沿着固连于动系O’x’y’z’ 的曲线AB 运动, 而曲线AB同时又随同动系O’x’y’z’ 相对静系Oxyz运动。
当t t+△t 时 AB A' B' , M M' 也可看成M M1 M´

相对运动

相对运动

高一物理竞赛培训任何物体的运动都是相对于一定的参照系而言的,相对于不同的参照系,同一物体的运动往往具有不同的特征、不同的运动学量。

通常将相对观察者静止的参照系称为静止参照系;将相对观察者运动的参照系称为运动参照系。

物体相对静止参照系的运动称为绝对运动,相应的速度和加速度分别称为绝对速度和绝对加速度;物体相对运动参照系的运动称为相对运动,相应的速度和加速度分别称为相对速度和相对加速度;而运动参照系相对静止参照系的运动称为牵连运动,相应的速度和加速度分别称为牵连速度和牵连加速度。

绝对运动、相对运动、牵连运动的速度关系是:绝对速度等于相对速度和牵连速度的矢量和。

牵连相对绝对v v v += 这一结论对运动参照系是相对于静止参照系作平动还是转动都成立。

当运动参照系相对静止参照系作平动时,加速度也存在同样的关系:牵连相对绝对a a a+=位移合成定理:S A 对地=S A 对B +S B 对地如果有一辆平板火车正在行驶,速度为火地v (脚标“火地”表示火车相对地面,下同)。

有一个大胆的驾驶员驾驶着一辆小汽车在火车上行驶,相对火车的速度为汽火v ,那么很明显,汽车相对地面的速度为:火地汽火汽地v v v +=(注意:汽火v 和火地v 不一定在一条直线上)如果汽车中有一只小狗,以相对汽车为狗汽v 的速度在奔跑,那么小狗相对地面的速度就是火地汽火狗汽狗地v v v v ++=从以上二式中可看到,上列相对运动的式子要遵守以下几条原则: ①合速度的前脚标与第一个分速度的前脚标相同。

合速度的后脚标和最后一个分速度的后脚标相同。

②前面一个分速度的后脚标和相邻的后面一个分速度的前脚标相同。

③所有分速度都用矢量合成法相加。

④速度的前后脚标对调,改变符号。

以上求相对速度的式子也同样适用于求相对位移和相对加速度。

相对运动有着非常广泛的应用,许多问题通过它的运用可大为简化,以下举两个例子。

例1 如图2-2-1所示,在同一铅垂面上向图示的两个方向以s m v s m v B A /20/10==、的初速度抛出A 、B 两个质点,问1s 后A 、B 相距多远?这道题可以取一个初速度为零,当A 、B 抛出时开始以加速度g 向下运动的参考系。

论质点的绝对运动、相对运动、牵连运动

论质点的绝对运动、相对运动、牵连运动

论质点的绝对运动、相对运动、牵连运动
质点的运动是物理学中的一个重要概念,它可以分为绝对运动、相对运动和牵连运动。

绝对运动是指质点在某一参考系中的运动,它的运动轨迹是相对于参考系而言的,而不是相对于其他物体而言的。

例如,一辆汽车在马路上行驶,它的运动是相对于马路而言的,
而不是相对于其他汽车而言的。

相对运动是指质点在另一个参考系中的运动,它的运动轨迹是相对于另一个参考系而言的,而不是相对于另一个物体而言的。

例如,一辆汽车在马路上行驶,它的运动是相对于另一辆汽车而言的,而不是相对于马路而言的。

牵连运动是指质点在一个物体中的运动,它的运动轨迹是相对于该物体而言的,而不是相对于参考系而言的。

例如,一辆汽车在马路上行驶,它的运动是相对于汽车本身而言的,而不是相对于马路而言的。

总之,质点的运动可以分为绝对运动、相对运动和牵连运动,它们都有其独特的特点,在物理学中都有重要的意义。

理论力学第三章冯维明主编

理论力学第三章冯维明主编

返回首页
3.2 点的速度合成定理 由合成定理有
例 题
式中三个矢量具有六个要素,已知四个,可作速度平行四边 形,如图所示,则求得
vA va ve cot v cot 30 3v

v θ v θ
v
其方向铅直向上。
v
Theoretical Mechanics
返回首页
3.2 点的速度合成定理
v
由正弦定理
ve vr sin sin 60
v

与 v r 间的夹角为 va
v
Theoretical Mechanics
2
返回首页
第三章 点的合成运动
§3.3 牵连运动为平动时 点的加速度合成定理
Theoretical Mechanics
返回首页
3.3 牵连运动为平动时点的加速度合成定理
Theoretical Mechanics
返回首页
3.2 点的速度合成定理
3.2.1 绝对速度、相对速度和牵连速度
牵连点:在任意瞬时,与动点相重合的动坐标 系上的点。
讨 论
动坐标系是一个包含与之固连的刚体在内的运动 空间,除动坐标系作平移外,动坐标系上各点的运 动状态是不相同的。在任意瞬时,只有牵连点的运 动能够给动点以直接的影响。为此,定义某瞬时, 与动点相重合的动坐标系上的点(牵连点)相对于 静坐标系运动的速度称为动点的牵连速度 。
返回首页
3.2 点的速度合成定理
3.2.1 绝对速度、相对速度和牵连速度 3.2.2 速度合成定理
Theoretical Mechanics
返回首页
3.2 点的速度合成定理
3.2.1 绝对速度、相对速度和牵连速度

《工程力学》点的合成运动

《工程力学》点的合成运动

y
a
n a
ae aa
ar
x
由加速度合成定理
即 a ae ar
aa aan ae ar
aan
ae aa
ar
x投影: y投影:
aan sin aa cos ar

aan cos aa sin ae
将 aan 2 OA 代入上式可解出 ar和 ae
aa OA
例7-7 设OA=O1B=r,斜面倾角为1,O2D=l, D
点可以在斜面上滑动,A、B为铰链连接。 图示位置时OA、O1B铅垂,AB、O2D为水
平,已知此瞬时OA转动的角速度为,角
加速度为零,试求此时O2D绕O2转动的角速 度和角加速度。
解:以三角斜面为 动坐标系,D点为 动点
dz dt
dk) dt

ar

( dx dt
i
dy dt
j
dz dt
k )
ar r
其中 ac 2 r
科氏加速度
aa ae ar 2 r
点的加速度合成定理
实例:
在北半球,河水向北流动时,科氏加速 度向西,有右岸对水向左的力,由作用力 与反作用力,河水必对右岸有反作用力。 故右岸有明显的冲刷。


r
西 ac


例7-8
如图所示,点M在杆OA上按规律x=20+30t2运动(其 中t以s计;x以mm计),同时杆OA绕轴O以 = 2t rad的规律转动。求当t=1s时,点M的加速度大小。
取点M在动点,动系建在杆OA上,把x=20+30t2对时 间求导,得vr=60t, ar=60mm/s2

理论力学9ppt课件

理论力学9ppt课件
本章将在两个不同的参考空间中讨论同一物体的运动,并给出物体在这两个 参考空间中的运动量之间的数学关系式。 物体相对于甲空间的运动可视为其相对于乙空间的运动和乙空间相对于甲空 间运动的复合运动。
本章介绍复合运动的基本知识。
学习本章的意义:
复合运动是研究刚体复杂运动的重要基础。
.
2
第3章 复合运动
§3.1 绝对运动 相对运动 牵连运动
这种利用动系和定系来分析运动的方法(或运动的合成与分解),不仅在 工程技术上有广泛应用,而且还是在非惯性参考系中研究动力学问题的基 础。
.
5
§3.2 变矢量的绝对导数与相对导数
目的:
为了给出绝对与相对速度、加速度的关系,需要在两个相对运动着的参考 空间中考察同一个变矢量的变化率。
为此,本节引入矢量的绝对导数和相对导数的概念,并研究它们之间的关
第3章 复合运动 9学时
3.1 绝对运动、相对运动、牵连运动
3.2 变矢量的绝对导数与相对导数
3.3 点的复合运动的分析解法(不要求)
3.3.1 动点的运动方程
3.3.2 动点的速度和加速度合成的解析表达式
3.4 点的复合运动的矢量解法
3.4.1 速度合成定理
3.4.2 加速度合成定理
3.5 刚体的复合运动(不作为重点内容,简单介绍)
系。
变矢量
A
其变化依赖于所选取的参考空间。
定义其中一个空间为定系,另一个空间为动系。
规定:
~A
绝对增量A:
变矢量 A相对定系的增量。
相对增量~A:
定 系
动 系
t 时刻
At
t A tt时刻 t
At At
A Ae
变矢量 A相对动系的增量。

理论力学第八章 点的合成运动(Y)

理论力学第八章 点的合成运动(Y)

aC
五、牵连运动为定轴转动时的加速度合成定理
aa ae ar ac
点的加速度合成定理:动点在某瞬时的绝对加速度等于该瞬 时的牵连加速度、相对加速度与科氏加速度的矢量和。 科氏加速度
ac 2e vr 大小: ac 2e vr sin
平行时, 00 或 180 0
车轮轮缘上一点M的运动分析
O1
如果站在地面上观察时,车轮边缘上任一点的轨迹都是悬轮线 如果站在汽车上观察时,车轮边缘上任一点的轨迹都是圆
飞机螺旋浆上点P 的运动分析
如果在飞机上观察螺旋桨上P点的运动轨迹是一个圆。 如果在地面上观察,则P点的轨迹就是螺旋线。
2、两种坐标系与三种运动
(1)两种坐标系
60
vA O1 A
ve vC v A
vCD va ve cos O1 A cos 10cm / s
vC
1、加速度分析
牵连运动——AB杆作平动。
aa ae ar
a A aC ae O1 A
2
2
2
aCD aa ee sin O1 A sin 34.6cm / s
一、绝对运动、相对运动与牵连运动 二、速度合成定理 三、矢量表示角速度,角加速度 四、牵连运动是平动时的加速度合成定理 五、牵连运动是定轴转动时的加速度合成 定理
一、绝对运动、相对运动与牵连运动 1、运动的相对性
从不同的参考系观察同一点的运动,其结果是不相同的 物体对于不同的参考系,运动各不相同。
ve
va
va l
——垂直于OA
牵连运动(牵连点的运动)——T 形杆上A点作水平直线运动
ve 大小未知,方向沿水平。

理论力学

理论力学

动点、动系和定系的选择原则 (1)动点、动系和定系必须分别属于三个不同的物体,否则绝 对、相对和牵连运动中就缺少一种运动,不能成为合成运动。 (2)动点相对动系的相对运动轨迹易于直观判断(已知绝对运 动和牵连运动求解相对运动的问题除外)。
[例3] 曲柄滑块机构 已知: O1 A r , 1 , , h; 图示瞬时 O1 A//O2 E ; 求: 该瞬时O 2 E 杆的2 。
[例4] 已知:凸轮半径 R, vo , ao 求: =60o时, 顶杆AB的加速度。
解:取杆上的A点为动点, 动系与凸轮固连。
绝对速度va = ? AB ;
相对速度vr = ? CA; 牵连速度ve=v0 → ;
由速度合成定理 va
ve v r
绝对加速度aa=? AB(待求) 相对加速度art =? CA a n v r2 / R 沿CA指向C r 牵连加速度 ae=a0 →
2 3 va ve tan30 e 3
0
2 3 v AB e 3
()
由上述例题可看出,求解合成运动的速度问题的一般步骤为: (1) 选取动点,动系和定系。 (2)三种运动的分析。 (3) 三种速度的分析。 (4) 根据速度合成定理 va = ve + v r ,作出速度平行四边形。 (5)根据速度平行四边形,求出未知量。 恰当地选择动点、动系和定系是求解合成运动问题的关键。
解:(1)动点:O1A上A点; 动系:固结于BCD上, 静系固结于机架上。 va r1 , O1 A 绝对运动:圆周运动; 相对运动:直线运动; vr ?, //BC 牵连运动:平动; ve ? ,水平方向
根据 va v e v r 做出速度平行四边形
根据 va F ve F vr F 做出速度平行四边形

02-14.4 绝对、相对和牵连运动的关系(课件)

02-14.4  绝对、相对和牵连运动的关系(课件)

2 4
绝对、相对和牵连运动的关系 点的速度合成定理
t
y
xsin
ycos
r1
cos
vt r
sin
t
r
sin
vt r
cost
绝对、相对和牵连运动的关系 点的速度合成定理
例2
已知绝对运动求相对运动
已知:用车刀切削工件的直径端面,车刀刀尖M 沿
水平轴 x 作往复运动,如图所示。设Oxy为定坐标
系,刀尖的运动方程为 x bsin t 。工件以等角
速度 逆时针转向转动。
求:车刀在工件圆端面上切出的痕迹。
绝对、相对和牵连运动的关系
点的速度合成定理
解: 动点:M 动系:工件
相对运动方程
Oxy
x ' OM cost b sint cost b sin 2t
2
y OM sin t bsin 2 t b (1 cos 2t)
2
相对运动轨迹
x2
y
b 2
b2
点的速度合成定理
4、绝对、相对和牵连运动的关系
点的速度合成定理
绝对、相对和牵连运动之间的关系
动点:M 动系:O' x ' y '
绝对运动运动方程
x xt y y t
相对运动运动方程
x xt y yt
牵连运动运动方程
xO xO(t)
y O
yO (t)
(t)
由坐标变换关系有
x xO xcos ysin
y
yO
xsin
ycos
绝对、相对和牵连运动的关系 点的速度合成定理
例1
已知相对运动求绝对运动
已知:点M相对于动系Oxy沿半径为r的圆周以速度

第七章理论力学

第七章理论力学

y dy
d2 j dt 2 dj
z dz
d 2k
dt 2
)
dk
)
(x
d
2i
y
d
2
j
z
d
2k
)
dt 2
dt 2
dt 2
dt dt dt dt dt dt
dt 2
dt 2
dt 2
ar
dvr dt
d 2r dt 2
d
(
dx
i
dy
j
dz
k )
dt dt
(
d 2x dt 2
dj dt
dz dt
dk ) dt
ae
又∵
dx di dy dj dz dk
vdxt(v(dvrtxii)dvtvy yjd(t
4、速度分析(略);
D
5、加速度合 成定理:
ae
ω
A
aa ae ar
O
φaa ar
B
C
大小 rω2 ? ?
方向 √ √ √
E
6、求解:ae aa cos r 2 cos
aDE ae r 2 cos
例7-4
已知:如图所示平面机构中,曲柄OA=r,以 匀角速度ωO 转动。套筒A沿BC杆滑动。BC=DE, 且BD=CE=l。
即:
aa ae ar ac ,
ac
2e
vr
证明:
设动系 ห้องสมุดไป่ตู้oy 作定轴转
动,转轴为通过坐标原点 o
的定轴 z ,动系的转动角速
度矢量为


v
dr
dt
r
z

1.3 相对运动

1.3 相对运动

y’ [S’]
v v v r = r′ + r0
牵连 位矢
[s]
v u v r'
v v v ∆r = ∆r′ + ∆r0
v r
o
p (x , y , z )
' ' '
(x, y, z)
v v v r = r ′ + r01 1 1 v v v z ′ r2 = r2 + r02 v v v v v v r2 − r1 = (r2′ − r1′) + (r02 − r01) v v v v v ∆r ∆r′ ∆r0 ∆t′ ∆r′ ∆r0 = + = + ∆t ∆t ∆t ∆t ∆t′ ∆t
v fc 方向为南偏西30o。 方向为南偏西30
30
vfd
30
0
vfc vfd
vcd

vsd
3.一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶, 3.一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶, 一男孩乘坐一铁路平板车 其加速度为a,他沿车前进的斜上方抛出一球, 其加速度为 ,他沿车前进的斜上方抛出一球,设抛球 时对车的加速度的影响可以忽略, 时对车的加速度的影响可以忽略,如果使他不必移动他 在车中的位置就能接住球, 在车中的位置就能接住球,则抛出的方向与竖直方向的 夹角应为多大? 夹角应为多大? 解:抛出后车的位移: 抛出后车的位移: 1 2 ∆x1 = v0t + at 2 球的位移: 球的位移:
v v Ad
v , B船的速度为 v Bd
v v v v Bd = v BA + v Ad
2 2
各速度方向如图1.14所示.
r v Ad

理论力学第7版第八章刚体的平面运动

理论力学第7版第八章刚体的平面运动
根据 va ve vr 做速度平行四边形
ve va cos r1 sin( ),
2
ve O2 A
sin( )sin cos
1
vr va sin r1 cos( )
ac
2 2 v r
si
n
(2 cos
2
)
1
2
r
方向:与 v e相23同。
aa ae ar aC
——点的加速度合成定理 a a an
[例2] 曲柄滑杆机构
已知: OA=l, =45o 时,,;
求:小车的速度与加速度.
解:动点:OA杆上 A点;
动系:固结在滑杆上;
绝对运动:圆周运动, 相对运动:直线运动,
牵连运动:平动;
va ve vr
大小 l ? ?
方向 √ √ √
ve va cos l cos45
2 l()
2
小车的速度: v ve
为牵连点。若二者不重合,动
系应扩大到参考体之外。此时
桥式吊车
,牵连点就不是动参考体上的
点,而是动系上的点。
动点: 物块A
相对运动: 直线
动系: 固结于小车 牵连运动: 平动
牵连点:A’
绝对运动: 曲线
8
绝对速度 :va ——绝对运动中,动点的速度 相对速度 :vr ——相对运动中,动点的速度
牵连速度 :ve ——牵连运动中,牵连点的速度
4
动点:AB杆上A点 动系:固结于凸轮O'上
定系:固结在地面上 绝对运动: 沿AB的直线运动 相对运动: 曲线(圆弧) 牵连运动: 直线平动
5
分析动点、动系改变,对运动分析的影响:
动点:A(在AB杆上) 动系:偏心轮 静系:地面

《理论力学》第三章点的合成运动(三)

《理论力学》第三章点的合成运动(三)
求:摆杆O1B角速度1
解:A-动点,O1B-动系,基座-静系。
绝对速度va = r
相对速度vr = ? 牵连速度ve = ?
由速度合成定理 va= vr+ ve
sin
r
r 2 l
2
,ve
va
sin

r 2
r2 l2
又ve
O1
A1
,1

ve O1 A

1 r 2 l2
A
cR

O

u
x

r 2
r 2 l2

r
r
2
2
l
2


[例] 圆盘凸轮机构
已知:OC=e , R 3e , (匀角速度)
图示瞬时, OCCA 且 O,A,B三点共线。 求:从动杆AB的速度。
解:动点A,动系-圆盘, 静系-基座。 绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA
例图示平面机构,已知:OA=r,0为常数,BC=DE, BD=CE=L,求:图示位置,杆BD的角速度和角加速度。
解: 动点:A点(OA杆)
动系:BC杆
va ve vr
D
E
大小: 方向:
??
B
600 A
vr
300 C
0 O
根据速度合成定理 va ve vr va
ve
做出速度平行四边形, 如图示
E
投至y轴:
0 O aa
aa ae
si
n (
300 ae n aa aen ) sin
sin 60 0
sin 30 0

理论力学第7章分析解析

理论力学第7章分析解析

解: 1.运动分析:
动点:滑块A ;
动系:固连于杆BC上;
绝对运动:以O为圆心的圆周运动; 相对运动:滑块A在杆BC上的直线运动;
牵连运动:BC的平移。
2.速度分析
va ve vr
? √ √
大小:rωO ? 方向:√
vr ve va rO
BD
ve rO BD l
ωt
绝对运动方程: vt vt x x cos y sin r 1 cos cos ωt r sin sin ωt r r
vt vt y x sin y cos r 1 cos sin ωt r sin cos ωt r r
§ 7-2 点的速度合成定理
例:小球在金属丝上的运动
绝对运动
M'
相对运动
M2
va ve
M1
牵连点的运动
z
vr
M y
x
O
点的速度合成定理
动点在某瞬时的绝对速度等于它在该瞬时 的牵连速度与相对速度的矢量和
va ve vr
例7-3 已知:刨床的急回机构如图所示。曲柄OA的一端A与滑块 用铰链连接。当曲柄OA以匀角速度ω绕固定轴O转动时, 滑块在摇杆O1B上滑动,并带动杆O1B绕定轴O1摆动。设曲 柄长为OA=r,两轴间距离OO1=l。 求:曲柄在水平位置时摇杆的 角速度 1 。
(3)机构传动,传动特点是在一个刚体上存在 一个不变的接触点,相对于另一个刚体运动。 例如: 导杆滑块机构 —— 滑块为动点, 动系固结于导杆; 凸轮挺杆机构 —— 杆上与凸轮接触点为动点, 动系固结于凸轮; 摇杆滑道机构 —— 滑道中的点为动点, 摇杆为动系。 (4)特殊问题,特点是相接触两个物体的接触 点位置都随时间变化,此时,这两个物体的接触 点都不宜选为动点,应选择满足前述的选择原则 的非接触点为动点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相对运动(有关相对速度的求解)导数的补充
例题1在一直線的高速公路上,有甲乙兩車正以等速度行駛。

甲車的速度為80km/h,乙車落在甲車之後5.0公里處,正以90km/h的速度追趕甲車,試求乙車何時可追上甲車?
例2、一列火车以10Km/h的速率向东行使时,相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离窗上竖直方向30o,求雨滴相对于地面的速率和雨滴相对于火车的速率。

例3、某人骑自行车以速率 1 m/s 向北行驶,感觉风从正西吹来,将速率增加到 2.73m/s 时,则感觉风从北偏西300 的方向吹来。

求风速和风向。

例4、一个带篷子的卡车,篷高为h=2 m ,当它停在马路边时,雨滴可落入车内达d=1 m ,而当它以15 km/h 的速率运动时,雨滴恰好不能落入车中
作业练习
1.练习求导数 已知 x
y
x y x
y x x x y ∆∆==-+-= 求
c o s s i n 12
72323
2.相对运动与力学的综合
传送带以恒定的速度V 1=3m/s 运动,且传送带足够的长;在传送带上方有一固定光滑的轨道巢,方向与传送带方向垂直;轨道巢中有一个工件m=5Kg ,该工件左右部分与轨道接触,底面与皮带接触u=0.3;现用一个与轨道平行的推力F 使得工件以V 2=4m/s 开始做匀速运动。

求F=?
3.相对运动与功能关系的结合
有两个大小相同的光滑小球,最开始如图1紧靠在光滑的墙角里,由于受到轻微的扰动将开始运动;当运动到如图2所示时刻,圆心连线与竖直方向成30度角。

已知两球半径均为r ,求此时两球的速度分别为多少?。

相关文档
最新文档