中药化学讲义:强心苷

合集下载

中药化学强心苷ppt课件

中药化学强心苷ppt课件
O
CH3 OO
CH3 O O OH
CH3 O O OH
CH2OH O
OH
O
OH
HO OH
(D-洋地黄毒糖) 3
OH 洋地黄毒苷元
D-葡萄糖
洋地黄毒苷
紫花洋地黄苷A
O
Ⅱ型:苷元-(6-去氧糖)x-(D-葡萄糖)y
O
OH
CH3 O O
CH2OH O
OH
O
OCH3 OH
HO
OH D-洋地黄糖
OH 羟基洋地黄毒苷元
较少
二烯类、海
葱甾二烯类)
12 18 17
(3) C10、C13、 C17的取 代基均为β-型
11 C 13
16
D
C13:甲基取代;
1 19 9
2
10
14 8
15 C10:甲基、甲醇基、醛基、
AB
羧基取代;
3
7
5
4
6
C17:不饱和内酯环取代。
(4)C14-β羟基是强心活性的必备结构。 (5)C3-OH多为β构型,与连接糖成苷,少数为 α构型。如为α构型,则命名前加“表” 。 (6)其它位置均可见羟基、羰基等取代,少数有 双键。
去乙酰毛花苷注射液
Digoxine(地高辛 口服 )
甾 体 苷 元
D-洋地黄毒糖
非苷类强心药
• β受体激动药:多巴酚丁胺及多巴胺属此类
非苷类强心药
磷酸二酯酶抑制药:如氨利酮及米利酮等 。
非苷类强心药
高血糖素:用于治疗洋地黄无效的急性心力衰 竭,顽固性心源性休克。
胰岛素
胰高血糖素
西地兰、地高辛作用机制:
第8章 强心苷
(Cardica glycosides)

(完整版)中药化学教案—第九章强心苷

(完整版)中药化学教案—第九章强心苷

(完整版)中药化学教案—第九章强⼼苷第九章强⼼苷课次:26课题:第九章强⼼苷第⼀节强⼼苷的结构与分类教学⽬的 1. 了解强⼼苷的含义、分类。

2. 掌握强⼼苷的结构类型。

教学内容 1. 强⼼苷的含义。

2. 强⼼苷的分类。

3. 强⼼苷的类型。

教学重点强⼼苷的结构类型。

第⼀节强⼼苷的结构与分类⼀、含义、结构和分类(⼀)含义强⼼苷类是指天然界存在的⼀类对⼼脏有显著⽣理活性的甾体苷类,可⽤于治疗充⾎性⼼⼒衰竭及节律障碍等⼼脏疾患,由强⼼苷元及糖缩合⽽成,其苷元是甾体衍⽣物,所连接的糖有多种类型。

(⼆)结构及分类强⼼苷的苷元是甾体衍⽣物,具有下列特征:1.苷元部分苷元部分根据在C17位上连接的不饱和内酯环不同分为两类:(1)甲型强⼼苷(强⼼甾烯类)也称甲型强⼼苷元C17位连接的是五元不饱和内酯环,即△αβ-γ内酯,⼤多数是β-构型,少数为α-构型(allo⼀体),其母核称强⼼甾。

在已知的强⼼苷元中,绝⼤多数属于强⼼甾烯类。

如强⼼甾烯。

(2)⼄型强⼼苷(蟾蜍甾⼆烯类)⼜称⼄型强⼼苷元或海葱甾⼆烯C17位连接的是六元不饱和内酯环,即△αβ,γδ-双烯δ内酯,是β-构型,其母核称蟾蜍甾或海葱甾。

⾃然界中仅少数⼏种强⼼苷元属于这⼀类型。

如蟾蜍甾⼆烯或海葱甾⼆烯。

2.其它特征:环戊烷多氢菲的结构特点:⽥字格结构,“⼭窝窝⾥两颗树,⾼⼭顶上⼀颗葱”;碳原⼦的编号与命名。

(1)天然存在的已知强⼼苷元B/C环都是反式稠合,C/D环都是顺式稠合,A/B环则顺反两种稠合⽅式都有,但⼤多数为顺式,如为反式调合,则称异强⼼甾。

(2)在苷元母核的C3、C14位上都有羟基,C3位上的羟基⼤多数是β-构型,少数为α-构型,当C3为α-构型时,命名时冠以“表(epi-)”字。

C3羟基与糖缩合⽽成苷键。

C14位上的羟基都是β-构型。

C10位上连接的多为甲基或其氧化产物(-CH2OH,-CHO,-COOH)。

C13位上连接的均为甲基。

(3)苷元母核的其他位置可能出现羰基、羟基、双键、环氧基等。

中药化学 第九章 强心苷课件

中药化学 第九章 强心苷课件

第九章强心苷考点精要:1.强心苷苷元部分的结构特点和分类;2.强心苷糖部分的结构特点及其与苷元的连接方式;3.强心苷的理化性质(显色反应、水解);4.强心苷的提取与分离;5.强心苷的UV光谱特征;6.去乙酰毛花苷、地高辛的化学结构特点和提取分离方法。

一、大纲:二、分值本章占历年考试4分左右。

第一节概述强心苷是存在于生物界中的一类对心脏有显著生理活性的甾体苷类。

一、强心苷元部分的结构与分类(一)结构特征天然存在的强心苷元是C-17侧链为不饱和内酯环的甾体化合物。

其结构特点如下:(1)甾体母核A、B、C、D四个环的稠合方式为A/B环有顺、反两种形式,但多为顺式;B/C环均为反式;C/D环多为顺式。

(2)甾体母核C-10、C-13、C-17的取代基均为β型。

C-10多有甲基或醛基、羟甲基、羧基等含氧基团取代,C-13为甲基取代,C-17为不饱和内酯环取代。

C-3、C-14位有羟基取代,C-3羟基多数是β构型,少数是α构型,强心苷中的糖常与C-3羟基缩合形成苷。

C-14羟基均为β构型。

有的母核含有双键,双键常在C-4、C-5位或C-5、C-6位。

(二)分类根据C-17不饱和内酯环的不同,将强心苷元分为两类。

1.甲型强心苷元(强心甾烯类)甾体母核的C-17侧链为五元不饱和内酯环(△αβ-γ-内酯),基本母核称为强心甾,由23个碳原子构成。

在已知的强心苷元中,大多数属于此类。

2.乙型强心苷元(海葱甾二烯或蟾蜍甾二烯类)甾体母核的C-17侧链为六元不饱和内酯环(△αβ,γδ-δ-内酯),基本母核为海葱甾或蟾蜍甾。

自然界中仅少数苷元属此类,如中药蟾蜍中的强心成分蟾毒配基类。

二、糖部分的结构特征及其与苷元的连接方式(一)结构特征根据它们C-2位上有无羟基可以分成α-羟基糖(2-羟基糖)和α-去氧糖(2-去氧糖)两类。

α-去氧糖常见于强心苷类,是区别于其他苷类成分的一个重要特征。

1.α-羟基糖组成强心苷的α-羟基糖,除常见的D-葡萄糖、L-鼠李糖外,还有L-呋糖、D-鸡纳糖、D-弩箭子糖、D-6-去氧阿洛糖等6-去氧糖和L-黄花夹竹桃糖、D-洋地黄糖等6-去氧糖甲醚。

中药化学讲义:强心苷

中药化学讲义:强心苷

中药鉴定学讲义:强心苷考点精要:1.强心苷苷元部分的结构特点和分类;2.强心苷糖部分的结构特点及其与苷元的连接方式;3.强心苷的理化性质(显色反应、水解);4.强心苷的提取与分离;5.强心苷的UV光谱特征;6.去乙酰毛花苷、地高辛的化学结构特点和提取分离方法。

第一节概述强心苷是存在于生物界中的一类对心脏有显著生理活性的甾体苷类。

一、强心苷元部分的结构与分类(一)结构特征天然存在的强心苷元是C-17侧链为不饱和内酯环的甾体化合物。

其结构特点如下:(1)甾体母核A、B、C、D四个环的稠合方式为A/B环有顺、反两种形式,但多为顺式;B/C环均为反式;C/D环多为顺式。

(2)甾体母核C-10、C-13、C-17的取代基均为β型。

C-10多有甲基或醛基、羟甲基、羧基等含氧基团取代,C-13为甲基取代,C-17为不饱和内酯环取代。

C-3、C-14位有羟基取代,C-3羟基多数是β构型,少数是α构型,强心苷中的糖常与C-3羟基缩合形成苷。

C-14羟基均为β构型。

有的母核含有双键,双键常在C-4、C-5位或C-5、C-6位。

(二)分类根据C-17不饱和内酯环的不同,将强心苷元分为两类。

1.甲型强心苷元(强心甾烯类)甾体母核的C-17侧链为五元不饱和内酯环(△αβ-γ-内酯),基本母核称为强心甾,由23个碳原子构成。

在已知的强心苷元中,大多数属于此类。

2.乙型强心苷元(海葱甾二烯或蟾蜍甾二烯类)甾体母核的C-17侧链为六元不饱和内酯环αβ,γδ-δ-内酯),基本母核为海葱甾或蟾蜍甾。

自然界中仅少数苷元属此类,如中药蟾蜍中的强心成分蟾毒配基类。

练习题最佳选择题强心苷的甾体母核特点是()A.A/B环多为反式稠合B/C环为顺式稠合C/D环多为顺式稠合B.A/B环多为反式稠合B/C环为反式稠合C/D环多为反式稠合C.A/B环多为顺式稠合B/C环为顺式稠合C/D环多为反式稠合D.A/B环多为反式稠合B/C环为反式稠合C/D环多为反式稠合E.A/B环多为顺式稠合B/C环为反式稠合C/D环多为顺式稠合[答疑编号505629090101]【正确答案】E二、糖部分的结构特征及其与苷元的连接方式(一)结构特征根据它们C-2位上有无羟基可以分成α-羟基糖(2-羟基糖)和α-去氧糖(2-去氧糖)两类。

强心苷名词解释天然药物化学

强心苷名词解释天然药物化学

强心苷名词解释天然药物化学
强心苷是一类天然药物,它以动物和植物细胞中存在的心律失常原因为基础,制备而成的化合物。

它也是一种抗心律失常药物,它能够抑制心律失常的发生,改善心肌的功能,从而促进心脏的正常功能。

它也可以预防心血管疾病,保护心脏,延缓心脏衰竭的发展。

强心苷的化学特性:它们的分子结构大多是糖结构的生物活性化合物,由一维分子链或多维分子链组成,能够形成金属配位物,并具有强烈的抗氧化和抗炎作用。

另外,强心苷还可以通过其内环状分子结构来抑制特定细胞靶点的反应,从而有效地促进心肌和血管完整性,缓解心血管疾病的发生。

此外,由于强心苷的具有良好的生物利用度,它们还能够降低血压,抑制血小板聚集,降低胆固醇、降低血液中的低密度脂蛋白,减少血管内壁上细胞增殖和脂质沉积,从而有效地减少心血管疾病的发生。

最后,强心苷也有若干临床应用,它们可以用来治疗高血压、心房颤动、心律不齐和冠状动脉粥样硬化等病症,这也使它们受到越来越多人的青睐。

综上所述,强心苷对于促进心脏的正常功能,预防心血管疾病有着重要的作用,其中的化学特性使它们有良好的生物利用度和临床应用,以及具有抗氧化和抗炎作用,是保护心脏的重要药物。

因此,要充分发挥强心苷的药效,就要科学合理地应用,以最大程度地满足人们的医疗保健需求。

天然药物化学-第九章-强心苷

天然药物化学-第九章-强心苷

和乙型强心苷。
(1)3,5-二硝基苯甲酸试剂(Kedde反应): 取样品的醇溶液,加3,5—二硝基苯甲酸试剂,如产生
红色或深红色,表示可能含有强心苷。 (2)碱性苦味酸试剂(Baljet反应):橙色或橙红色, 《中国药典》测定强心苷类药物含量。 (3)间二硝基苯试剂(Raymond反应):紫红色或蓝紫色 (4)亚硝酰铁氰化钠试剂(Legal反应):深红色
天然药物化学
第九章 强心苷
第一节 结构类型
第二节 理化性质
第三节 提取与分离
课 堂 目 标
1. 掌握强心苷的结构类型。
2. 掌握强心苷的溶解性和水解性
3. 掌握强心苷的显色反应
重 要 知 识 点
1.甲型强心苷元
2.乙型强心苷元
3.酸催化水解 4.碱催化水解
5.酶催化水解
6.显色反应
第一节 结构类型
一、基本概念 强心苷类是自然界中存在的一类对心脏具有显著生物活 性的甾体苷类化合物。
由强心苷元和糖缩合而产生的一类苷。
强心苷是治疗室率过快心房颤动的首选药和慢性心功能 不全的主要药物。 毒性:强心苷类能兴奋延髓催吐化学感受区而引起恶心、 呕吐等胃肠道反应;且有剧毒,若超过安全剂量时,可
Ⅰ型:苷元 C3-O-(2,6-去氧糖)X-(D-葡萄糖)Y Ⅱ型:苷元 C3-O-(6-去氧糖)X-(D-葡萄糖)Y Ⅲ型:苷元 C3-O-(D-葡萄糖)Y X=1-3; Y=1-2
一般初生苷其末端多为葡萄糖。 天然存在的强心苷多数属于Ⅰ型和Ⅱ型,Ⅲ型较少。
第一节 结构类型
甲型强心苷
Ⅰ型:苷元-(2,6-去氧糖)X-(D-葡萄糖)Y Ⅱ型:苷元-(6-去氧糖)X-(D-葡萄糖)Y Ⅲ型:苷元-(D-葡萄糖)Y

执业药师考试《中药化学》第九章分析

执业药师考试《中药化学》第九章分析

执业药师考试《中药化学》第九章分析执业药师考试《中药化学》第九章分析强心苷是指天然界存在的一类对心脏具有显著生理活性的甾体苷类。

下面是店铺分享的一些相关资料,供大家参考。

第九章强心苷第一节基本内容一、强心苷元部分的结构与分类强心苷元属甾体衍生物,其结构特征是甾体母核的C-17位上连接一个不饱和内酯环。

(一)结构特征1.强心苷元中的甾体母核部分的A、B、C、D四个环的稠合方式为B/C环反式,C/D环多为顺式,个别反式。

A/B环则有顺、反两种稠合方式,但大多是顺式。

2.甾体母核的C-10、C-13、C-17位取代基均为β-构型。

C-3和C-14位上都连有β-羟基。

(二)分类根据甾体母核C-17位上连接的不饱和内酯环的不同,可将强心苷元分为两类。

1.甲型强心苷元(强心甾烯类)在甾体母核C-17位上连接的是五元不饱和内酯环,即△αβ-γ-内酯,共由23个碳原子组成,其基本母核称为强心甾。

2.乙型强心苷(蟾蜍甾烯类)在甾体母核C-17位上连接的是六元不饱和内酯环,即△αβ,γδ-δ-内酯,共由24个碳原子组成,其基本母核称为海葱甾或蟾蜍甾。

二、糖部分的结构特征及其与苷元的连接方式(一)结构特征1.α-羟基糖2.α-去氧糖主要有2,6-二去氧糖(如D-洋地黄毒糖)、2,6-二去氧糖甲醚(如L-夹竹桃糖、D-加拿糖)等。

(二)与苷元的连接方式Ⅰ型强心苷:苷元-(2,6-去氧糖)x-(D-葡萄糖)y,如紫花样地黄苷A。

Ⅱ型强心苷:苷元-(6-去氧糖)x-(D-葡萄糖)y,如黄夹苷甲。

Ⅲ型强心苷:苷元-(D-葡萄糖)y,如绿海葱苷。

第二节理化性质一、性状强心苷多为无定形粉末或无色结晶,具有旋光性。

C-17位侧链为β-构型者味苦,α-构型者味不苦,但无强心作用。

对黏膜有刺激性。

二、溶解性强心苷一般可溶于水、甲醇、乙醇、丙酮等极性溶剂,微溶于乙酸乙酯、含醇氯仿,难溶于极性小的'溶剂。

强心苷的溶解性与其分子中所含糖的数目和种类、苷元所含的羟基数目和位置等有关。

执业药师药物化学——强心苷

执业药师药物化学——强心苷

- 强⼼药是⼀类加强⼼肌收缩⼒的药物,⼜称正性肌⼒药。

临床上⽤于治疗⼼肌收缩⼒严重损害时引起的充⾎性⼼⼒衰竭。

强⼼药主要有强⼼苷类和⾮苷类(包括磷酸⼆酯酶抑制剂、钙敏化剂、β受体激动剂等)。

⼀、强⼼苷类 强⼼苷存在于许多有毒的植物体内,例如洋地黄、铃兰毒⽑旋花⼦、黄花夹⽵桃等强⼼苷的含量较⾼。

强⼼苷种类较多,临床上应⽤的强⼼苷类药物主要有洋地黄毒苷(Digitoxin)和地⾼⾟(Digoxin)等。

此类药物⼩剂量使⽤时有强⼼作⽤,能使⼼肌收缩⼒加强,但是⼤剂量时能使⼼脏中毒⽽停⽌跳动,安全范围⼩。

强⼼苷类药物的构效关系 1.强⼼苷类化学结构由糖苷基和配糖基两部分组成。

2.强⼼苷类属于Na,K-ATP酶抑制剂。

强⼼苷类药物与酶结合后,导致酶的构象变化,适度影响酶的功能。

因此配糖基甾核的学,易收集整理⽴体结构对于活性影响较⼤,其中A/B环和C/D环是顺式,B/C环为反式,同时甾环上的5β-H、3β-羟基与酶的结合是必要的。

3.C17位上的内酯环是强⼼苷的重要结构特征,由于来源不同内酯环的结构有所差异,⼀般植物来源的为五元环的α,β-不饱和内酯(卡烯内酯,Cardenolide),动物来源的为含两个双键的六元环(蟾⼆烯羟酸内酯,Bufadienolide)。

C17位上的内酯环应取β构型。

4.强⼼苷的糖基多连接在甾核的3-位羟基上,虽然糖苷基部分不具有强⼼作⽤,但可影响配糖基的药代动⼒学性质。

⼆、磷酸⼆酯酶抑制剂(Phosphodiesteraseinhibitors,PDEI) 磷酸⼆酯酶抑制剂对磷酸⼆酯酶(Phosphodiesterase,PDE)的抑制能使cAMP⽔平增⾼,cAMP对⼼及功能的维持具有重要作⽤,cAMP⽔平增⾼能导致强⼼作⽤。

氨⼒农(Amrinone)是第⼀个⽤于临床的磷酸⼆酯酶抑制剂,但其副作⽤较多。

⽶⼒农(Milrinone)化学名:1,6-⼆氢-2-甲基-6-氧-[3,4′-双吡啶]-5-甲腈,对PDE-III的选择性更⾼,强⼼活性为氨⼒农的10~20倍,具有显著的正性肌⼒作⽤和扩⾎管作⽤,可以⼝服,不良反应少。

强心苷—理化性质(天然药物化学课件)

强心苷—理化性质(天然药物化学课件)
强心苷-理化性质
1
概述
2
结构类型
3
理化性质
4
提取分离
5
鉴定
3
理化性质
一.性状 ❖ 强心苷类多为无色结晶或不定性粉末,对粘膜有刺激性
。味苦。有旋光性。 二.溶解性 ❖ 强心苷一般可溶于水、甲醇、乙醇、丙酮等极性较大的
溶剂,难溶于石油醚、苯、乙醚等弱极性有机溶剂。 ❖ 原生苷水溶性﹥相应的次生苷﹥苷元,是因为前者含羟
22
O
22
O
20
20
21
21
(三)酶水解法
❖水解原理:含强心苷的植物中都有存在β-
D-葡萄糖苷键的酶,这种酶能切断β-D-葡 萄糖苷键,而不能使苷元与去氧糖之间苷 键及去氧糖之间苷键水解。
❖反应产物:次生苷和葡萄糖。 ❖特点:反应温和,专一 性强。
我问你答:❖以“毛花洋地黄苷丙”为O例,
OH O
试样溶于乙醇,加入间二硝基苯试剂,稍后 滴入20%氢氧化钠溶液后显色。
呈紫红色或紫色。
亚硝酰铁氰化钠试剂
试样溶于吡啶,加3%亚硝酰铁氰化钠试剂和 2mol/L氢氧化钠各2滴后显色。
溶液显深红色。
(三)α-去氧糖的反应
名称
试剂及操作过程
现象
三氯化铁-冰醋 酸试剂
试样溶于冰醋酸,加1滴三氯化铁, 再沿试管壁缓缓加入浓硫酸使分成两 层,静置观察。(勿振摇!)
三氯醋酸反应
试样溶于三氯甲烷中,喷25%的三氯 醋酸。
显红色。
冰醋酸-乙酰氯反 应
试样溶于冰醋酸中,加乙酰氯及氯 化锌结晶数粒,加热。
呈淡红或紫色。
磷酸反应
试样少许置于白瓷板上,滴加85%的 如有羟基洋地黄毒苷元存在,在可见

中药化学强心苷

中药化学强心苷

去乙酰毛花苷注射液
Digoxine(地高辛 口服)
甾 体 苷 元
D-洋地黄毒糖
非苷类强心药
• β受体激动药:多巴酚丁胺及多巴胺属此类
非苷类强心药
磷酸二酯酶抑制药:如氨利酮及米利酮等 。
非苷类强心药
高血糖素:用于治疗洋地黄无效的急性心力衰 竭,顽固性心源性休克。
胰岛素
胰高血糖素

西地兰、地高辛作用机制:

特点:
α-去氧糖与苷元之间的糖苷键; α-去氧糖与α-去氧糖之间的糖苷键; α-去氧糖和α-羟基糖之间的糖苷键;
仅断裂 不断裂
Ⅰ型强心苷可水解成苷元、α-去氧糖、低聚糖。
Ⅱ型、Ⅲ型不水解。
C16-甲酰基的强心苷,甲酰基也易水解。
O O HO
OH CH 3 CH3 CH 3 O O O O O O
C17-不饱和内酯
一.苷元部分
(1) 甾体母核
2 3 5 4 1 19 10
12
18 13
17
11
16
C
9
8
D
14 15
A
B
7 6
特点:甾核的四个环稠合方式
A/B B/C C/D
分类 强心甾
顺(多) 反(少)


异强心甾
A/B 顺(多) 反(少)
B/C 反
C/D 顺
分类 强心甾 异强心甾
A/B
a
4.糖部分
构成强心苷的糖的数目和种类的不 a 同,对强心苷活性影响不同。一般情况
下,糖的连接越多,毒性越小,疗效越 高。毒性比较:
甲型:苷元<单糖苷>二糖苷>三 糖苷 甲型强心苷的单糖苷:
葡萄糖苷>甲氧基糖苷>6-去氧

强心苷(中药化学技术课件)

强心苷(中药化学技术课件)

二、分离
❖(一)两相溶剂萃取法 ❖利用强心苷在二种互不相溶的溶剂中分配系数
不同而达到分离。
❖如:毛花洋地黄总苷中苷甲、苷乙、苷丙的分 离,由于苷丙与苷甲、苷乙在三氯甲烷中溶解 度有差异,用两相溶剂萃取法可将苷丙从总苷 中分离。
❖ (二)色谱分离法 ❖ 若要分离出纯度较高的强心苷,还是需要用色谱法。对分离亲
❖因此,根据研究和生产的需要,应明确提取 对象是原生苷还是次生苷。
(一)原生苷的提取 ❖ ①提取原生苷要防止酶解作用。 ❖ ②新鲜药材采收后尽快在50~60℃通风快速烘干或晒干
。 ❖ ③药材保存期间应防潮。 ❖ ④提取时用70%-80%乙醇为溶剂,以破坏酶的活性。 ❖ ⑤用硫酸铵等无机盐使酶沉淀除去。
强心苷-检识
1
概述
2
结构类型
3
理化性质
4
提取分离
5
检识
5
检识
一、薄层色谱法
色谱方法
固定相
流动相显色剂吸附薄层来自色谱法分配薄层 色谱法
硅胶
甲酰胺、10%15%甲酰胺的丙 酮、二甲基甲酰 胺等
二氯甲烷-甲醇-甲酰胺 (80:19:1) 乙酸乙酯-甲醇-水 (80:5:5)
三氯甲烷、乙酸乙酯、 甲苯等有机溶剂与水组 成的混合溶剂
❖ 若为种子类或含脂类杂质较多时,需先用石油醚等溶剂脱酯后再进行提取; ❖ 若为叶或全草,含叶绿素杂质较多时,可用活性炭吸附法等除去后再提取。
(二)次生苷提取 ❖①酶解(加水于30~40℃进行6-12h发酵酶解 ) ❖②也可先提取原生苷,再用稀酸水解生成次生 苷后,选用合适的溶剂回流提取。 ❖有些次生苷的药理活性较高,且毒副作用低, 如临床常用的药物地高辛。
碱性3,5-二硝基苯 甲酸试剂,显紫红 色,放置后褪色; 碱性苦味酸试剂, 于100℃加热4-5分 钟,显橙红色; 25%三氯醋酸乙醇液, 于100℃加热2分钟, 显红色;

第九章-强心苷

第九章-强心苷
的植物中,有水解葡萄糖的酶存在,所以酶能水 解糖链末端的葡萄糖而不能切断苷元与去氧糖之 间以及去氧糖与去氧糖之间的苷键。因此Ⅰ型强 心苷、Ⅱ型强心苷水解产物为次生苷和葡萄糖, 而Ⅲ型强心苷水解产物为苷元和葡萄糖。
章目录
难点释疑
简述强心苷的水解特点及水解产物? 强心苷的温和酸水解可使Ⅰ型强心苷苷元
和2,6-二去氧糖或2,6-二去氧糖之间的苷键 水解切断,但是2,6-二去氧糖和葡萄糖及葡 萄糖之间的苷键在此条件下不易断裂,因此水 解产物为苷元和2,6-二去氧糖、双糖或三糖。
甾体部分四个环的立体结构比较特殊,B/C环 都是反式绸合,C/D环都是顺式绸合,如为反式 则无活性。而A/B环二种绸合方式都存在,但以 顺式绸合较多。
章目录
一、强心苷元部分
根据C17上连接的不饱和内酯环不同可将强 心苷元分成两种类型。 (一)甲型强心苷元
C17位连接五元的不饱和内酯环 (二)乙型强心苷元
章目录
点ห้องสมุดไป่ตู้积累
1. 强心苷主要有两种分类方式 根据C17上连接的不饱和内酯环不同可将
强心苷分成两种类型:甲型强心苷、乙型强心 苷;
根据与苷元直接相连的糖种类不同,可 将强心苷分为三种类型:Ⅰ型、Ⅱ型、Ⅲ型。
章目录
点滴积累
2. 构成强心苷的糖主要有2,6-二去氧糖、 6-去氧糖、D-葡萄糖,其中2,6-二去氧糖 是强心苷中的特殊糖。
章目录
四、强心苷的显色反应
(一)甾体母核的显色反应 4. 冰醋酸-乙酰氯反应(Tschugaeff反应) 5. 磷酸反应 6. 三氯化锑或五氯化锑反应
这类显色反应与皂苷中同类显色试剂显色反应 相同。
章目录
四、强心苷的显色反应
(二)五元不饱和内酯环的显色反应 甲型强心苷类C17位连有五元不饱和内酯环,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中药鉴定学讲义:强心苷考点精要:1.强心苷苷元部分的结构特点和分类;2.强心苷糖部分的结构特点及其与苷元的连接方式;3.强心苷的理化性质(显色反应、水解);4.强心苷的提取与分离;5.强心苷的UV光谱特征;6.去乙酰毛花苷、地高辛的化学结构特点和提取分离方法。

第一节概述强心苷是存在于生物界中的一类对心脏有显著生理活性的甾体苷类。

一、强心苷元部分的结构与分类(一)结构特征天然存在的强心苷元是C-17侧链为不饱和内酯环的甾体化合物。

其结构特点如下:(1)甾体母核A、B、C、D四个环的稠合方式为A/B环有顺、反两种形式,但多为顺式;B/C环均为反式;C/D环多为顺式。

(2)甾体母核C-10、C-13、C-17的取代基均为β型。

C-10多有甲基或醛基、羟甲基、羧基等含氧基团取代,C-13为甲基取代,C-17为不饱和内酯环取代。

C-3、C-14位有羟基取代,C-3羟基多数是β构型,少数是α构型,强心苷中的糖常与C-3羟基缩合形成苷。

C-14羟基均为β构型。

有的母核含有双键,双键常在C-4、C-5位或C-5、C-6位。

(二)分类根据C-17不饱和内酯环的不同,将强心苷元分为两类。

1.甲型强心苷元(强心甾烯类)甾体母核的C-17侧链为五元不饱和内酯环(△αβ-γ-内酯),基本母核称为强心甾,由23个碳原子构成。

在已知的强心苷元中,大多数属于此类。

2.乙型强心苷元(海葱甾二烯或蟾蜍甾二烯类)甾体母核的C-17侧链为六元不饱和内酯环αβ,γδ-δ-内酯),基本母核为海葱甾或蟾蜍甾。

自然界中仅少数苷元属此类,如中药蟾蜍中的强心成分蟾毒配基类。

练习题最佳选择题强心苷的甾体母核特点是()A.A/B环多为反式稠合B/C环为顺式稠合C/D环多为顺式稠合B.A/B环多为反式稠合B/C环为反式稠合C/D环多为反式稠合C.A/B环多为顺式稠合B/C环为顺式稠合C/D环多为反式稠合D.A/B环多为反式稠合B/C环为反式稠合C/D环多为反式稠合E.A/B环多为顺式稠合B/C环为反式稠合C/D环多为顺式稠合[答疑编号505629090101]【正确答案】E二、糖部分的结构特征及其与苷元的连接方式(一)结构特征根据它们C-2位上有无羟基可以分成α-羟基糖(2-羟基糖)和α-去氧糖(2-去氧糖)两类。

α-去氧糖常见于强心苷类,是区别于其他苷类成分的一个重要特征。

1.α-羟基糖组成强心苷的α-羟基糖,除常见的D-葡萄糖、L-鼠李糖外,还有L-呋糖、D-鸡纳糖、D-弩箭子糖、D-6-去氧阿洛糖等6-去氧糖和L-黄花夹竹桃糖、D-洋地黄糖等6-去氧糖甲醚。

2.α-去氧糖强心苷中普遍具有α-去氧糖,如D-洋地黄毒糖等2,6-二去氧糖;L-夹竹桃糖、D-加拿大麻糖、D-迪吉糖和D-沙门糖等2,6-二去氧糖甲醚。

(二)与苷元的连接方式强心苷大多是低聚糖苷,少数是单糖苷或双糖苷。

通常按糖的种类及其与苷元的连接方式,将强心苷分为以下三种类型。

Ⅰ型强心苷:苷元-(2,6-去氧糖)x-(D-葡萄糖)y,如紫花洋地黄苷A。

Ⅱ型强心苷:苷元-(6-去氧糖)x-(D-葡萄糖)y,如黄夹苷甲。

Ⅲ型强心苷:苷元-(D-葡萄糖)y,如绿海葱苷。

植物界存在的强心苷,以Ⅰ、Ⅱ型较多,Ⅲ型较少。

最佳选择题D-洋地黄毒糖是()A.2-氨基糖B.6-氨基糖C.3-去氧糖D.3,4-二去氧糖E.2,6-二去氧糖[答疑编号505629090102]【正确答案】E第二节强心苷的理化性质一、一般性质(一)性状强心苷多为无定形粉末或无色结晶,具有旋光性;C-17侧链为β构型者味苦,为α构型者味不苦;强心苷对黏膜具有刺激性。

(二)溶解性强心苷一般可溶于水、醇和丙酮等极性溶剂,微溶于乙酸乙酯、含醇三氯甲烷,难溶于乙醚、苯和石油醚等极性小的溶剂。

而苷元则难溶于水等极性溶剂,易溶于乙酸乙酯、三氯甲烷等有机溶剂。

强心苷的溶解性与分子中所含糖的数目、种类、苷元所含的羟基数及位置有关。

1.糖的数目糖基数目越多,亲水性越强。

原生苷由于分子中含糖基数目多,而比其次生苷和苷元的亲水性强,可溶于水等极性大的溶剂。

2.羟基数目分子中羟基数越多,亲水性则越强。

3.羟基的位置当糖基和苷元上的羟基数目相同时,可形成分子内氢键者,其亲水性弱,反之,亲水性强。

分子中有无更多的双键、羰基、甲氧基和酯键等也能影响强心苷的溶解度。

二、化学性质(一)强心苷的颜色反应及其应用强心苷的颜色反应可由甾体母核、不饱和内酯环和α-去氧糖产生。

2.C-17位上不饱和内酯环的颜色反应甲型强心苷在碱性醇溶液中,由于五元不饱和内酯环上的双键移位产生C-22活性亚甲基,能与活性亚甲基试剂作用而显色,乙型不能显色。

3.α-去氧糖颜色反应(1)Keller-Kiliani(K-K)反应此反应在冰乙酸溶液中进行,加20%的三氯化铁水溶液1滴后,沿管壁缓慢加入浓硫酸5ml,观察界面和乙酸层的颜色变化。

如有α-去氧糖,乙酸层显蓝色。

界面的颜色随苷元羟基、双键的位置和数目不同而异,可显红色、绿色、黄色等。

注意此反应只对游离的α-去氧糖或α-去氧糖与苷元连接的苷显色,对α-去氧糖和葡萄糖或其他羟基糖连接的二糖、三糖及乙酰化的α-去氧糖不显色。

因它们在此条件下不能水解出α-去氧糖。

故此反应阳性可肯定α-去氧糖的存在,但对此反应不显色的有时未必具有完全的否定意义。

(2)呫吨氢醇反应反应试剂为呫吨氢醇试剂,此反应极为灵敏,只要分子中有α-去氧糖即显红色,且分子中的α-去氧糖可定量地发生反应,故还可用于定量分析。

(3)对-二甲氨基苯甲醛反应此反应为纸上反应,反应试剂为对-α-去氧糖可显灰红色斑点。

(4)过碘酸-对硝基苯胺反应此反应可在滤纸或薄层板上进行,反应过程是先喷过碘酸钠水溶液,再喷对硝基苯胺试液,则迅速在灰黄色背底上出现深黄色斑点,置紫外灯下观察则为棕色背底上出现黄色荧光斑点。

再喷以5%氢氧化钠甲醇溶液,则斑点转为绿色。

(二)水解反应1.酸水解(1)温和酸水解用0.02~0.05mol/L的盐酸或硫酸,在含水醇中经短时间加热回流,可使Ⅰ型强心苷水解为苷元和糖。

①在此条件下,苷元和α-去氧糖之间、α-去氧糖与α-去氧糖之间的糖苷键即可断裂,而α-去氧糖与α-羟基糖、α-羟基糖与α-羟基糖之间的苷键在此条件下不易断裂,常常得到二糖或三糖。

(适用于α-去氧糖之间,而不适用与α-羟基糖)②由于此水解条件温和,对苷元的影响较小,不致引起脱水反应,对不稳定的α-去氧糖亦不致分解。

③此法不宜用于16位有甲酰基的洋地黄强心苷类的水解,因16位甲酰基即使在这种温和的条件下也能被水解。

(2)强烈酸水解Ⅱ型和Ⅲ型强心苷与苷元直接相连的均为α-羟基糖,用温和酸水解无法使其水解,必须增高酸的浓度(3%~5%),延长作用时间或同时加压,才能使α-羟基糖定量地水解下来,但常引起苷元结构的改变,失去一分子或数分子水形成脱水苷元。

(3)氯化氢-丙酮法(Mannieh和Siewert法)将强心苷置于含1%氯化氢的丙酮溶液中,20℃放置两周。

因糖分子中C-2羟基和C-3羟基与丙酮反应,生成丙酮化物,进而水解,可得到原生苷元和糖衍生物。

例如铃兰毒苷的水解。

本法适合于多数Ⅱ型强心苷的水解。

但是,多糖苷因极性太大,难溶于丙酮中,则水解反应不易进行或不能进行。

此外,也并非所有能溶于丙酮的强心苷都可用此法进行酸水解,例如黄夹次苷乙用此法水解只能得到缩水苷元。

2.酶水解酶水解有一定的专属性。

含强心苷的植物中,有水解葡萄糖的酶,但无水解α-去氧糖的酶,所以能水解除去分子中的葡萄糖,而得到保留α-去氧糖的次级苷。

例如:蜗牛消化酶,它是一种混合酶,几乎能水解所有苷键,能将强心苷分子中糖链逐步水解,直至获得苷元,常用来研究强心苷的结构。

苷元类型不同,被酶解难易程度也不同。

毛花洋地黄苷和紫花洋地黄毒苷用紫花苷酶酶解,前者糖基上有乙酰基,对酶作用阻力大,故水解慢,后者水解快。

一般来说,乙型强心苷较甲型强心苷易被酶水解。

酶水解在强心苷的生产中有很重要的作用。

由于甲型强心苷的强心作用与分子中糖基数目有关,其强心作用的大小为:单糖苷>二糖苷>三糖苷,因此常利用酶水解使植物体中的原生苷水解成强心作用更强的次生苷。

3.碱水解强心苷的苷键不被碱水解。

但碱可使强心苷分子中的酰基水解、内酯开环、双键移位和苷元异构化等。

练习题最佳选择题强烈酸水解法水解强心苷,其主要产物是()A.真正苷元B.脱水苷元C.次级苷D.二糖E.三糖[答疑编号505629090103]【正确答案】B第三节强心苷的提取分离与结构测定一、强心苷的提取分离注意事项:(1)易受酸、碱和酶的作用,发生水解、脱水及异构化等反应,因此,在提取分离过程中要特别注意这些因素的影响或应用。

(2)以提取分离原生苷为目的时,首先要注意设法抑制酶的活性,防止酶解,提取时要避免酸碱的影响;(3)以提取次生苷为目的时,要注意利用上述影响因素,采取诸如发酵以促进酶解,部分酸、碱水解等适当方法,以提高目标提取物的产量。

(一)提取强心苷的原生苷和次生苷,在溶解性上有亲水性、弱亲脂性、亲脂性之分,但均能溶于甲醇、乙醇中。

一般常用甲醇或70%~80%乙醇作溶剂,提取效率高,且能使酶失去活性。

原料为种子或含脂类杂质较多时,需用石油醚或汽油脱脂后提取;原料为含叶绿素较多的叶或全草时,可用稀碱液皂化法或将醇提液浓缩,保留适量浓度的醇,放置,使叶绿素等脂溶性杂质成胶状沉淀析出,滤过除去。

强心苷稀醇提取液经活性炭吸附也可除去叶绿素等脂溶性杂质。

用氧化铝柱或聚酰胺柱吸附,可除去糖、水溶性色素、鞣质、皂苷、酸性及酚性物质。

但应注意,强心苷亦有可能被吸附而损失。

经初步除杂质后的强心苷浓缩液,可用三氯甲烷和不同比例的三氯甲烷-甲醇(乙醇)溶液依次萃取,将强心苷按极性大小划分为亲脂性、弱亲脂性等几个部分,供进一步分离。

(二)分离分离混合强心苷,常采用溶剂萃取法、逆流分溶法和色谱分离法。

对含量较高的组分,可用适当的溶剂,反复结晶得到单体。

但一般需用多种方法配合使用。

分离亲脂性单糖苷、次生苷和苷元,一般选用吸附色谱,常以中性氧化铝、硅胶为吸附剂,用正己烷-乙酸乙酯、苯、丙酮、氯仿-甲醇、乙酸乙酯-甲醇等作洗脱剂。

对弱亲脂性的成分宜选用分配色谱,可用硅胶、硅藻土、纤维素为支持剂,以乙酸乙酯-甲醇-水、氯仿-甲醇-水作洗脱剂。

二、强心苷的紫外光谱特征强心苷结构研究方法除上述化学法(各种水解反应等)、色谱法外,最主要的方法仍是各种波谱法。

例如利用UV光谱可以很容易地鉴定并区分甲型强心苷元和乙型强心苷元。

甲型强心苷元(△αβ-γ-内酯环)λ(max)=217~220nm(lgε 4.20~4.24)乙型强心苷元(△αβ、γδ-δ-内酯环)λ(max)=295~300nm(lgε 3.93)若甲型强心苷分子中有△16(17)与△αβ-γ内酯环共轭,则上述最大吸收红移至270nm处产生强吸收;若有△ 14(15),16(17)双烯和不饱和内酯共轭,该最大吸收进一步红移至330nm附近产生强吸收;若引入非共轭双键,对紫外光谱几乎无影响;若引入两个非共轭双键也不与内酯的双键共轭,在244nm处有吸收。

相关文档
最新文档