线段垂直平分线设计导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《13.1.2线段的垂直平分线的性质》导学案

一、情境引入,感知新知

二、小组合作,探究新知

1、实验与观察:

①探究:

对折纸上的线段AB,在折痕上任意取点,量一量这些点到点A和点B的距离,你有什么发现?

猜想1:

②进一步探究:请观察另一张纸上的线段,你能找到一个到线段AB两个端点的距离相等的点吗?如何找?你还能再找一个吗?你能找到多少个到线段AB两个端点的距离相等的点?这些点在位置上有什么特征呢?你又发现了什么?

猜想2:

2、推理与证明:

①如图,连接PA,PB,如果PA=PB,你能证明点P在线段AB的垂直平分线上吗?想一想,有哪些方法可以证明?

②你能自己证明猜想1吗?

已知:

求证:

证明:

3、结论与拓广

①符号语言:

线段垂直平分线性质定理:

线段垂直平分线性质定理的逆定理:

②从上面两个结论可以看出:

在线段AB的垂直平分线l上的点与A,B的距离都相等;反过来,与A,B的距离相等的点都在l上,所以直线l可以看成

三、当堂演练,拓展新知

1、判断:如图1,直线MN垂直平分线段AB,则AE=AF。( )

如图2,PA=PB,点C是线段AB上一点,则PC垂直平分AB。()2、如图,AB=AC,MB=MC,直线AM是线段BC的垂直平分线吗?

3、尺规作图:经过已知直线外一点作这条直线的垂线。

已知:直线AB和AB外一点C

求作:AB的垂线,使它经过点C。

作法:

四、归纳反思,升华新知

(一)、本节课你有哪些收获?

(二)能力提升:

如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,E是AD上一点,∠FAE=∠BAC,AE=AF,连接EF、BF、BE、EC。

① BE=EC吗?请说明理由。

② BF=BE吗?请说明理由。

③线段AB垂直平分EF吗?请说明理由。

F

D C

B A E

相关文档
最新文档