实验17 固体分散体的制备
最新(药剂学课件固体分散体的制备技术
载体材料 难溶性 肠溶性
✓提高溶解度 ✓抑晶性 ✓高度分散性 ✓可润湿性
二.固体分散体的类型
固体分散体主要三种类型(制备原理): 1.简单低共熔物——微晶形式 2.固体溶液——分子状态 3.共沉淀物——非结晶性无定形物
分散过程 熔融分散法 溶剂分散法 机械分散法
固化过程 溶剂蒸发法 熔融液骤冷法
一、尼莫地平固体分散剂的组成
难溶性药物
以微晶状态 分散
水溶性的材料
分散
尼莫地平
聚乙二醇(PEG6000)
尼莫地平
PEG6000 固体分散体
80
70
溶 60 出 50 度 40分散体
片剂
尼莫地平不同剂型的比较
80
70
生 60
物 50
利 40
用 度
30 20
10
0 尼固
尼片剂
尼莫地平不同剂型的比较
高考链接 元忠为相,太后召易之弟岐州刺史昌期,欲以
为雍州长(chánɡ )史。太后曰:“昌期何如?” 诸相皆曰:“陛下得人矣。”元忠独曰:“昌期不 堪!”太后问其故,元忠曰:“昌期少年,不闲吏 事,在岐州,户口逃亡且尽。雍州帝京,事任繁剧 ,不若季昶强干习事。”
不闲吏事 闲:空闲
通“娴”,熟习
译文:魏元忠作宰相后,武则天征召张易之的弟弟岐州
者,亦皆乐就清求药,冀速已。清皆乐然响应,虽不持
钱者,皆与善药,积券如山,未尝诣取直。或不识,遥
与券,清不为辞。岁终,度不能报,辄焚券,终不复言。
市人以其异,皆笑之曰:“清蚩妄人也。”
• •
下列语句中,加点的词的解释不正确的一项是( A、居善药 居:聚积,搜集
D
)
• B、积券如山 券:借据,欠条
药剂学课件-固体分散体
04
固体分散体的评价方法
溶出度试验
总结词
溶出度试验是评价固体分散体性能的重要手段,通过测定药物在特定条件下的溶出速率和溶出量,可以评估固体 分散体的溶出度和生物利用度。
详细描述
溶出度试验通常在模拟生理条件的介质中进行,如pH值、温度、搅拌速度等。通过比较不同固体分散体中药物 的溶出曲线和溶出参数,可以评估固体分散体的效果和优化制备工艺。
分类
速释型固体分散体
药物在体内快速释放,迅速达到有效血药浓度。常采用水溶性载体如PEG、 PVP等制备。
缓释型固体分散体
药物在体内缓慢释放,延长药物作用时间,减少服药次数。常采用水不溶性载 体如EC、HPMCP等制备。
02
固体分散体的制备方法
熔融法
总结词
熔融法是一种常用的制备固体分散体的方法,通过将药物与载体材料混合加热至熔融状态,然后迅速 冷却固化,形成固体分散体。
05
固体分散体的研究进展与展 望
研究进展
固体分散体制备技术
近年来,随着药剂学研究的深入,固体分散体制备技术得到了不断改进和完善。采用新型 的制备方法,如喷雾干燥法、冷冻干燥法等,可以更有效地制备出高载药量、高溶出度的 固体分散体。
固体分散体在药物传递系统中的应用
固体分散体作为一种药物传递系统,在药物制剂中得到了广泛应用。通过将药物制成固体 分散体,可以改善药物的溶解性、溶出度和生物利用度,从而提高药物的疗效和降低不良 反应。
固体分散体在新型给药系统中的应用
随着新型给药系统的不断发展,固体分散体在新型给药系统中的应用也越来越广泛。例如 ,将药物制成固体分散体后,可以将其与纳米粒、脂质体等结合,制备出具有靶向、缓释 等功能的
目前,关于固体分散体的理论研究还不够深入,需要进一步探究其形成机制、药物释放机制等方面的内容,为固体分 散体的应用提供更加坚实的理论基础。
药剂学:第十六章固体分散体制备技术
(3)有机酸:枸橼酸、酒石酸、琥珀 酸、胆酸类
微晶,分子量较小,易溶于水,不溶于有机溶 剂,不宜作为遇酸不稳定的载体材料
(4)表面活性剂类
大多含有聚氧乙烯基的表面活性剂 常用:poloxamer,Myrj,聚氧乙烯蓖麻油 性质:毒性小,刺激性小,溶解性好,熔点较低,
应用:制备缓释载体
肠溶性载体材料
品种:纤维素(CAP、HPMCP、CMEC) 聚丙烯酸树脂( Eudragit L、 Eudragit S,Ⅱ、Ⅲ)
性质:不溶于胃液,溶于不同pH的肠液中 应用:制备胃中不稳定的药物在肠道释放和吸
收、生物利用度高的固体分散体。
三、固体分散体的速释与缓释原理 Releae modification by solid dispersion
第三篇 制剂新技术与新剂 型
第十六章固体分散体制备技术 Solid Dispersion Preparation
Techniques
固体分散技术
芦丁-PEG6000固体 分散体的制备
精密称取芦丁适量, 加入少量甲醇,加热溶 解后,按照重量比例加 入PEG6000,搅拌使完 全溶解,置80℃水浴上 蒸除溶剂,迅速低温冷 冻,干燥得淡黄色芦丁 -PEG6000固体分散体。
这些材料有良好的亲水性,除起到分散作用外, 本身还是优良的润湿剂、分散剂、助流剂或崩 解剂
难溶性载体材料
(1)乙基纤维素 EC
性质:溶于有机溶剂,溶液粘性大,无毒、无活 性、易成氢键。
特点:药物以分子、微晶状态分散,载药量大, 稳定性好,不易老化。缓释固体分散体
溶出影响:粘度、分子量、用量、致孔剂
(一)速释原理
1、药物的分散状态 产生速效作用重要原因
固体分散体的发展及制备工艺研究进展
固体分散体的发展及制备工艺研究进展司俊仁;叶小强;李新月(综述);时念秋(审校)【摘要】根据载体材料亲水性和脂溶性,可将固体分散体分为速释型、肠溶型和缓控型。
固体分散体的常规方法包括熔融法、溶剂法、熔剂熔融法、研磨法;新型方法包括喷雾干燥法、静电纺丝法以及热熔挤出法。
对固体分散体的原理及制备工艺的深入理解,有利于该技术尽早产业化。
【期刊名称】《吉林医药学院学报》【年(卷),期】2015(000)004【总页数】4页(P300-302,303)【关键词】固体分散体;原理;分类;制备方法【作者】司俊仁;叶小强;李新月(综述);时念秋(审校)【作者单位】吉林医药学院2011级药物制剂本科班,吉林吉林 132013;吉林医药学院2011级药物制剂本科班,吉林吉林 132013;吉林医药学院2011级药物制剂本科班,吉林吉林 132013【正文语种】中文【中图分类】R9441961年 Sekiguch提出固体分散体的概念[1],1963年Levy制得,固体分散体是一种很新颖的药物制剂技术,利用制备制剂将固体药物以及难溶性药物高度分散在另一种固体载体中,具有广阔的应用前景。
在药物制剂过程中,可以通过改变它们的剂型形式、处方所含成分及工艺流程等来变更药物的分散状态和程度,以此来达到药物快速、高效、缓释及提高生物利用度的目的,如固体分散体技术提高新抗癫痫药生物利用度[2]。
此外,利用肠溶性载体制成便于肠道释放的固体分散体技术是一种新型的靶向技术,可以有目的、有控制的进入到某个具体部位释放有效成分,这种方法下药物的溶解度和溶出度不会被影响,而水溶性的载体可以在一定程度上提高溶出度和溶出速率。
固体分散体是指药物以分子形式、胶态形状、微晶或无定型状态分散在一种载体物质中所形成的药物。
其特点之一可以使药物处于高度的分散状态;亲水性强的载体可增加难溶性药物的溶解度和溶出速率,从而达到提高药物生物利用度的目的;而溶解性比较差的载体可以延缓或控制药物的释放。
(药剂学第七版)第七版第十六章固体分散体的制备技术和第十七章包合物的制备技术
(二)缓释原理
药物采用疏水或脂质类载体材料制成的 固体分散体均具有缓释作用。 缓释原理是载体材料形成网状骨架结构, 药物以分子或微晶状态分散于骨架内, 药物的溶出必须首先通过载体材料的网 状骨架扩散,故释放缓慢。
①增加表面积S:药物微粉化; ②增大溶出速度常数:提高温度、加速搅拌; ③提高药物的溶解度:提高温度、改变晶型、制成固体 分散物;
(一)速释原理
1.药物的高度分散状态
药物在固体分散体中所处的状态是影响药物溶出速率 的重要因素。 药物以分子状态、胶体状态、亚稳定态、微晶态以及 无定形态在载体材料中存在,药物所处分散状态不同 溶出速率也不同,分子分散时溶出最快,其次为无定 形,而微晶最慢。 药物分散于载体材料中可以两种或多种状态分散。 载体材料可阻止已分散的药物再聚集粗化,有利于药 物溶出。
固体分散体存在主要问题:
载药量小; 物理稳定性差; 工业化生产困难;
第二节 常用载体材料
常用载体材料可分为三大类:
(一)水溶性、 (二)难溶性、 (三)肠溶性、
(一)水溶性载体材料
多为水溶性高分子化合物、有机酸,其 它尚有糖类等。 1.聚乙二醇类 2.聚维酮类 3.表面活性剂类 4.有机酸类 5.糖类与醇类 6. 纤维素衍生物
本类不适用于对酸敏感的药物。
5.糖类与醇类
糖类常用有壳聚糖、右旋糖酐、半乳糖 和蔗糖等,醇类有甘露醇、山梨醇、木 糖醇等。它们的特点是水溶性强,毒性 小,因分子中有多个羟基,可同药物以 氢键结合生成固体分散体,适用于剂量 小、熔点高的药物,尤以甘露醇为最佳。
6.纤维素衍生物
如羟丙纤维素(HPC)、羟丙基甲纤维 素(HPMC)等,它们与药物制成的固 体分散体难以研磨,需加入适量乳糖、 微晶纤维素等加以改善。
制备固体分散体的方法
制备固体分散体的方法
固体分散体的制备方法包括:熔融法,溶剂法,溶剂-熔融法,研磨法,溶剂喷雾干燥法或冷冻干燥法。
1.熔融法:将药物与载体混合均匀,加热熔融,在剧烈搅拌下将熔融物冷却成固体,然后将混合物固体置于一定温度下变脆、破碎。
2.溶剂法:又称共沉淀法,是将药物和载体溶于有机溶剂中,蒸发溶剂得到混在载体中的药物而制成的共沉淀固体分散体。
3.溶剂-熔融法:将药物先溶于适当得溶剂中,制得5份~10份溶液加到100份熔融载体中,搅拌均匀,按熔融法固化后即得。
4.研磨法:将药物与载体混合后,研磨一定时间,使药物与载体通过氢键结合,形成固体分散体。
5.溶剂喷雾干燥或冷冻干燥:将药物和载体溶解在溶剂中,然后喷雾干燥或冷冻干燥除去溶剂。
四、固体分散体的制备方法
三、固体分散体的类型
主要有3种类型 1. 简单低共熔混合物 • 药物与载体材料两者共熔后,骤冷固化时,如两者的比
例符合低共熔物的比例,可以完全融合而形成固体分散 体 • 此时药物仅以微晶形式分散在载体材料中成物理混合物, 但不能或很少形成固体溶液。
三、固体分散体的类型
• 放置变脆成易碎物,放置的温度及时间视品种而定
四、固体分散体的制备方法
熔融法的关键:
由高温迅速冷却,以达到高的过饱和状态,使多个胶态 晶核迅速形成而得到高度分散的药物而非粗晶
材料: PEG类、枸橼酸、糖类 本法简便、适用于对 热稳定的药物,多用熔点低、不溶于有机溶剂材料
熔融物滴入冷凝液中使迅速收缩、凝固成丸,俗称滴丸
适用于剂量小于50mg的药物 受热时间短,产品稳定,质量好
四、固体分散体的制备方法
4.溶剂—喷雾(冷冻)干燥法 将药物与载体材料共溶于溶剂中,然后喷雾或冷冻干 燥,除尽溶剂即得。
溶剂:常用C1~C4的低级醇或其混合物。 适用于:易分解或氧化、对热不稳定的药物 载体材料:PVP类、PEG类、β环糊精、甘露醇、乳糖、
七、固体分散体的物相鉴定
溶解度及溶出速率 将药物制成固体分散体后,溶解度和溶出速率会改变
热分析法 吸热特征峰消失
X射线衍射法 特征晶体特征衍射峰消失,药物是以无定形存在
红外光谱法 共沉淀物中吸收峰向高波数位移,强度也大幅度降低
核磁共振谱法 特征峰位移
八、固体分散体与滴丸
滴丸 pills 系指固体或液体药物与载体加热熔化混匀后,滴入不相混
或缓释制剂,也可制备肠溶制剂。
二、载体材料 Carrier materials
载体材料应具有下列条件 1. 无毒、无致癌性 2. 不与药物发生化学变化 3. 不影响主药的化学稳定性 4. 不影响药物的含量测定或损害疗效 5. 能使药物得到最佳分散状态达速释或缓释效果
固体分散体的制备
固体分散体的制备沈阳药科大学药物制剂实验教学中心一、实验目的1.掌握共沉淀法及溶剂-熔融法制备固体分散体的制备工艺。
2.初步掌握固体分散体形成的验证方法。
二、实验指导固体分散体(solid dispersion)系指药物以分子、胶态、微晶等状态均匀分散在某一固态载体物质中所形成的分散体系。
固体分散体的主要特点是利用性质不同的载体使药物高度分散以达到不同要求的用药目的:增加难溶性药物的溶解度和溶出速率,从而提高药物的生物利用度;或控制药物释放及控制药物于小肠释放等。
固体分散体为中间产物,可以根据需要进一步制成胶囊剂、片剂、软膏剂、栓剂以及注射剂等。
固体分散体所用载体材料可分为水溶性载体材料、难溶性载体材料、肠溶性载体材料三大类。
载体材料在使用时可根据制备目的选择单一载体或混合使用载体。
若达到增加难溶性药物的溶解度和溶出速率用药目的,一般可选择水溶性载体材料,如聚乙二醇类,聚维酮类等。
固体分散体的类型有,固体溶液,简单低共溶混合物、共沉淀物。
固体分散物制备方法有熔融法、共沉淀法、溶剂熔融法。
固体分散体中药物分散状态可呈现分子状态、亚稳定态及无定形态、胶体状态、微晶状态。
可选择下列方法溶解度及溶出速率法、热分析法、粉末X射线衍射法、红外光谱法等进行物相鉴别,必要时可同时采用几种方法进行鉴别。
固体分散体的速释原理是药物分散状态或药物所形成的高能态可增加药物溶出度,同时载体材料对药物溶出具有促进作用。
三、实验内容与操作尼莫地平-PVP共沉淀物的制备1.处方尼莫地平0.2gPVPk30 1.0g2.操作(1)尼莫地平-PVP共沉淀物的制备取PVPk30 1.0g,置蒸发皿内,加入无水乙醇5ml,在80-90℃水浴上加热溶解,加入尼莫地平0.2g,搅匀使溶解,在搅拌下蒸去溶剂,取下蒸发皿置氯化钙干燥器内干燥、粉碎,过80目筛,即得。
(2)尼莫地平-PVP物理混合物的制备取PVPk30 1.0g,尼莫地平0.2g,置蒸发皿内混匀,即得。
固体分散体制备技术
固体分散体制备技术进展[摘要]固体分散体是指高度分散于惰性载体中形成的以团体形式存在的分散体系,固体分散体制备技术是将难溶性药物高度分散在固体载体材料中,形成固体分散体的新技术。
研究表明,用适当的载体材料制备固体分散体,可以改善药物的溶解性能,加快溶出速度,提高生物利用度,实现药物高效、速效、长效化,也可控制药物靶向释放。
将药物加工成特定的剂型,用于增加药物稳定性,避免药物氧化、水解等。
固体分散体出现以来的各种实际应用表明,固体分散体的研究对于制剂的生产和新药的开发具有重要的意义。
[关键词]固体分散技术;固体分散体;溶解度;溶出速率;生物利用度固体分散技术是指制备制剂时将固体药物,特别是难溶性药物高度分数在另一种固体载体中的新技术。
其主要特点是提高难溶药物的溶出速率和溶解度,以提高药物的吸收和生物利用度。
1961年Sekiguchi等【1】提出了固体分散体(solid dispersion,SD)的概念,并以尿素为载体材料,用熔融法制备磺胺噻唑固体分散体,口服后吸收及排泄均比口服磺胺快,1963年Levy等制得分子分散的固体分散体,溶出速率增高,也更易吸收。
固体分散体在中药制剂上的应用始于1970年芸香油滴丸的上市。
Chiou等【2】于1971年对固体分散体的形成原理,制备工艺及老化等问题进行了研究,为固体分散技术的发展奠定了基础。
1978年Francois等【3】首次提出固体分散体在熔融时装入硬胶嚷中,在室温下固化。
此后,人们对固体分散体进行了广泛的研究,其目的多用于改变难溶性药物的溶解性能,制备高效,速效制剂,所采用辅料的品种越来越多,工艺也趋于成熟。
固体分散体是指将药物高度分散于惰性载体中,形成的一种以团体形式存在的分散体系[4]。
研究表明,将难溶性药物在水溶性载体中形成分子分散体系,可以改善药物的溶解性能,加快溶出速度,提高生物利用度。
而固体分散制剂技术是将药物与载体混合制成高度分散的固体分散体的一项新型制剂技术。
固体分散体制备技术 PPT
Biopharmaceutics 生物药剂学分类系统 Classification
System
Gordon L、 Amidon, Ph、D、
Charles R、 Walgreen Jr、 Professor of
Pharmacy
and Professor of Pharmaceutical Sciences M、A、, Mathematics, University of Michigan Ph、D、, Pharmaceutical Chemistry, University
28
AD-PVP的DSC曲线 a 双炔失碳酯(AD)、PVP以及两者不同比例的混合物
b AD:PVP不同比例混合物和共沉淀物
3、X射线衍射法―晶体特征衍射峰消失, 生成无定形或非晶态物。
原料药 SD(1:3) SD(1:1) 物理混合物 Eudragit E100
吲哚美辛固体分散体X射线衍射图(载体材料为Eudragit E-100)
熔点熔点低5063熔点较高150软化毒性毒性小低分子量毒性最大无毒热稳定性化学性质稳定180以上分解对热稳定150变色常用规格peg12000peg6000与20000的混合物pvpk15mav约8000pvpk30mav约5000pvpk90mav约1000000水溶性载体材料1231010203040506soliddispersionlegalonsuspension水飞蓟素pvp固体分散体sd102030405060708090100102030405060tmin水飞蓟素固体分散体物理混合物原料药13313表面活性剂类该类载体材料溶于水或有机溶剂载药量大在蒸发过程中可阻止药物产生结晶是较理想的速释载体材料
【药剂学】16 固体分散体的制备技术
三、制备方法
• 熔融法(滴丸、热融/挤出法) • 溶剂法 • 溶剂-熔融法 • 溶剂-喷雾(冷冻)干燥法 • 研磨法
三、制备方法
� 熔融法
药物
载体材料
混匀
加热熔融
骤冷
干燥
滴丸
关键:需由高温迅速冷却,以达到过饱和态,使晶核形
成速度迅速,防止晶核增长。
载体材料:选用熔点低、不溶于有机溶剂的材料。
如PEG类、枸橼酸、糖类等。
(三)载体材料对药物溶出的促进作用
─ 提高了药物的溶解度(表面活性或可溶性材料) ─ 保证了药物的高度分散性(与用量有关) ─ 对药物有抑晶作用,使其保持无定形或微晶状态 ─ 润湿性,水溶性材料溶解可促进药物润湿
PVP与药物形成氢键及抑晶能力与PVP分子量有关,分子 越小越易形成氢键,抑晶作用越强。
度。受热时间短、产品稳定,质量好。
缺点:适用于小剂量药物。
三、制备方法
� 溶剂-喷雾(冷冻)干燥法
药物 载体材料
有机溶剂
喷雾干燥/冷冻干燥
载体材料:PVP类、PEG类、环糊精、甘露醇、乳糖、明胶
纤维素类、聚丙烯酸树脂类。
优点:冷冻干燥法适用于易分解或氧化、对热不稳定的药物。
缺点:使用有机溶剂成本高。
液、共沉淀物。
PEG 经熔融-凝结后分子中的螺旋的空间 晶格产生缺损,药物可插入缺损晶格, 形成填充型固体溶液。
� 无定形和微晶分散
药物
载体材料
混匀
加热熔融
骤冷
干燥
滴丸
黏度迅速增大,分散的药物难以聚焦、 合并,形成不同的分散状态
四、固体分散体的速释原理
(二)形成了高能状态
药物在骤冷时常以亚稳定晶型或无定形状态析出。亚稳 定型是同质多晶现象的一种状态,晶格能低、熔点低,因 而溶解度远高于稳定性晶型。
固体分散体
固体分散技术一、概述固体分散技术是将难溶性药物高度分散在另一种固体载体中的新技术。
难溶性药物通常是以分子、胶态、微晶或无定形状态分散在另一种水溶性、或难溶性、或肠溶性材料中呈固体分散体。
固体分散技术的特点是提高难溶药物的溶出速率和溶解度,以提高药物的吸收和生物利用度。
固体分散体可看作是中间体,用以制备药物的速释或缓释制剂,也可制备肠溶制剂。
1961年Sekiguchi等最早提出固体分散体的概念,并以尿素为载体材料,用熔融法制备磺胺噻唑固体分散体,口服后吸收及排泄均比口服磺胺噻唑明显加快。
1963年Levy等制得分子分散的固体分散体,溶出速率提高,也更易吸收。
根据Noyes-Whitney方程,溶出速率随分散度的增加而提高。
因此,以往多采用机械粉碎或微粉化等技术,使药物颗粒减小,比表面增加,以加速其溶出。
固体分散体能够将药物高度分散,形成分子、胶体、微晶或无定形状态,若载体材料为水溶性的,可大大改善药物的溶出与吸收,从而提高其生物利用度,成为一种制备高效、速效制剂的新技术。
将药物采用难溶性或肠溶性载体材料制成固体分散体,可使药物具有缓释或肠溶特性。
应用固体分散体不仅可明显提高药物的生物利用度,而且可降低毒副作用。
例如双炔失碳酯-PVP共沉淀物片的有效剂量小于市售普通片的一半,说明生物利用度大大提高。
硝苯地平-邻苯二甲酸羟丙甲纤维素(HP-55)固体分散体缓释颗粒剂提高了原药的生物利用度。
吲哚美辛-PEG6000固体分散体丸的剂量小于市售普通片的一半时,药效相同,而对大鼠胃的刺激性显著降低。
利用水不溶性聚合物或脂质材料作载体制备的硝苯吡啶固体分散体体外试验有明显缓释作用。
又如米索前列腺醇在室温时很不稳定,对pH值和温度都很敏感,有微量水时,酸或碱均可引发11位-OH脱水形成A型前列腺素。
Chen D.等制成米索前列腺醇-Eudragit RS及RL固体分散体,稳定性明显提高。
Pignatello R.等将水杨酸类非甾体抗炎药、具有光敏毒性的二氯尼柳制成二氯尼柳-Eudragit RS100固体分散体,大大降低了二氯尼柳对细胞膜的光敏毒性。
氟苯尼考固体分散体的制备实验报告
氟苯尼考固体分散体的制备
河南新纪元动物药业有限公司
郑州市中兽药现代化工程技术研究中心
一.目的:
利用固体分散技术,制备氟苯尼考固体分散体,增加其溶解性,掩盖氟苯尼考的苦味。
二.材料:
1.原料:氟苯尼考。
2.辅料:PEG6000、PVPK30。
3.仪器:粉碎机、烧杯、烘箱、托盘等
三.处方筛选
将氟苯尼考与PEG6000,按照不同的筛选比例,进行混合(如下表),粉碎,置于65℃水浴上,分别于5min、10min、15min、20min,进行观察。
氟苯尼考与PEG6000处方筛选表。
结果,在20min内,上述不同比例的药物均可以全部融化,氟苯尼考与PEG6000以1:5的比例,融化时间最快,融化最彻底,以1:1的比例融化时间最慢,且不能全部融化,所以,本实验以氟苯尼考与PEG6000以1:5的比例进行制备分散体。
四.制备方法:
1.将氟苯尼考、PEG6000,分别进行粉碎,过3号筛,备用,
2. 取氟苯尼考50g,PEG6000 250g,按照等量递增方法进
行混合。
3. 将上述混合物,置于65℃的烘箱中,放置20min,使其充分融化。
4.取出后,迅速放凉,使其凝固。
5.将凝固的混合物,进行粉碎,过筛,即可。
五.检查:
1.性状
取本样品,放于白纸上观察,本品为淡黄色的粉末,其色泽一致。
2.稳定性实验
将上述所配制的样品置于开放的环境中,放置7天,取出后观察样品无吸潮、结块现象。
3.水溶性实验
取本样品1g,加入500ml自来水中,搅拌5分钟,静止,样品完全溶解。
固体分散技术简介
6. 双螺旋挤压法
将药物与载体材料置于双螺旋挤压机内,经混合、捏制 而成固体分散体,无需有机溶剂,同时可用两种以上的 载体材料,制备温度可低于药物熔点和载体材料的软化 点,因此药物不易破坏,制得的固体分散体稳定。
制备固体分散体的注意问题: 制备固体分散体的注意问题: ① 适用于剂量小的药物,即固体分散体中药物含量不应 太高,如占5%~20%。液态药物在固体分散体中所占比 例一般不宜超过10%,否则不易固化成坚脆物,难以 进一步粉碎。 ② 固体分散体在贮存过程中会逐渐老化。老化与药物浓 度、贮存条件及载体材料的性质有关。
2. 缓释原理
药物采用疏水或脂质类载体材料制成的固体分散体均 具有缓释作用。 缓释原理是载体材料形成网状骨架结构,药物以分子 或微晶状态分散于骨架内,药物的溶出必须首先通过 载体材料的网状骨架扩散,故释放缓慢。
五、固体分散体的物相鉴定
药物与载体材料制成的固体分散体,可选用下列方法进行物 相鉴定,对固体分散体中药物的分散状态进行鉴定,必要时 可同时采用几种方法。 溶解度及溶出速率 热分析法 X射线衍射法 红外光谱法 核磁共振谱法
3. 溶剂 熔融法 溶剂-熔融法
药物用少量有机溶剂溶解后与熔化了的载体混合均匀, 蒸去有机溶剂,冷却固化而得。 本法可适用于液态药物,如鱼肝油、维生素A、D、E等。 但只适用于剂量小于50mg的药物。凡适用熔融法的载体 材料均可采用。 一般除去溶剂的受热时间短,产物稳定,质量好。但注 意选用毒性小的溶剂,与载体材料应易混合。通常药物 先溶于溶剂再与熔融载体材料混合,必须搅拌均匀,防 止固相析出。
图 DTA基本结构示意图 1.参考池 2.样品池 3.温差检测器
图 各种试样的DTA曲线 (a)物理混合物 (b)固体分散物 (c)NFP (d)水溶性材料 (e)肠溶性材料
固体分散体
3.肠溶性固体分散体 肠溶性固体分散体就是利用肠溶性材料为载 体,制备的定位于肠道溶解释放药物的固体分散 体。如硝苯地平HP-55(邻苯二甲酸羟丙基甲基纤 维素)肠溶性固体分散物,在胃液中溶出极少,而 在pH6.8的肠液中释放却大大加快,其有效血药浓 度时间延长,且生物利用度为硝苯地平结晶粉末 的6倍。可见,利用肠溶性材料制成的固体分散体 能使许多难溶性药物的生物利用度提高,而且有 缓释性。
四、溶剂—喷雾(冷冻)法 实际上也是溶剂法的一种,只是去除溶剂的 办法是通过喷雾或冷冻的方法而已,将药物与 载体材料共溶于溶剂中,然后喷雾或冷冻干燥 即得。此法适用于易分解或氧化、对热不稳定 的药物。如布洛芬—PVP体系即可通过溶剂— 喷雾干燥法制备,可得到稳定性较高的无定型 固体分散物。
3 .玻璃溶液(glass solution)
药物均一地溶于熔融的透明状的无定形载体中, 骤然冷却其熔融物,得到透明状态的固体溶液,称 玻璃溶液。玻璃态溶液其晶格能明显小于固体溶液 而类似于液体溶液,所以药物从玻璃溶液中溶解比 固体溶液容易。玻璃态属于亚稳定体系,在放置过 程中,很容易发生去玻璃化而形成结晶。
2.聚丙烯酸树脂类 Eudragit L和Eudragit S均属此类。前者相 当于国内Ⅱ号聚丙烯酸树脂,pH6.0以上的微 碱性介质中溶解,后者相当于Ⅲ号聚丙烯酸树 脂,在pH7以上碱性介质中溶解。一般用乙醇 等有机溶剂将药物和载体溶解后,蒸去溶剂而 得固体分散体。有时两者按一定比例联合应用, 可达到较理想的缓释或肠溶的固体分散体。
二、固体分散体的特点和分类 (一)特点: 固体分散体的主要特点是利用不同性质的载 体使药物在高度分散状态下,可达到不同要求的 用药目的: ①增加难溶性药物的溶解度和溶出速率,从而 提高药物的生物利用度(水溶性高分子载体)。 ②延缓或控制药物释放(难溶性高分子载体)。 ③控制药物于小肠释放(肠溶性载体)。
实验报告固体分散体(3篇)
第1篇一、实验目的1. 掌握固体分散体的制备方法;2. 了解固体分散体的性质及影响因素;3. 研究固体分散体的溶出速率、生物利用度等性能。
二、实验原理固体分散体是指将药物以分子、无定型、微晶态等高度分散状态均匀分散在载体中形成的一种以固体形式存在的分散系统。
通过制备固体分散体,可以提高难溶性药物的溶解度和溶出速率,从而提高药物的生物利用度。
三、实验材料与仪器1. 实验材料:- 难溶性药物:布洛芬;- 载体材料:聚乙二醇(PEG);- 溶剂:乙醇;- 其他试剂:蒸馏水、稀盐酸、盐酸滴定液等。
2. 实验仪器:- 分析天平;- 高速搅拌器;- 烘箱;- 溶出度仪;- 滴定仪;- 药物分析器等。
四、实验步骤1. 制备固体分散体:(1)称取一定量的布洛芬和PEG,置于烧杯中;(2)加入适量乙醇,搅拌溶解;(3)将溶液倒入烘箱中,干燥至恒重;(4)取出固体分散体,研磨成粉末。
2. 性能测试:(1)溶出度测试:将固体分散体置于溶出度仪中,以稀盐酸溶液为介质,在特定温度下测定药物的溶出速率;(2)生物利用度测试:通过比较固体分散体与普通布洛芬片的生物利用度,评价固体分散体的生物利用度;(3)药物含量测定:采用高效液相色谱法测定固体分散体中布洛芬的含量。
五、实验结果与分析1. 溶出度测试结果:通过实验,固体分散体的溶出速率明显快于普通布洛芬片,说明固体分散体能够提高药物的溶出速率。
2. 生物利用度测试结果:通过实验,固体分散体的生物利用度高于普通布洛芬片,说明固体分散体能够提高药物的生物利用度。
3. 药物含量测定结果:通过高效液相色谱法测定,固体分散体中布洛芬的含量与理论值基本一致,说明实验制备的固体分散体质量良好。
六、实验结论1. 通过实验,成功制备了固体分散体;2. 固体分散体能够提高难溶性药物的溶出速率和生物利用度;3. 实验结果表明,固体分散体是一种有效的药物制剂技术。
七、实验注意事项1. 在制备固体分散体过程中,应严格控制药物与载体的比例,以保证药物在载体中的均匀分散;2. 在溶出度测试过程中,应确保溶液的pH值与人体胃肠道环境相近,以提高实验结果的准确性;3. 在药物含量测定过程中,应选择合适的色谱条件,以保证实验结果的可靠性。
固体分散体的制备方法
药物 载体
共溶于有机溶剂
蒸去溶剂
溶剂-熔融法
药物 溶剂
药物溶液
加入 熔融的载体中
搅匀
骤冷固化
固体分散技术的概念、类 型及制备
药物制剂新技术
固固体体分分散散技技术术 包合技术 微囊和微球制备技术 纳米乳和亚纳米乳制备技术 脂质体制备技术
1.固体分散技术: 是将难溶性药物高度分散在另一种固体载体中的新技术
2.固体分散技术的主要特点: 提高难溶性药物的溶出速率和溶解度,以提高药物 的生物利用度
3.固体分散体的类型 (药物在载体中高度分散的程度和形态不同) (1)简单低共熔混合物(药物状态:微晶形式)
(2)固态溶液(药物状态:分子)
(3)共沉淀物(药物状态:无定形物)
4.固体分散体的制备方法
(1)熔融法 (2)溶剂法(共沉淀法) (3)溶剂-熔融法
熔融法
药物 载体
加热熔融
பைடு நூலகம்
骤冷固化
溶剂法(共沉淀法)
固体分散体
三、固体分散体速释与缓释原理
(一)速释原理
1、药物的高分散状态 2、形成了高能状态 3、载体材料对药物溶出的促进作用
三、固体分散体速释原理和类型
速释原理
1. 药物高度分散 ✓ (分子、胶体、无定型、微晶)
✓ Noyes-Whitney方程: dC / dt KSCs
粒径越小,比表面积越大,溶出速率越快
固体分散技术
一、概述 二、固体分散体的常用载体 三、固体分散体速释原理和类型 四、固体分散体的制备 五、固体分散体的物相鉴定
一、概述
固体分散体 (solid dispersion) • 定义:难溶性药物高度分散于固体
载体中。 ✓固体分散技术 ✓(solid dispersion technology)
加热浓缩
共沉淀物
干燥
注意:蒸发溶剂时,宜在高温蒸至粘稠时迅速冷冻固化, 则药物分散性较好。 优点:避免了高热,适于热不稳定性药物 或 挥发性药物。 缺点:使用有机溶剂成本高,不安全,污染环境,残留溶 剂易导致晶核的增长。
制备工艺
药物
溶剂-熔融法
有机溶剂
载体材料
加热熔融
混匀
骤冷
干燥
注意:选用毒性小、易与载体材料混合的溶剂; 须混合均匀,防止固相析出。
四、固体分散体的制备
• 熔融法 • 溶剂法 • 溶剂-熔融法 • 机械分散法
熔融法
制备工艺
药物 载体材料
混匀
加热熔融
骤冷
干燥
关键:需迅速冷却,以达到过饱和态,使晶核形成速度 迅速,防止晶核增长。 特点:简单、方便、经济,适合于热稳定性药物和低熔 点载体材料。
溶剂法
制备工艺
药物 载体材料
第十章 固体分散体的制备技术
药物存在形式 微晶
固态溶液 共沉淀物
分子 无定形物
10.2.3 常用的固体分散技术
熔融法
加热 药物+载体
快速搅:对热稳定的药物。 载体:PEG类、枸橼酸、糖类等熔点低、不溶于
有机溶剂的载体材料。
溶剂法(共沉淀法)
药物、载体
溶解
蒸发 有机溶液
氯仿、乙醇、
丙酮等
共沉淀物 干燥
2. 载体的作用
• 提高药物溶解度:载体对药物的增溶作用。 • 载体材料对药物有抑晶作用:氢键、络合等作用
抑制药物晶核形成和生长。 • 载体材料保证药物的高度分散性:防止药物的聚
集,载体材料用量越大,药物分散程度越高。 • 载体材料可提高药物的可润湿性
10.2.2 固体分散体的类型
类型 简单低共熔混合物
PVP:聚维酮(PVP)为无定形高分子聚合物,熔点较高, 对热稳定,易溶于水和多种有机溶剂。PVP对许多药物有 较强的抑晶作用,制成的固体分散物对湿的稳定性差,贮 存过程中易吸湿而析出药物结晶。
表面活性剂:如泊洛沙姆、卖泽类、聚氧乙烯蓖麻油类等,熔 点较低,可溶于多种有机溶剂,可单独作为载体;大多数表 面活性剂与其他载体联用,增加药物的润湿性或溶解性,提 高溶出速率,如十二烷基硫酸钠、聚山梨酯80等。
10.2 固体分散体的速释原理和类型
10.2.1 速释原理
1. 药物的高度分散状态
药物在固体分散体中所处的状态是影响药物溶出速率 的重要因素。药物以分子状态、胶体状态、亚稳定态、微 晶态以及无定形态在载体材料中存在,药物所处分散状态 不同溶出速率也不同,分子分散时溶出最快,其次为无定 形,而微晶最慢。药物分散于载体材料中可以两种或多种 状态分散。
物利用度; ③可用于油性药物固体化; ④难溶性药物以速释为目的时,可用水溶性载体,如果以缓
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳药科大学 药剂学教学实验中心
一、实验目的
1.掌握共沉淀法及溶剂-熔融法制备固 体分散体的制备工艺。 2.初步掌握固体分散体形成的验证方法。
二、实验指导
固体分散体(solid dispersion)系指药物以分子、
胶态、微晶等状态均匀分散在某一固态载体物质中 所形成的分散体系。固体分散体的主要特点是利用 性质不同的载体使药物高度分散以达到不同要求的 用药目的:增加难溶性药物的溶解度和溶出速率, 从而提高药物的生物利用度;或控制药物释放及控 制药物于小肠释放等。固体分散体为中间产物,可 以根据需要进一步制成胶囊剂、片剂、软膏剂、栓 剂以及注射剂等。
③测定:按中国药典2000年版附录XC溶出度
测定方法第二法。转速100r/min,溶出介质 为10%的乙醇溶液900ml,温度37±0.5℃。 当介质温度恒定为37±0.5℃,加入精密称取 的样品,分别在2、5、10、15、20、30min 取样,每次取样7ml(同时补入溶出介质 7ml),过滤,弃去初滤液,取续滤液5ml, 置10ml量瓶中,加上述溶出介质定容,摇匀, 在237nm的波长处测定吸收度,按标准曲线 方程计算不同时间累积溶出百分量。
固体分散体所用载体材料可分为水溶性载体
材料、难溶性载体材料、肠溶性载体材料三 大类。载体材料在使用时可根据制备目的选 择单一载体或混合使用载体。若达到增加难 溶性药物的溶解度和溶出速率用药目的,一 般可选择水溶性载体材料,如聚乙二醇类, 聚维酮类等。
固体分散体的类型有,固体溶液,简单低共溶混合
(2)差热分析(DTA):工作条件,气氛为
氮气或空气,升温速度10℃/min,扫描范 围30~300℃。 (3)X-射线粉末衍射:工作条件,CuKd 石墨单色器衍射单色化,高压30kv,管流 50mA,扫描速度2℃/min。 (4)熔点测定:按中国药典2000版二部附 录VIC第一法测定。
3.操作注意
(1)尼及防止药物结晶析出的重 要因素,常在搅拌下快速蒸发,均匀性好,结晶不 易析出,否则共沉淀物均匀性差,如果有药物结晶 析出,将影响所制备固体分散物的溶出度。 (2)共沉淀物蒸去溶剂后,倾入不锈钢版上(下 面放冰块)迅速冷凝固化,有利于提高共沉淀物的 溶出速度。
三、实验内容与操作
尼莫地平-PVP共沉淀物的制备 1.处方
尼莫地平 PVPk30
0.2g 1.0g
2.操作
(1)尼莫地平-PVP共沉淀物的制备 取PVPk30
1.0g,置蒸发皿内,加入无水乙醇5ml,在80-90℃ 水浴上加热溶解,加入尼莫地平0.2g,搅匀使溶解, 在搅拌下蒸去溶剂,取下蒸发皿置氯化钙干燥器内 干燥、粉碎,过80目筛,即得。 (2)尼莫地平-PVP物理混合物的制备 取PVPk30 1.0g,尼莫地平0.2g,置蒸发皿内混匀,即得。
物、共沉淀物。 固体分散物制备方法有熔融法、共沉淀法、溶剂熔 融法。固体分散体中药物分散状态可呈现分子状态、 亚稳定态及无定形态、胶体状态、微晶状态。可选 择下列方法溶解度及溶出速率法、热分析法、粉末 X射线衍射法、红外光谱法等进行物相鉴别,必要 时可同时采用几种方法进行鉴别。 固体分散体的速释原理是药物分散状态或药物所形 成的高能态可增加药物溶出度,同时载体材料对药 物溶出具有促进作用。
4.共沉淀物物相鉴别
试验样品 尼莫地平30mg, 相当于尼莫地平 30mg的尼莫地平-PVP共沉淀物(1:5)及 物理混合物。除溶出速度测定外,(2)、 (3)、(4)项还增加PVP样品。
(1)溶出速度测定
① 溶出介质的配制:取乙醇100ml,加蒸馏
水定容为1000ml,摇匀,即得。 ②标准曲线的制作:精密称取干燥恒重的尼 莫地平约20mg,置200ml量瓶中,加无水乙 醇溶解、定容,摇匀;吸取溶液0.6、0.8、 1.0、1.2、1.4、1.6ml分别置10ml量瓶中, 加溶出介质定容;以溶出介质为空白,在 237nm的波长处测定吸收度,以吸光度对浓 度回归,得标准曲线方程。