离散数学 第七章 图论 习题课
离散数学 图论基础
Graphs
第一节 图的基本概念
2020/3/24
一个图G定义为一个三元组:G=<V, E, Φ>
V —— 非空有限集合,V中的元素称为结点 (node)或 顶点(vertex)
E —— 有限集合(可以为空),E中的元素称为边(edge)
Φ —— 从E到V的有序对或无序对的关联映射 (associative mapping)
(va, vb V)则称e是有向边(或弧)
va是e的起始结点, vb是e的终结点
v3
v3
v3
v1 (a) v2
v1
v2
(b)
v1
v2
(c)
图的基本概念
2020/3/24
若va和vb与边(弧)e相联结,则称va和vb是e的端结点 va和vb是邻接结点,记作:va adj vb (adjoin) 也称e关联va和vb,或称va和vb关联e 若va和vb不与任何边(弧)相联结,则称va和vb是非邻接结点, 记作:va nadj vb 关联同一个结点的两条边(弧),称为邻接边(弧)
v1
构造双射函数f : V1 V2 ,f(v1)=a ,f(v2)=b
f(v3)=c ,f(v4)=d
v2
v4
可知,边[v1, v2], [v2, v3], [v3, v4], [v4, v1]被分别映射成[a, b], [b, c], [c, d], [d, a],故G1 G2
a
b v3
G1
c
0 ≤ d(v1)<d(v2)<… <d(vn)≤n-1。
结点的次数
2020/3/24
问题2:是否存在这种情况:两个人或以上的人群中,至少
离散数学习题课图论
2021/6/28
6 of 220
练习2(续)
D的邻接矩阵的前4次幂.
1 2 0 0
A 0
0
1
0
1 0 0 1
0
0
1
0
1 2 2 0
A 2 1
0
0
1
1 2 1 0
1
0
0
1
3 2 2 2
A3
1
2
1
0
2 2 2 1
1
2
1
0
Hale Waihona Puke 5 6 4 2A4
2
2
2
1
4 4 3 2
2
2
2
1
2021/6/28
8 of 220
练习2(续)
(5) v1到v1长度为1,2,3,4的回路数分别为 1,1,3,5. 其中长度为1的是初级的(环);长度 为2的是复杂的;长度为3的中有1条是复杂 的,2条是初级的;长度为4的有1条是复杂 的,有4条是非初级的简单回路. (6) 长度为4的通路(不含回路)为33条. (7) 长度为4的回路为11条. (8) 长度4的通路88条,其中22条为回路. (9) 44的全1矩阵.
9阶无向图G中,每个顶点的度数不是5就 是6. 证明G中至少有5个6度顶点或至少有 6个5度顶点.
方法一:穷举法
设G中有x个5度顶点,则必有(9x)个6度顶点, 由握手定理推论可知,(x,9x)只有5种可能: (0,9), (2,7), (4,5), (6,3), (8,1)它们都满足要求.
方法二:反证法
〔1 n 6〕 熟练掌握求最优树的方法
2021/6/28
12 of 220
习题1
离散数学图论作业7-二部图匹配
离散数学图论作业7-二部图匹配Problem1证明:一个无回路的简单连通图最多只有一个完美匹配。
(完美匹配指能饱和所有顶点的匹配)Problem2从下图G=(A,B,E)中,找出相对于匹配M(粗边的集合)的任意三条交错路径(alternating path)和至少两条增广路径(augmenting path),然后利用增广路径扩大M来找到最大匹配。
a0 a1 a2 a3 a4 a5b0 b1 b2 b3 b4 b5Problem3对于哪些n值来说,下列图是存在完美匹配的二部图?a)K nb)C nc)Q n对于每一个二部图G=(A,B,E),判断G是否有饱和A的匹配。
如果没有,请说明理由。
(1)(2)(3)(4)Problem5令k为一整数。
对于任意有限集合,证明对它的任意两个k划分都存在一个相同的代表集。
•集合的k划分指划分为大小相同的互不想交的k个子集,为简便起见,设集合的大小为k的整数倍从而每个子集均有相同个元素。
•一个划分的代表集指从每个子集中取出一个元素而构成的集合。
举例:集合{1,2,3,4}的一个2划分为A:{1,2}{3,4}。
此划分的代表集有{1,3},{2,3},{1,4},{2,4},但{1,2}不是其代表集。
集合的另外一个划分为B:{2,3}{1,4}。
易见,A与B存在相同的代表集{1,3}。
Problem6假设某校计算机系学生选导师时出现了这样的情况:对于每一位学生,至少对k名导师感兴趣;对于每一位导师,至多有k名学生对他感兴趣。
假设每位导师只能指导1名学生,且每位学生也只能选择1名导师。
试证明:存在这样的匹配,使得每位学生都能选到自己感兴趣的导师。
证明一个6×6的方格纸板挖去左上角和右下角后不能用剪刀裁剪成若干1×2的小矩形。
离散数学课后习题答案第七章
第七章 特 殊 图 类习题7.11.解 因 m=n-1,这里m=6,所以n=6+1=7.2.解 不正确。
与平凡图构成的非连通图中有4个结点3条边,但是它不是树。
3K 3.证明 必要性。
因为G 中有n 个结点,边数m=n-1,又因为G 是连通的,由本节定理1可知,G 为树,因而G 中无回路。
再证充分性。
因为G 中无回路,又因为边数m=n-1,由本节定理1,可知G 为树,所以G 是连通的。
4.解 因 m=n-r,这里n=15,r=3,所以m=15-3=12,即G 有12条边。
5.解6个结点的所有不同构的树如图7-1所示。
图7-16.证明 由定理1,在任意的树中,边数),(m n 1−=n m;所以,由握手定理得)1(22)(1−==∑=n m v d ni i①⑴若T 没有树叶,则由于T 是连通图,所以T 中任一结点均有,从而2)(≥i v d n v d ni i2)(1≥∑= ②则①与②矛盾。
⑵若树T 仅有1片树叶,则其余1−n个结点的度数不小于2,于是121)1(2)(1−=+−≥∑=n n v d ni i③从而①、③相矛盾。
综合⑴,⑵得知T 中至少有两片树叶。
7.解 图7-2⑴中共有两棵非同构的生成树(如图7-3⑴,⑵)。
图7-2⑵中共有3棵非同构的生成树(如图7-3⑶,⑷,⑸)。
⑵⑴⑶⑷ ⑸图7-38.解 在图7-4中共有8棵生成树,如图7-5⑴~⑻所示,第i 生成树用表示。
,,,)8,,2,1( =iT i 7)(8=T W 8)()(61==T W T W 6)()(52==T W T W )()(73==T W T W 9)(4=T W 。
其中T 2,T 5是图中的最小生成树。
9.解 最小生成树T 如图7-7所示,W (T )=18。
a bc da b cda ba bcdabc d⑴⑵⑶⑷⑸⑹⑺ ⑻图7-5图7-4图7-6图7-7习题7.21.解 不一定是。
如图7-8就不是根树.2.解 五个结点可形成3棵非同构的无向树,如图7-9⑴,⑵,⑶所示。
离散数学——图论部分习题课
之和为24,而图G中其余点的度数小于3,即图G中其余点的
度数只可能是2或1(由于图G是连通图,所以无零度点). 由此可知,图G中至少有11个顶点: 3个4度点,4个3度点和 4个2度点; 至多有15个顶点: 3个4度点,4个3度点和8个1
度点.
7. 设G1,G2,G3,G4均是4阶3条边的无向简单图,
n ( n 1) 2
即m=n(n-1)/4, 而m为正整数,所以要么n=4k或n=4k+1, 所以不存在3个顶点和6个顶点的自补图.
9. 设有向简单D的度数列为2,2,3,3,入度列为 0,0,2,3,试求D的出度列。 解:设有向简单图D的度数列为2,2,3,3, 对应的顶点分别为v1,v2,v3,v4,
(1)1,1,2,3,5 (3)1,3,1,3,2 答案(2) (2)1,2,3,4,5 (4)1,2,3,4,6
Байду номын сангаас
)
则它们之间至少有几个是同构的? 解: 4阶3条边非同构的无向简单图共有3个,因此 G1,G2,G3,G4中至少有2个是同构的。
8. 是否存在3个顶点和6个顶点的自补图? 解: 由于顶点为n的无向完全图的边数为
n ( n 1) 2
.
设G的自补图为G’,则G与G’的边数相等. 设它们的边数各为m,于是有m+m=
本章重点
一、掌握有关图的基本概念:
邻接 关联 有向图
平行边 多重图
无向图
n阶图
底图
连通图
自回路(环) 简单图
二、掌握图中顶点的度数,握手定理及其推论 定理:设图G是具有n个顶点、m条边的无向图, 其中点集V={v1, v2,… vn }, 则
deg(
i 1
《离散数学》第七章_图论-第3-4节
图的可达性矩阵计算方法(3) Warshall算法
无向图的可达性矩阵称为连通矩阵,也是对称的。
第21页
河南工业大学离散数学课程组 例7-3.3 求右图中图G中的可达性矩阵。
分析:先计算图的邻接矩阵A布尔乘法的的2、3、4、 v1 v4 5次幂,然后做布尔加即可。 解: v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
第5页
河南工业大学离散数学课程组
图的邻接矩阵例
例7-3.1(2):写出下面有向图的邻接矩阵 v1
v2 0 A(G)= 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0
v4
v3
第6页
河南工业大学离散数学课程组 图的邻接矩阵说明:
(1)邻接矩阵的主对角线元素aii=0。A(G)= (2)主对角线以外的元素aij v2 aij=1 (i<>j),说明图G是完全图; v1 aij=0 (i<>j),说明图G是零图。 (3)无向图的邻接矩阵是对称的; 而有向图的邻接矩阵不一定对称; v4 因为在无向图中一条无向边应看成方向相反的两条v3 有向边,因此无向图的邻接矩阵关于主对角线对称。
第9页
aij(2) 河南工业大学离散数学课程组 =ai1•a1j+ai2•a2j+ai3•a3j++ain•anj
v5 v1
v4
图G的邻接矩阵为 ij(L+1)=ai1•a1j(L)+ai2•a2j(L)+ai3•a3j(L)++ain•anj(L) v2 a
v3
A2中:G中从结点v2到结点v3 长度为2路数目为0。 A3中:G中从结点v2到结点v3 长度为3的路数目为2。 A2中:G中长度为2的路(含回 路)总数为8,其中6条为回路。 A3中: G中长度为3的路(含回 路)总数为10,其中0条为回路。
离散数学图论
例:把下面的m叉树改写为二叉树。
14
第七章 图论
信 息 科 学 与 工 程 学 院
练习:把下面的有序树改写为二叉树。
。 。 。。 。 。。 。 。 。 知识点提示:
。 。。
。 。 。
。
课下自学
此方法可推广至有序森林到二叉树的转换。 此方法具有可逆性。
15
第七章 图论
信 息 科 学 与 工 程 学 院
给定一棵2叉树T,设它有t片树叶。设v为T的一个分枝点, 则v至少有一个儿子,最多有两个儿子。若v有两个儿 子,在由v引出的两条边上,左边的标上0,右边的标 上1;若v有一个儿子,在由v引出的边上可标上0,也
可标上1。设vi为T的任一片树叶,从树根到vi的通路
上各边的标号组成的0,1串组成的符号串放在vi处,t 片树叶处的t个符号串组成的集合为一个二元前缀码。
定义7-8.5
在根树中, 科 一个结点的通路长度为从树根到此结点的通路中的边 学 数。 与 分枝点的通路长度称为内部通路长度。 树叶的通路长度称为外部通路长度。
工 程 学 院
。 。 。 。。 A 。 。 。。
18
第七章 图论
信 息 科
定理7-8.2
若完全二叉树有n个分枝点,且内部通路长度总和为L,外 部通路长度总和为E,则 E=L+2n。 证明:
学 与 工 程 学 院
对分枝点数目n进行归纳证明。
。
当n=1时,如右图所示,
L=0, E=2,
。
。
显然, E=L+2n成立。
19
第七章 图论
信 息 科 学
定理7-8.2 若完全二叉树有n个分枝点,且内部通路长度总 和为L,外部通路长度总和为E,则 E=L+2n。 证明:
离散数学第7章 图论 习题
300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
距离矩阵为
0 1 2 1 ∞ 0 1 1 ∞ 1 0 1 ∞ 1 2 0 dij=1表示存在边<vi,vj>。
c)画一个没有一条欧拉回路,但有一条汉密尔顿回路的图。
设G是一个具有k个奇数度结点(k>0)的连通图, 证明在G中的边能剖分为k/2条路(边不相重)。 证明:因为一个图中度数为奇数的结点个数必为偶数, 故k必为偶数。 将G中k个奇数度结点分为数目相等的两组{u1,u2,…,uk/2} 和{v1,v2,…,vk/2} 。对图G添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)共k/2条边,得到图G’。由于图G’中每个结 点的度数均为偶数,故G’中存在一条欧拉回路。 在图G’中删去边(u1,v1),得到一条欧拉路, 此路的两个端 点是u1和v1。结点u2和v2必在路的中间, 再删去边 (u2,v2),得到两条边互不相重的迹,这两个迹的端点 分别为u2和v2。结点u3和v3必在某一条迹的中间。 再删去边(u3,v3) ,则将一条迹(包含u3和v3的迹)又分 为两条边互不相重的迹,共得到3条互不相重的迹。 以此继续下去,直到所有的添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)全部删去,得到k/2条边互不相重的路(迹)。
离散数学7-1图论
图7-1.9 不同构的图
作业
P279 (1) (4)
如图7-1.6中的(a)和(b)互为补图。
[定义] 子图(subgraph) 设图G=<V,E>,如果有图G’= <V’,E’>,若有 V’ V ,E’ E,则称图G’是图G的子图。 [定义] 生成子图(spanning subgraph) 如果图G的子图G’包含G的所有结点,则称该图 G’为G的生成子图。如图7-1.8中G'和G"都是 G的生成子图。
[定义] 相对于图G的补图 设图G'=〈V',E'〉是图G=〈V,E〉的子图,若 给定另外一个图G"=〈V",E"〉使得E"=EE', 且 V" 中仅包含 E"的边所关联的结点。则 称G"是子图G'的相对于图G的补图。
图7-1.7 (c )为(b)相对于(a)的补图
如图 7-1.7 中的图 (c) 是图 (b) 相对于图 (a) 的补 图。而图 (b) 不是图 (c) 相对于图 (a) 的补图 , 因为图(b)中有结点c。在上面的一些基本概 念中,一个图由一个图形表示,由于图形的结 点的位置和连线长度都可任意选择 , 故一个 图的图形表示并不是唯一的。下面我们讨 论图的同构的概念。
表7-1.1
结 点 出 度 入 度
a 2 0
b 1 1
c 0 2
d 1 1
结 点 出 度
入 度
v1 1 1
v2 0 2
v3 2 0
v4 1 1
分析本例还可以知道 , 此两图结点的度数也 分别对应相等,如表7-1.1所示。
两图同构的一些必要条件: 1.结点数目相等; 3.边数相等; 3.度数相等的结点数目相等。 需要指出的是这几个条件不是两个图同构的 充分条件,例如图7-1.9中的(a)和(b)满足上 述的三个条件,但此两个图并不同构。
山东科技大学 离散数学7-6对偶图与着色7-7 树+复习
7-8 根树及其应用
一、根树
1、有向树 定义7-8.1 如果一个有向图在不考虑边的方向时
是一棵树,那么,该有向图称为 有向树。
2、根树
定义7-8.2 一棵有向树,如果恰有一个 结点的入度为0,其余所有结点的入度都为1, 则称为根树(rooted tree)。 入度为0的结点称为T的树根。 出度为0的结点称为树叶。 出度不为0的结点称为分支点或内点。
7. 设a和b是格<A, ≤>中的两个元素,证明 (1)a∧b=b 当且仅当a∨b=a (2) a∧b < b和a∧b <a 当且仅当a与b是不可比较的 证明: (1)在格中吸收律满足, 则 由a∧b=b, a∨b=a∨(a∧b)=a 反之, 若a∨b=a, 则a∧b= (a∨b)∧b=b (2)若a∧b < b和a∧b <a, 即表明a∧b ≠b和a∧b ≠a, 用反证法: 假设a与b是可比较的, 则 a≤b,a∧b=a,矛盾; b≤a,a∧b=b,矛盾 因此a与b是不可比较的。 反之, a与b是不可比较的, 则a≤b和b≤a均不成立, 即a∧b ≠b和a∧b ≠a 根据∧的定义:a∧b≤a 和 a∧b≤b, 故 a∧b < b和a∧b <a
点中的某一个称为根,其他所有结点被分成有限个
在有向树中,结点的出现次序是没有意义的。 但实际应用中,有时要给出同一级中结点的相对 次序,这便导出有序树的概念。 4、有序数:在根树中规定了每一层上结点的次 序,称为有序树。
为表示结点间的关系,有时借用家族中的术语。
定义 在以v0为根的树中, (1)v1,v2,…,vk称为v0的 儿子,v0称为它们的 父亲。vi,vj 同为一顶点v的儿子时,称它们为兄弟。 (2)顶点间的父子关系的传递闭包称为顶点间
离散数学--第7章 图论-2(路与连通)
15
连通图可以看成是只有一个连通分支的图,即 w(G ) 1 。
返回 结束
7.2.2 图的连通性
4、有向图的连通
强连通—— G 中任一对顶点都互相可达 (双向) 连通 单向连通—— G 中任一对顶点至少一 向可达
路
10
(vi v j ) ,则从 vi 到 v j 存在长度小于等于
n 1的路。
证明思路:多于n-1条边的路中必有重复出现的结点,反 复删去夹在两个重复结点之间的边之后,剩余的边数不会 超过n-1条边。
v n 在一个 阶图中,若从顶点 i 到 v j 存在 推论:
通路(vi v j ) ,则从 vi 到 v j 存在长度小于等于
返回 结束
7.2.2 图的连通性
7.2.2 图的j 存在路,称 有向图中,从 vi 到 v j 存在路,称 (注意方向) 2、短程线,距离。 短程线——连通或可达的两点间长度最短的 路。 距离——短程线的长度,
12
vi 到 v j 是 连通的(双向)。 vi 可达 v j 。
1 v1e1v2e5v5e7v6 2 v1e1v2e2v3e3v4e4v2e5v5e7v6
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路
简单通路
复杂通路
返回 结束
7.2.1 路
例1、(2)
7
图(2)中过 v 2 的回路 (从 v 2 到 v 2 )有:
1 v2e4v4e3v3e2v2 2 v2e5v5e6v4e3v3e2v2
7.2 路与连通
内容:图的通路,回路,连通性。 重点:
离散数学--第7章 图论-5(匹配)
MM’
其中回路包含相同数目的M边和M’边。由|M’|>|M|, 必 存在M’边开始, M‘边终止的M交互道路,即M-可增广 道路,矛盾!
返回 结束
7.5 .2 最大匹配的基本定理
例] 从匹配M={(v6,v7)}开始,求下图的最大匹 配
11
(a)
(b)
系统地检查不饱和点出发有无可增 广道路,如,v1出发有可增广道路 v1,v7v6,v8(可画以v1为根的交互树), 由此得到匹配(a), v2出发没有,v3出 发存在v3v4,可得更大匹配(b), 其他 点出发不存在可增广道路,故(b)是 最大匹配。
交错路为一条 M可增广路。
例
v1 v6 v2 v3 v4
匹配, M {v1v6 , v2v5 }是一个对集;但不是
最大对集,有路 P:v3v2v5v4,通过 匹配, ( M E ( P)) ( E ( P) M )得比M 更大的对集。 匹配,P称为M 可扩路。 增广路
返回 结束
v5
7.5 .2 最大匹配的基本定理
为图G的最大匹配。
[匹配数] G中最大匹配中的边数称为匹配数,记作
(G)。设G的所有匹配为M1、M2、… 、Mk,记
' (G) max | M i |
i 1,...,k
返回 结束
7.5 .1 匹配的基本概念
e2 e6 e1
5
最大匹配: {e1,e5 ,e6} e7
e4 e3 匹配数:3
返回 结束
7.5 .2 最大匹配的基本定理
[M交错路] 设G和M如上所述,G的一条M交错路 指G中一条路,其中的边在M和 EM 中交错出现 。
路是由属于M的匹配边和不属于M的非匹配边交替出现组成
《离散数学》第七章_图论-第2节-预习
定理7-2.1推论
推论1: 在n阶图G中,若从不同结点vj到vk有 路,则从vj到vk有长度小于等于n-1的通路。 证明: 若路不是通路, 则路上有重复结点, 删除所有重复结点之间的回路, 得到的是通 路, 其长度小于等于n-1。 推论2:在一个具有n个结点的图中,如果存在 经过结点vi回路(圈),则存在一条经过vi 的长度不大于n的回路(圈)。
Whitney定理
(最小点割集<=最小边割集<=最小点度数)
Whitney定理的证明
证明:设G中有n个结点m条边。 (2)若G连通 1)证明λ(G)≤δ(G)
若G是平凡图,则λ(G)=0≤δ(G); 若G是非平凡图,由于每一结点上关联的所有 边显然包含一个边割集,因而删除最小度数 δ(G)对应结点所关联的边,则使G不连通,即 存在一个边割集的元素个数小于等于δ(G) , 即λ(G)≤δ(G)。
e6,e5都是割边
边连通度(edgeconnectivity)
为了破坏连通性,至少需要删除多少条边? 边连通度: G是无向连通图, (G) = min{ |E’| | E’是G的边割集 } 即产生一个不连通图需删去的边的最小数 目。 规定: G非连通: (G)=0 (Kn) = n-1
0
ei (vi 1 , vi ), (ei v i 1 , v i )
v
v1 v 2 0 e e 1 2
v i 1 v i ei
vn en
结点数=边数+1
路长度 :边的数目。
回路(closed walk)
回路: … v e v e v
0 1 1 2
当v 0 v n时
i 1
圈(cycles)
C1 C2 C3 C4 C5
离散数学-第七章-图论
5
离 例1、G1=<V,E>
散 数
V={v0, v1, v2,v3}
学 E={(v0,v2),(v0,v3),(v1,v2),(v1,v3),(v2,v3)}
v0
v3
v1
第
七
章
v2
图
论
4/24/2020 2:55 PM
G1
6
离 例2、
散 数 学
G2=<V,E> V={v0, v1, v2,v3}
中的所有边,称为删除E´ 。
(2)设vV,用G-v表示从G中去掉v及所关联的 一切边,称为删除结点v;又设V´ V,用G-V´ 表示从G中删除V´中所有结点,称为删除V´ 。
学 u,v之间存在路,则称u,v是连通的,记作uv 。
定义2.3 设无向图G是平凡图或G中任何两个结 点都是连通的,则称G为连通图,否则称G为非连 通图或分离图。
第
任意一个连通无向图的任两个不同结
七 点都存在一条通路。
章
图
论
4/24/2020 2:55 PM
38
离
非连通图G可分为几个不相连通的子图,
七 章
边,构成一个无向重图,问题化为图论中简单道路
的问题。
图
论
4/24/2020 2:55 PM
3
离 一、图的基本概念
散 数 学
旧金山
丹佛
洛杉矶
第 七 章
图
论
4/24/2020 2:55 PM
底特律
芝加哥
纽约 华盛顿
4
离
散 设A、B是两个集合,称
数
学
A&B={{a,b}|aA, bB}
离散数学习题集及答案第6-7章图论含答案
第6-7章一.选择/填空1、设图G 的邻接矩阵为0101010010000011100000100,则G 的边数为( D ). A .5 B .6 C .3 D .42、设有向图(a )、(b )、(c )与(d )如下图所示,则下列结论成立的是( A ).A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的3、给定无向图G 如下图所示,下面给出的结点集子集中,不是点割集的为( B ).A .{b , d }B .{d }C .{a , c }D .{b , e }4、图G 如下图所示,以下说法正确的是 ( D ) .A .{(a , c )}是割边B .{(a , c )}是边割集C .{(b , c )}是边割集D .{(a, c ) ,(b, c )}是边割集5、无向图G 存在欧拉通路,当且仅当(D ).A .G 中所有结点的度数全为偶数B .G 中至多有两个奇数度结点C .G 连通且所有结点的度数全为偶数D .G 连通且至多有两个奇数度结点6、设G 是有n 个结点,m 条边的连通图,必须删去G 的( A )条边,才能确定G 的一棵生成树.A .1m n −+B .m n −C .1m n ++D .1n m −+7、已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为(B ).A .8B .5C .4D .38、已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 9、连通无向图G 有6个顶点9条边,从G 中删去 4 条边才有可能得到G 的一棵生成树T .10、如右图 相对于完全图K 5的补图为(A )。
11、给定无向图,如下图所示,下面哪个边集不是其边割集( B )。
A 、;B 、{<v1,v4>,<v4,v6>};C 、;D 、。
12、设D 是有n 个结点的有向完全图,则图D 的边数为( A ) (A))1(−n n (B))1(+n n (C)2/)1(+n n (D)2/)1(−n n 13、无向图G 是欧拉图,当且仅当( C )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。
《离散数学》第七章_图论-第3-4节
图的可达性矩阵计算方法 (3) 无向图的可达性矩阵称为连通矩阵,也是对称的。 Warshall算法
例7-3.3 求右图中图G中的可达性矩 阵。 分析:先计算图的邻接矩阵A布尔乘法的的2、 v1
3、4、5次幂,然后做布尔加即可。
解:
v4
v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
图的可达性矩阵计算方法(2)
由邻接矩阵A求可达性矩阵P的另一方法: 将邻接矩阵A看作是布尔矩阵,矩阵的乘法运算和加 法运算中,元素之间的加法与乘法采用布尔运算 布尔乘:只有1∧1=1 布尔加:只有0∨0=0 计算过程: 1.由A,计算A2,A3,…,An。 2.计算P=A ∨ A2 ∨ … ∨ An P便是所要求的可达性矩阵。
v4
v3
v2
G中从结点v2到结点v3长度 为2通路数目为0,G中长 度为2的路(含回路)总数 为8,其中6条为回路。 G中从结点v2到结点v3长度 为3的通路数目为2, G中 长度为3的路(含回路)总
图的邻接矩阵的 应用 (2)计算结点vi与vj之间的距离。
中不为0的最小的L即为d<vi,vj>。
(一)有向图的可达性矩阵
可达性矩阵表明了图中任意两个结点间是否至少存在一条 路以及在任何结点上是否存在回路。
定义7-3.2 设简单有向图G=(V,E),其中V={v1, v2,…,vn },n阶方阵P=(pij)nn ,称为图G的可达 性矩阵,其中第i行j列的元素
p ij =
1 1 1 1 P v3 1 1 v4 0 0 v5 0 0 v1 v2 1 1 1 1 1 1
0 1 A(G)= 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
离散数学_第7章 图论 -1-2图的基本概念、路和回路
第9章 图论
返回总目录
第9章 图论
第7章 图论
图论是一个重要的数学分支。数学家欧拉1736年发 表了关于图论的第一篇论文,解决了著名的哥尼斯堡七 桥问题。克希霍夫对电路网络的研究、凯来在有机化学 的计算中都应用了树和生成树的概念。随着科学技术的 发展,图论在运筹学、网络理论、信息论、控制论和计 算机科学等领域都得到广泛的应用。本章首先给出图、 简单图、完全图、子图、路和图的同构等概念,接着研 究了连通图性质和规律,给出了邻接矩阵、可达性矩阵、 连通矩阵和完全关联矩阵的定义。最后将介绍欧拉图与 哈密尔顿图、二部图、平面图和图的着色、树和根树。
v3
e7
a e6e3
e2
b e5
(本课程仅讨论无向图和有向图)
v4
c
9章 图论
【例7.1.1】无向图G=V(G),E(G),G
其中:V(G)=a,b,c,d
E(G)=e1,e2,e3,e4
G:G(e1)=(a,b) G(e2)=(b,c) G(e3)=(a,c) G(e4)=(a,a)
试画出G的图形。
即,deg(v)=deg-(v)+deg+(v),或简记为d(v)=d-(v)+d+(v)
4)最大出度:+(G) =max deg+(v) | vV
5)最小出度:+(G) = min deg+(v) | vV
6)最大入度: (G) =max deg-(v) | vV
7)最小入度: (G) = min deg-(v) | vV
解:G的图形如图7.1.2所示。
图 7.1.2
由于在不引起混乱的情况下,图的边可以用有序对或无序 对直接表示。因此,图可以简单的表示为:
离散数学--第七章-图论---习题课
(1)设n阶图G中有m条边,证明:δ(G)≤2m/n≤△(G) (2)n阶非连通的简单图的边数最多可为多少?最少呢?
(1)证明中关键步骤是握手定理:
2m=∑deg(vi) δ(G)≤deg(vi)≤△(G),于是得 nδ(G)≤2m≤n△(G)
⇒ δ(G)≤2m/n≤△(G) 易知2m/n为G的平均度数,因而它大于或等于
证明 :
设从结点u到结点v长度为偶数的通路是 ue1u1e2u2…e2kv,
长度为奇数的通路是ue11u11e12u12…e12h-1v, 那么路ue1u1e2u2…e2kve12h-1…u12e12u11e11u就是一条回
路,它的边数=2k+(2h-1)=2(h+k)-1,是奇数,故 这条回路的长度是奇数。
(k为正整数)。 解:
1)设图G 是自补图,G 有 e 条边,G 对应的完全图的 边数为 A。G 的补图 G’的边数应为 A 一 e。因为 G~G’, 故边数相等,e=A 一 e,A=2e,因此 G 对 应的完全图的边数 A 为偶数。
2)由 1)可知,自补图对应的完全图的边数为偶数。n 个结点的完全图 Kn 的边数为n(n-1)/2 , 所以 n(n-1)/2=2m ,即n(n-1)=4m,因而 n为4的倍数,即n=4k, 或n-1为4的倍数,即n=4k+1,
平面图的判断 欧拉公式
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
一、无向图与有向图
1、基本概念。
有向图与无向图的定义;有向边,无向边,平行边, 环, 孤立结点
关联与邻接(相邻); 结点的度数;结点的度, 结点的出度, 结点的入
度, 图的最大度Δ(G),最小度δ(G),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6) 写出D的可达矩阵。 44的全1矩阵。
简单无向图 G 必有2结点同度数。
证: 令 G={v1,…,vn},
若 G 中没有孤立点,则 G 中 n个结点的度只取 n-1 个 可能值:1,2,…,n-1,从而 G 中至少有两个结点的度 数相同。
重要定理:握手定理及其推论
无向图:
有向图:
且
推论 : 任何图(无向的或有向的)中,奇度结点的 个数是偶数。
典型题
设图G=<V,E>,其中V={a,b,c,d,e},E分别由下面给 出。判断哪些是简单图,哪些是多重图?
(1) E (a,b),(b,c),(c, d),(a,e)
简单图
(2) E (a,b),(b,e),(e,b),(a,e),(d,e) 多重图
设给定图G(如由图所示),则图G的点割集
是
.
应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
P286 2、无向图 G恰有的2个奇数度数的结点可 达。
解1:令u,w为G恰有的2个奇度结点。考察u所在的连通 分支G’。因图G’的奇度点为偶数,故G’至少还有另 一奇度点w,但v在G和G’中有相同的度,所以G’恰 有2个奇度点而且就是u和w。再由G’的连通性推出u 到w可达。
解2:反证法 设G中的两个奇度结点为u与v,若u与v不连通,即 它们之间无路,因而u与v处于G中恰有不同连通分 支中,设u在 G1中,v在G2中, G1与 G2是G的连 通分支,由于G中恰有两个奇度结点,因而当作为 独立的图时,均有一个奇度结点,这与握手定理 的推论相矛盾。
零图与平凡图;简单图与多重图; 完全图;子图,生成子图,补图;图的同构。 2、运用。 (1) 灵活运用握手定理及其推论, (2) 判断两个图是否同构, (3) 画出满足某些条件的子图,补图等。
二、通路、回路、图的连通性
1、基本概念 路,回路,迹, 通路,圈
无向图和有向图中结点之间的可达关系;连通 图,连通分支,连通分支数W(G)
少条?
(3) D中长度为4的通路(不含回路)有 多少条?
(4)D中长度为4的回路有多少条? (5) D中长度≤4的通路有多少条?其中
有几条是回路?
(6) 写出D的可达矩阵。
有向图D如图所示,回答下列诸问:
(1) D是哪类连通图? D是强连通图。
解答为解(2)—(6),只需先求D的邻 接矩阵的前4次幂。
3、若图G是不连通的,则G的补图G是连通的。
证明:
若图G=<V,E>是不连通的,可设图G的连通分支是 G(V1),G(V2),…,G(Vm)(m≥2)。由于任意两个连通 分支G(Vi)与G(Vj)(i≠j)之间不连通,因此两个结点子 集Vi与Vj之间的所有连线都在图G的补图G'中。任取 两个结点u和v,有两种情形: a)u和v分别属于两个不同结点子集Vi与Vj。由上可 知G '包含边(u,v),故u和v在G'中是连通的。 b)u和v属于同—个结点子集Vi。可在另一个结点子 集Vj中取一个结点w,由上可知边(u,w)及边(v,w)均 在G '中,故邻接边(u,w)和(w,v)组成的路连接结点u 和v,即u和v在G'中也是连通的。
割点。
{f,c}是不满定义的,因为{f}是{f,c}的真子集, 而删除{f}后,图是不连通的。
下图所示的六个图中,强连通,单向连通,弱连通 的分别有哪些?
强连通
单向连通
弱连通
单向连通
强连通
强连通
设图G的邻接矩阵为 则G的边数为( ). A.5 B.6 C.3 正确答案是:D。
D.4
当给定的简单图是无向图时,
设G的阶数为n,4个结点的度数分别为3,3,4,4, 其余n-4个结点的度数均小于或等于2,由握手定理 可得
2×(3+4)+(n-4)×2=14+2n-8
≥ ∑deg(vi) = 2m=20 解此不等式可得n≥7,即G中至少有7个结点,7
个结点时,其度数列为2,2,2,3,3,4,4,△=4,δ=2。
a c
a c
b
d
b
d
a c
a c
b
d,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没
有环和平行边,u至多与其余n-1个结点中每一个 有一条边相连接,即deg(u)≤n-1,因此,⊿ (G) =maxdeg(u)≤n-1。
设G是一个n阶无向简单图,n是大于等于3的 奇数。证明图G与它的补图中度数为奇数的结 点个数相等。
证明:
因为G是n阶无向简单图,且n是大于等于3的奇数, 故无向图的结点数为奇数,则所对应的n阶完全图 中每个结点的度数为n-1即为偶数,
正确答案是:C。 对割边、边割集的概念理解到位。
定义 设无向图G=<V, E>为连通图,若有边集E1E, 使图G删除了E1的所有边后,所得的子图是不连通 图,而删除了E1的任何真子集后,所得的子图是连 通图,则称E1是G的一个边割集.若某个边构成一 个边割集,则称该边为割边(或桥)
如果答案A正确,即删除边(a, d)后,得到的图是不 连通图,但事实上它还是连通的。因此答案A是错 误的。
证明 :
设从结点u到结点v长度为偶数的通路是 ue1u1e2u2…e2kv,
长度为奇数的通路是ue11u11e12u12…e12h-1v, 那么路ue1u1e2u2…e2kve12h-1…u12e12u11e11u就是一条回
路,它的边数=2k+(2h-1)=2(h+k)-1,是奇数,故 这条回路的长度是奇数。
否则,G中有孤立点,不妨设 vk,…,vn为全部孤立点, 则 v1,…,vk-1的度只取 k-2个可能值: 1,2,…,k-2,从而 此 k-1个结点中至少有两个同度数点。
握手定理及其推论的应用
设无向图G有10条边,3度与4度结点各2个,其余 结点的度数均小于3,问G中至少有几个结点?在 最少结点的情况下,写出G的度数列△(G)、δ(G)。
点割集,割点,点连通度k(G) 边割集,割边(桥),边连通度λ(G) 短程线,距离
有向图连通的分类,强连通,单侧连通,弱连 通, 强分图,单侧分图,弱分图
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
平面图的判断 欧拉公式
平面图的对偶图
无向树及其性质 根树及其应用
地图着色与平 面图着色
一、无向图与有向图
1、基本概念。
有向图与无向图的定义;有向边,无向边,平行边, 环, 孤立结点
关联与邻接(相邻); 结点的度数;结点的度, 结点的出度, 结点的入
度, 图的最大度Δ(G),最小度δ(G),
(k为正整数)。 解:
1)设图G 是自补图,G 有 e 条边,G 对应的完全图的 边数为 A。G 的补图 G’的边数应为 A 一 e。因为 G~G’, 故边数相等,e=A 一 e,A=2e,因此 G 对 应的完全图的边数 A 为偶数。
2)由 1)可知,自补图对应的完全图的边数为偶数。n 个结点的完全图 Kn 的边数为n(n-1)/2 , 所以 n(n-1)/2=2m ,即n(n-1)=4m,因而 n为4的倍数,即n=4k, 或n-1为4的倍数,即n=4k+1,
即n=0,1 (mod 4)。
对于任何一个具有6个结点的简单图,要么它包含 一个三角形,要么它的补图包含一个三角形。
解:
设6个结点的简单图为G。考察G中的任意一个结点 a, 那么,另外6个结点中的任何一个结点,要么在 G中与a邻接,要么在G的补图G’中与a邻接。这样, 就可把5个结点分成两类,将那些在G中与a邻接的 结点归成一类,而将那些在G’中与a邻接的结点归 在另一类。于是必有一类至少含有三个结点,不妨 假设其中的三个结点为b,c,d,如图所示。若边(b, c),(c,d),(b,d)中有一条在G’中,那么这条边所 关联的两个结点都与a邻接形成一个三角形;若边(b, c),(c,d),(b, d)都不在G’中,则(b,c),(c,d), (b, d)形成一个三角形。
邻接矩阵为对称的.即当结 点vi与vj相邻时,结点vj与vi也 相邻,所以连接结点vi与vj的 一条边在邻接矩阵的第i行第j 列处和第j行第i列处各有一个 1,题中给出的邻接矩阵中共 有8个1,故有82=4条边。度 数之和等于2倍的边数。
有向图D如图所示,回答下列问题:
(1) D是哪类连通图? (2) D中v1到v4长度为1,2,3,4的通路各多
离散数学
河南工业大学 信息科学与工程学院
第7章 图 论 习题课
复习时注意
准确掌握每个概念 灵活应用所学定理 注意解题思路清晰 证明问题时,先用反向思维(从结论入手)分析问
题,再按正向思维写出证明过程。
图 图论的结构图
通路与回路 图的连通性
图的矩阵表示 欧拉图 汉密尔顿图
平面图的基本性质
1 2 0 0 A 0 0 1 0
1 0 0 1 0 0 1 0
3 2 2 2 A3 1 2 1 0