空间向量的坐标表示ppt
合集下载
空间向量的正交分解及其坐标表示 课件
2.向量可以平移,向量p在坐标系中的坐标惟一 吗?
提示:惟一.在空间直角坐标系中,向量平移后, 其正交分解不变,故其坐标也不变.
典例精析
类型一 基底的概念
[例1] 设x=a+b,y=b+c,z=c+a,且{a,b, c}是空间的一组基底,给出下列向量组:①{a,b,x}, ②{x,y,z},③{b,c,z},④{x,y,a+b+c},其中 可以作为空间一组基底的向量组有( )
类型三 求向量的坐标 [例 3] 如图 5 所示,已知点 P 为正方形 ABCD
所在平面外一点,且 PA⊥平面 ABCD,M、N 分别 是 AB、PC 的中点,且 PA=AD,求向量M→N的坐标.
图5
[分析] 空间向量的坐标源于向量的正交分解,如 果把向量a写成xi+yj+zk,则a的坐标为(x,y,z);还 可利用表示向量的有向线段的起点与终点坐标写出向 量的坐标.
图4
[解] 选取{C→B,C→D,C→C1} 作为空间向量的一个基底, 设C→B = a,C→D= b,C→C1= c,则 C→M=C→C1+C→1M=C→C1+12(C→1B1+C→1D1) =12(C→B +C→D)+C→C1 =12a+12b+ c, C→N=C→C1+C→1D1+D→1N
=C→C1+C→D+12(D→1D+D→1A1)
空间向量的正交分解及其坐标表示
新知视界
1.空间向量基本定理 如果三个向量a,b,c不共面,那么对空间任一向 量p,存在有序实数组{x,y,z},使得p=xa+yb+zc.
2.基底的概念
如果三个向量a、b、c不共面,那么空间所有向量 组成的集合就是{p|p=xa+yb+zc,x、y、z∈R}这个 集合可以看作是由向量a、b、c生成的,我们把{a,b, c}叫做空间的一个基底.a、b、c叫做基向量.空间任 何三个不共面的向量都可构成空间的一个基底.
空间向量的正交分解及其坐标表示 .ppt
用基底表示向量
N向在量BaC,上b,,且c表空B示间N=四2面NC体,,O设AA→BNC. 中M=,→NaMO→,在A OA=上bO,→,BOM==Oc3→,MCA用,
解析:A→N=-a+13b+23c, M→N=-34a+13b+23c.
跟踪训练
=b,O2→.P四=棱c,锥EP、—FO分A别BC是的P底C和面P为B一的矩中形点,,设用aO→,Ab=,ac,表O→示C
(1)(2)式为直线的向量表达式.
7.共面向量
(1)空间任意两个向量______;
(2)若向量a,b不共线,则a,b,c共面 ⇔______________,________________;
(3)若三个向量中有两个向量共线,则三个向量 ______.
7.(1)共面 (2)存在唯一实数对x、y
使c=xa+yb (3)共面
2.课本及我们研究所建坐标系均为右手系.
3.空间中任意一点P的坐标的确定方法:过P分别作三 个坐标平面的平行平面分别交坐标轴于A、B、C三点,x= OA,y=OB,z=OC,当OA与i方向相同时x>0,反之x<0, 同理可确定y、z.
祝
您
空间向量与立体几何
3.1 空间向量及其运算
3.1.4 空间向量的正交分解及其坐标表示
1.掌握空间向量基本定理及其推论,理解空间任 意一个向量可以用不共面的三个已知向量线性表示,而 且这种表示是唯一的.
2.在简单问题中,会选择适当的基底来表示任一 空间向量.
3.空间向量的基本定理及其推论.
基础梳理
C.a+2b
D.a+2c
基底的判断
设x=a+b,y=b+c,z=c+a,且{a,b,c} 是空间的一个基底,给出下列向量组:①{a,b,x},② {x,y,z},③{b,c,z},④{x,y,a+b+c},其中可以 作为空间的基底的向量组有( )
空间向量运算的坐标表示ppt课件
我们已经学过平面向量运算的坐标表示:
向量相加:
a+b
向量相减:
a-b
向量的数乘:
λa
空间向量运算的坐标
表示是怎样的呢?
向量的数量积:a•b
向量的模:
|a|
向量的夹角:
cos<a,b>
向量a在平面上可用有序实数对(x,y)表示,在空
间则用有序实数组(x,y,z)表示.
类比
平面向量运算的坐标表示
空间向量运算的坐标表示
a1=λb1,a2=λb2,
a·b=0
a1b1+a2b2=0
设a=(a1,a2,a3), b=(b1,b2,b3) ( ≠ 0 )
a//b
a=λ b
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a⊥b
a ·b=0
a1b1+a2b2+a3b3=0
题型二:向量平行和垂直的坐标表示
1、已知a=(1,-5,6),b=(0,6,5),则a与b ( A )
a1b1+a2b2+a3b3=0
|| =
·=
1 2 + 2 2 + 3 2
d AB | AB | (a 2 a1 )2 (b2 b1 )2 (c2 c1 )2
a
b
a
b
a
b
·
1
1
2
2
3
2 2 2 2 32 2
cos < , >=
a
a
a
b
b
1
A.垂直
B.不垂直也不平行
C.平行且同向
D.平行且反向
2、设a=(1,y,-2),b=(-2,-4,z),若
向量相加:
a+b
向量相减:
a-b
向量的数乘:
λa
空间向量运算的坐标
表示是怎样的呢?
向量的数量积:a•b
向量的模:
|a|
向量的夹角:
cos<a,b>
向量a在平面上可用有序实数对(x,y)表示,在空
间则用有序实数组(x,y,z)表示.
类比
平面向量运算的坐标表示
空间向量运算的坐标表示
a1=λb1,a2=λb2,
a·b=0
a1b1+a2b2=0
设a=(a1,a2,a3), b=(b1,b2,b3) ( ≠ 0 )
a//b
a=λ b
a1=λb1,a2=λb2,a3=λb3(λ∈R)
a⊥b
a ·b=0
a1b1+a2b2+a3b3=0
题型二:向量平行和垂直的坐标表示
1、已知a=(1,-5,6),b=(0,6,5),则a与b ( A )
a1b1+a2b2+a3b3=0
|| =
·=
1 2 + 2 2 + 3 2
d AB | AB | (a 2 a1 )2 (b2 b1 )2 (c2 c1 )2
a
b
a
b
a
b
·
1
1
2
2
3
2 2 2 2 32 2
cos < , >=
a
a
a
b
b
1
A.垂直
B.不垂直也不平行
C.平行且同向
D.平行且反向
2、设a=(1,y,-2),b=(-2,-4,z),若
空间向量运算的坐标表示ppt课件
新知探究
1.设=(a1,a2,a3),=(b1,b2,b3),有
向量运算
向量表示
坐标表示
加法
+
(a1+b1,a2+b2,a3+b3)
+=_______________________
减法
-
(a1-b1,a2-b2,a3-b3)
-=_______________________
数乘
λ
(λa1,λa2,λa3)
λ=______________,λ∈R
数量积
·
a1b1+a2b2+a3b3
·=________________
下面我们来证明空间向量的
的坐标表示:
设{i, j, k}为空间向量的正交基底,则
a=a1i+a2 j+a3k ,
b=b1i+b2 j+b3k
∴a ∙ b=(a1i+a2 j+a3k) ∙ (b1i+b2 j+b3k)
∵i∙i=j∙ j=k∙ k=1
i∙j=j∙ k=k∙ i=0
∴a∙b=a1b1+a2b2+a3b3
2.设=(a1,a2,a3),=(b1,b2,b3),则有
①b1,b2,b3≠0时,∥⇔a1=λb1,a2=λb2,a3=λb3(λ∈R)⇔
②⊥⇔·=0⇔a1b1+a2b2+a3b3=0;
【练习7 】点P(1,3,5)关于点M(2,﹣1,﹣4)的对称点的坐标是__________.
8.在棱长为1的正方体ABCDA1B1C1D1中,E,F分别是D1D,BD的中点,
G在棱CD上,且CG= CD,H是C1G的中点.
(1)求FH的长;
空间向量运算的坐标表示(20张PPT)——高中数学人教A版选择性必修第一册1
向量运算
向量表示
坐标表示
加法
a+b
减法
a—b
数乘
λa
λ∈R
数量积
空间向量的坐标运算a2,
知 识 点1设a=(a₁,
有
做一做:设{i,j,k} 是空间向量的一个单位正交基底,a= 2i—4j+5k,b=i+2j—3k, 则a+b 的坐标是(3,—2,2) _.
[解析] a=(2,—4,5),b=(1,2,—3),故a+b=(3,—2,2).
设P₁(x₁,y₁,z₁),P₂(x₂,y₂,z₂) 是空间中任意两点,则|P ₁ P₂ I=IP₁ P₂ I(x₂-x₁)²+(y₂-y₁)²+(z₂-z₁)² .思考2: 已知点A(x,y,z), 则 点A 到原点的距离是多少?提示:| OAI=10A|= √x²+y²+z.
(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算 公式是应用的关键.(3)运用公式可以简化运算:(a±b)²=a²± 2a.b+b²;(a+b)·(a—b)=a²—b2.
空间向量的坐标运算注意以下几点:
[规律方法]
[规律方法] 向量平行与垂直问题主要题型(1)平行与垂直的判断.(2)利用平行与垂直求参数或解其他问题,即平行与垂直的应用.解 题时要注意:①适当引入参数(比如向量a,b 平行,可设a=λb), 建立关 于参数的方程;②最好选择坐标形式,以达到简化运算的目的.
第一章空间向量与立体几何
1.3 空间向量及其运算的坐标表示1.3.2 空间向量运算的坐标表示
课程目标1. 掌握空间向量的线性运算的坐标表示.2.掌握空间向量的数量积的坐标表示.教学目标1.会利用空间向量的坐标运算解决简单的运算问题. (数学运算)2.掌握空间向量运算的坐标表示,并会判断两个向量是否共线或 垂直. (逻辑推理、数学运算)3.掌握空间向量的模、夹角公式和两点间的距离公式,并能运用 这些公式解决简单几何体中的问题. (逻辑推理、数学运算)
向量表示
坐标表示
加法
a+b
减法
a—b
数乘
λa
λ∈R
数量积
空间向量的坐标运算a2,
知 识 点1设a=(a₁,
有
做一做:设{i,j,k} 是空间向量的一个单位正交基底,a= 2i—4j+5k,b=i+2j—3k, 则a+b 的坐标是(3,—2,2) _.
[解析] a=(2,—4,5),b=(1,2,—3),故a+b=(3,—2,2).
设P₁(x₁,y₁,z₁),P₂(x₂,y₂,z₂) 是空间中任意两点,则|P ₁ P₂ I=IP₁ P₂ I(x₂-x₁)²+(y₂-y₁)²+(z₂-z₁)² .思考2: 已知点A(x,y,z), 则 点A 到原点的距离是多少?提示:| OAI=10A|= √x²+y²+z.
(1)一个向量的坐标等于这个向量的终点的坐标减去起点的坐标.(2)空间向量的坐标运算法则类似于平面向量的坐标运算,牢记运算 公式是应用的关键.(3)运用公式可以简化运算:(a±b)²=a²± 2a.b+b²;(a+b)·(a—b)=a²—b2.
空间向量的坐标运算注意以下几点:
[规律方法]
[规律方法] 向量平行与垂直问题主要题型(1)平行与垂直的判断.(2)利用平行与垂直求参数或解其他问题,即平行与垂直的应用.解 题时要注意:①适当引入参数(比如向量a,b 平行,可设a=λb), 建立关 于参数的方程;②最好选择坐标形式,以达到简化运算的目的.
第一章空间向量与立体几何
1.3 空间向量及其运算的坐标表示1.3.2 空间向量运算的坐标表示
课程目标1. 掌握空间向量的线性运算的坐标表示.2.掌握空间向量的数量积的坐标表示.教学目标1.会利用空间向量的坐标运算解决简单的运算问题. (数学运算)2.掌握空间向量运算的坐标表示,并会判断两个向量是否共线或 垂直. (逻辑推理、数学运算)3.掌握空间向量的模、夹角公式和两点间的距离公式,并能运用 这些公式解决简单几何体中的问题. (逻辑推理、数学运算)
1.3 空间向量的坐标表示及其运算(共47张PPT)
1.空间向量的坐标运算法则
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
设向量a=(a1,a2,a3),b=(b1,b2,b3),λ∈R,那么
向量运算
加法
减法
数乘
数量积
向量表示
a+b
a-b
λa
a·b
坐标表示
(a1+b1,a2+b2,a3+b3)
(a1-b1,a2-b2,a3-b3)
(λa1,λa2,λa3)
a1b1+a2b2+a3b3
2.空间向量的坐标与其端点坐标的关系:
能运用公式解决问
题.(数学运算)
思维脉络
情境导学
我国著名数学家吴文俊先生在《数学教育现
代化问题》中指出:“数学研究数量关系与空间形
式,简单讲就是形与数,欧几里得几何体系的特点是
排除了数量关系,对于研究空间形式,你要真正的
‘腾飞’,不通过数量关系,我想不出有什么好的办
法…….”
吴文俊先生明确地指出中学几何的“腾飞”是
(1)求AB + CA, CB-2BA, AB ·AC;
(2)若点 M 满足AM =
1
3
AB + AC,求点
2
4
M 的坐标;
(3)若 p=,q=,求(p+q)·(p-q).
思路分析先由点的坐标求出各个向量的坐标,再按照空间向量运算的坐标运算法则进行计算求解.
解:(1)因为 A(1,-2,4),B(-2,3,0),C(2,-2,-5),
(2)a⊥b⇔
a·b=0
⇔
a1=λb1,a2=λb2,a3=λb3 (λ∈R);
a1b1+a2b2+a3b3=0
.
点睛:当b的坐标中b1,b2,b3都不等于0时,a与b平行的条件还可以表
1.3 空间向量及其运算的坐标表示 课件(共45张PPT)
[解] (1)建立如图所示的空间直角坐标 系.点 E 在 z 轴上,它的 x 坐标、y 坐标均为 0,而 E 为 DD1 的中点,故其坐标为0,0,12.
由 F 作 FM⊥AD,FN⊥DC,垂足分别为 M,N, 由平面几何知识知 FM=12,FN=12, 故 F 点坐标为12,12,0. 点 G 在 y 轴上,其 x、z 轴坐标均为 0,
解决空间向量垂直、平行问题的有关思路 (1)若有关向量已知时,通常需要设出向量的坐标.例如, 设向量 a=(x,y,z). (2)在有关平行的问题中,通常需要引入参数.例如,已 知 a∥b,则引入参数 λ,有 a=λb,再转化为方程组求解. (3)选择向量的坐标形式,可以达到简化运算的目的.
利用坐标运算解决夹角、距离问题
1.建立空间直角坐标系时,要考虑如何建系才能使点的 坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.
2.已知空间点的坐标、A(x1,y1,z1),B(x2,y2,z2)向 量―A→B 的坐标等于终点坐标减起点坐标.即―A→B =(x2-x1, y2-y1,z2-z1).
[跟踪训练] 1.(2019·福建三明高二期末质量检测)已知 A(1,-2,0)和向量
空间向量的坐标表示
[ 例 1] ( 链 接 教 材 P18 例 1) 在 棱 长 为 1 的 正 方 体 ABCD-A1B1C1D1 中,E,F 分别是 D1D,BD 的中点,G 在棱 CD 上,且 CG=14CD,H 为 C1G 的中点,建立适当的坐标系.
(1)写出 E,F,G,H 的坐标; (2)写出向量―E→F ,―G→H 的坐标.
又 GD=34,故 G 点坐标为0,34,0. 由 H 作 HK⊥CG 于 K,由于 H 为 C1G 的中点. 故 HK=12,CK=18,∴DK=78, 故 H 点坐标为0,78,12. (2)―E→F =―O→F -―O→E =12,12,-12, ―G→H =―O→H -―O→G =0,18,12.
3.1.4空间向量的正交分解及其坐标表示课件(共20张ppt)
一对实数λ 1,λ 2,使a=λ 1e1+λ 2e2.
(e1、e2叫做表示这一平面内所有向量的一组基底)
平面向量的正交分解及坐标表示
y
a
a xi y j
i (1, 0), j (0,1), 0 (0, 0).
j
oi
x
1.理解空间向量基本定理,并能用基本定理解决 一些几何问题.(重点)
A.(14,14,14) B.(34,34,34)
111
222
C.(3,3,3) D.(3,3,3)
2. 设x = a + b,y = b + c,z = c + a,且a,b,c
是空间的一个基底,给出下列向量组
①a,b,x; ②x,y,z; ③b,c,z; ④x,y,a + b + c.Βιβλιοθήκη 其中可以作为空间的基底的向量组
每一个成功者都有一个开始.勇于开始, 才能找到成功的路.
4.已知空间四边形OABC,M,N分别是OA,BC的中点,
且OA=a,OB=b,OC=c,用a,b,c表示向量MN为 ( C )
A.1 a + 1 b + 1 c 222
C.- 1 a + 1 b + 1 c 222
B.1 a - 1 b + 1 c 222
D.- 1 a + 1 b - 1 c 222
2.用基底表示已知向量.(难点) 3.理解基底、基向量及向量的线性组合的概念. 4.掌握空间向量的坐标表示,能在适当的坐标系
中写出向量的坐标.
探究点1 空间向量基本定理
如图,设i,j,k是空间三个两两垂直的向量,
且有公共起点O.对于空间任意一个向量p = OP,
空间向量运算的坐标表示 课件
是单位正交基底.
2.对空间两向量夹角与距离的四点说明: (1)范围:空间两条直线夹角的范围与向量夹角的范 围不同,当所求两向量夹角为钝角时,两直线夹角是与此 钝角互补的锐角. (2)夹角公式的一致性:无论在平面还是空间,两向
量的夹角余弦值都是 cos〈a,b〉=|aa|·|bb|,只是坐标运算
时空间向量多了一个竖坐标. (3)长度公式的类似性:空间向量的长度公式与平面
向量的长度公式形式一致,坐标运算时空间向量多了一个 竖坐标.
(4)空间两点间的距离公式是长度公式的推广,首先根 据向量的减法推出向量A→B(空间任意两点)的坐标表示,然 后再用长度公式推出 A、B 两点间的距离.
3.a∥b(b≠0)⇔aaa123= ==λλλbb12b, ,3,这一形式不能等价于ab11=ab22
在解题过程中,把向量的坐标相等转化为方程组,注 意对应坐标相等,此步是解题的基本功,是考试中不能失 分的步骤.
归纳升华 1.解题时注意进行等价转化. 2.对于公式中的一些特殊情形要记清,不要漏掉, 如 a,b 夹角为 180°时. 3.注意解答题的规范性,不要漏掉必要的步骤,保 证解答的完整,不失分.
a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;
|a|= a·a= a21+a22+a23;
cos〈a,b〉=|aa|·|bb|=
a1b1+a2b2+a3b3 a21+a22+a23 b12+b22+b23
.
温馨提示 1.空间向量坐标的本质:
a=(x,y,z)的本质是 a=xi+yj+zk,其中(i,j,k)
3.空间向量的坐标运算法则和平面向量的坐标运算 法则类似,可类比记忆.计算(2a)·(-b),既可以利用运 算律把它化成-2(a·b),也可先求出 2a,-b 后,再求数 量积.
2.对空间两向量夹角与距离的四点说明: (1)范围:空间两条直线夹角的范围与向量夹角的范 围不同,当所求两向量夹角为钝角时,两直线夹角是与此 钝角互补的锐角. (2)夹角公式的一致性:无论在平面还是空间,两向
量的夹角余弦值都是 cos〈a,b〉=|aa|·|bb|,只是坐标运算
时空间向量多了一个竖坐标. (3)长度公式的类似性:空间向量的长度公式与平面
向量的长度公式形式一致,坐标运算时空间向量多了一个 竖坐标.
(4)空间两点间的距离公式是长度公式的推广,首先根 据向量的减法推出向量A→B(空间任意两点)的坐标表示,然 后再用长度公式推出 A、B 两点间的距离.
3.a∥b(b≠0)⇔aaa123= ==λλλbb12b, ,3,这一形式不能等价于ab11=ab22
在解题过程中,把向量的坐标相等转化为方程组,注 意对应坐标相等,此步是解题的基本功,是考试中不能失 分的步骤.
归纳升华 1.解题时注意进行等价转化. 2.对于公式中的一些特殊情形要记清,不要漏掉, 如 a,b 夹角为 180°时. 3.注意解答题的规范性,不要漏掉必要的步骤,保 证解答的完整,不失分.
a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;
|a|= a·a= a21+a22+a23;
cos〈a,b〉=|aa|·|bb|=
a1b1+a2b2+a3b3 a21+a22+a23 b12+b22+b23
.
温馨提示 1.空间向量坐标的本质:
a=(x,y,z)的本质是 a=xi+yj+zk,其中(i,j,k)
3.空间向量的坐标运算法则和平面向量的坐标运算 法则类似,可类比记忆.计算(2a)·(-b),既可以利用运 算律把它化成-2(a·b),也可先求出 2a,-b 后,再求数 量积.
空间向量运算的坐标表示归纳.ppt
O
y
x
栏目
0.0
导引
第二章 空间向量与立体几何
新知初探思维启动
1.向量加减法和数乘的坐标表示 (1)加减法和数乘的坐标表示
若a=(x1,y1,z1),b=(x2,y2,z2),则 ①a+b=_(_x_1+__x_2_,__y_1_+__y2_,__z_1_+__z2_)__,a-b=
___(_x_1_-__x_2,__y_1_-__y_2,__z_1_-__z_2)____;
C.(0,1,5)
D.(-2,-1,5)
解析:选 B.
A→B=(-1,0,4)-(1,1,1)=(-2,-1,3).
栏目
0.0
导引
第二章 空间向量与立体几何源自(2)空间向量平行的坐标表示
若 a=(x1,y1,z1),b=(x2,y2,z2),则
①若 b≠0,则 a∥b⇔a=λb⇔x1=λx2,
y1=λ y2, z1=λ z2(λ∈ R).
所以A→B =O→B-O→A= (x2,y2,z2)- (x1,y1,z1) = (x2- x1, y2- y1, z2- z1 ). 即空间向量的坐标等于终点与起点对应坐标 的___差___.
栏目
0.0
导引
第二章 空间向量与立体几何
2.数量积及空间向量长度与夹角的坐标表示
(1)数量积的坐标表示
设空间两个非零向量为a=(x1,y1,z1),b= (x2 , y2 , z2) x1x,2+y1则y2+za1·z2b =
②若
x2,y2,z2 都不为
0,则
a∥ b⇔x1=y1=z1. x2 y2 z2
栏目
0.0
导引
第二章 空间向量与立体几何
空间向量的正交分解及其坐标表示 课件
0=λ+μ. 不共面.
所以{a+b,b+c,c+a}可以作为空间的一个基底.
归纳升华 1.判断给出的某一向量组中的三个向量能否作为基 底,关键是要判断它们是否共面.如果从正面难以入手, 常用反证法或是一些常见的几何图形帮助我们进行判断. 2.判断基底时,常常依托正方体、长方体、平行六 面体、四面体等几何体,用它们从同一顶点出发的三条棱 对应的向量为基底,并在此基础上构造其他向量进行相关 的判断.
空间向量的正交分解及其坐标表示
1.空间向量基本定理 定理:如果三个向量 a,b,c 不共面,那么对空间任 一向量 p,存在有序实数组{x,y,z},使得 p=xa+yb+ zc,其中{a,b,c}叫作空间的一个基底,a,b,c 都叫作 基向量.
2.空间向量的正交分解及坐标表示 (1)单位正交基底:由三个两两垂直的有公共起点的 单位向量组成的基底称为单位正交基底. (2)空间向量的正交分解:在空间直角坐标 系 Oxyz 中,沿 x 轴、y 轴、z 轴的正方向各有 一个单位向量 i,j,k(组成空间一个单位正交 基底{i,j,k}),那么对于空间任意一个向量 p =O→P,可以沿三条坐标轴的方向进行分解(如图所示),即 存在一个有序实数组{x,y,z},使得 p=xi+yj+zk,这 样的分解称为空间向量的正交分解.
类型 2 用基底表示向量 [典例 2] 如图所示,空间四边形 OABC 中,G,H 分别是△ABC,△OBC 的重心,设O→A=a,O→B=b,O→C= c,D 为 BC 的中点.试用向量 a,b,c 表示向量O→G和G→H.
解:因为O→G=O→A+A→G,
而A→G=23A→D,A→D=O→D-O→A, 又 D 为 BC 中点, 所以O→D=12(O→B+O→C), 所以O→G=O→A+23A→D=O→A+23(O→D-O→A)=O→A+23×12 (O→B+O→C)-23O→A=13(O→A+O→B+O→C)=13(a+b+c). 而G→H=O→H-O→G,
所以{a+b,b+c,c+a}可以作为空间的一个基底.
归纳升华 1.判断给出的某一向量组中的三个向量能否作为基 底,关键是要判断它们是否共面.如果从正面难以入手, 常用反证法或是一些常见的几何图形帮助我们进行判断. 2.判断基底时,常常依托正方体、长方体、平行六 面体、四面体等几何体,用它们从同一顶点出发的三条棱 对应的向量为基底,并在此基础上构造其他向量进行相关 的判断.
空间向量的正交分解及其坐标表示
1.空间向量基本定理 定理:如果三个向量 a,b,c 不共面,那么对空间任 一向量 p,存在有序实数组{x,y,z},使得 p=xa+yb+ zc,其中{a,b,c}叫作空间的一个基底,a,b,c 都叫作 基向量.
2.空间向量的正交分解及坐标表示 (1)单位正交基底:由三个两两垂直的有公共起点的 单位向量组成的基底称为单位正交基底. (2)空间向量的正交分解:在空间直角坐标 系 Oxyz 中,沿 x 轴、y 轴、z 轴的正方向各有 一个单位向量 i,j,k(组成空间一个单位正交 基底{i,j,k}),那么对于空间任意一个向量 p =O→P,可以沿三条坐标轴的方向进行分解(如图所示),即 存在一个有序实数组{x,y,z},使得 p=xi+yj+zk,这 样的分解称为空间向量的正交分解.
类型 2 用基底表示向量 [典例 2] 如图所示,空间四边形 OABC 中,G,H 分别是△ABC,△OBC 的重心,设O→A=a,O→B=b,O→C= c,D 为 BC 的中点.试用向量 a,b,c 表示向量O→G和G→H.
解:因为O→G=O→A+A→G,
而A→G=23A→D,A→D=O→D-O→A, 又 D 为 BC 中点, 所以O→D=12(O→B+O→C), 所以O→G=O→A+23A→D=O→A+23(O→D-O→A)=O→A+23×12 (O→B+O→C)-23O→A=13(O→A+O→B+O→C)=13(a+b+c). 而G→H=O→H-O→G,
空间向量及其运算的坐标表示(15张PPT)——高中数学人教A版选择性必修第一册
深度探究
点的位置
向量位置
坐标
特点
x轴上
平行于x轴
(x,0,0)
纵、竖坐标均为0
y轴上
平行于y轴
(0,y,0)
横、竖坐标均为0
z轴上
平行于z轴
(0,0,z)
横、纵坐标均为0
Oxy平面上
平行于Oxy平面
(x,y,0)
竖坐标为0
Oyz平面上
平行于Oyz平面
(0,y,z)
横坐标为0
Ozx平面上
平行于Ozx平面
典例分析
例4如图,在正方体ABCD-A₁B₁C₁D₁ 中 ,E,F分别是BB₁ ,D₁B₁ 的中点,求证:EF⊥DA₁证明:不妨设正方体的棱长为1,建立如图所示的空间直角坐标系Oxyz, 则
典例分析
所以EF ·所以EF⊥DA₁,即EF⊥DA₁
,又A₁(1,0,1),D(0,0,0),
所以DA₁=(1,0,1)
深度探究
空间向量的坐标:在空间直角坐标系0xyz 中,给定向量a,作 0A=a,
由空间向量基本定理,
(1) 垂面法:过点A作三个平面分别垂直于x轴 ,y 轴 ,z轴于B,C,D三点,点B,C,D在x轴 ,y 轴 ,z 轴上的坐标分别为x,y,z,则(x,y,z)就是点 A的坐标。(2) 垂线段法:先确定点A在0xy平面内的射影A₁,由A₁A的长度及与z轴正方向的异同,确定竖坐标z, 再在0xy平面内确定点A₁ 的横坐标x 和纵坐标y, 那么点A的坐标就是(x,y,z).(3) 向量法:当向量的起点是原点时,向量坐标与向量终点的坐标相同。
例 1 如图,在长方体OABC-D'A'B'C′中 ,OA=3,0C=4,0D'=2,以为单位正交基底,建立如图所示的直角坐标系Oxyz。
点的位置
向量位置
坐标
特点
x轴上
平行于x轴
(x,0,0)
纵、竖坐标均为0
y轴上
平行于y轴
(0,y,0)
横、竖坐标均为0
z轴上
平行于z轴
(0,0,z)
横、纵坐标均为0
Oxy平面上
平行于Oxy平面
(x,y,0)
竖坐标为0
Oyz平面上
平行于Oyz平面
(0,y,z)
横坐标为0
Ozx平面上
平行于Ozx平面
典例分析
例4如图,在正方体ABCD-A₁B₁C₁D₁ 中 ,E,F分别是BB₁ ,D₁B₁ 的中点,求证:EF⊥DA₁证明:不妨设正方体的棱长为1,建立如图所示的空间直角坐标系Oxyz, 则
典例分析
所以EF ·所以EF⊥DA₁,即EF⊥DA₁
,又A₁(1,0,1),D(0,0,0),
所以DA₁=(1,0,1)
深度探究
空间向量的坐标:在空间直角坐标系0xyz 中,给定向量a,作 0A=a,
由空间向量基本定理,
(1) 垂面法:过点A作三个平面分别垂直于x轴 ,y 轴 ,z轴于B,C,D三点,点B,C,D在x轴 ,y 轴 ,z 轴上的坐标分别为x,y,z,则(x,y,z)就是点 A的坐标。(2) 垂线段法:先确定点A在0xy平面内的射影A₁,由A₁A的长度及与z轴正方向的异同,确定竖坐标z, 再在0xy平面内确定点A₁ 的横坐标x 和纵坐标y, 那么点A的坐标就是(x,y,z).(3) 向量法:当向量的起点是原点时,向量坐标与向量终点的坐标相同。
例 1 如图,在长方体OABC-D'A'B'C′中 ,OA=3,0C=4,0D'=2,以为单位正交基底,建立如图所示的直角坐标系Oxyz。
空间向量运算的坐标表示空间向量平行线和垂直的条件课件
-3b=( )
A.(6,3,-7) B.(-2,-1,-1) C.(2,1,-5) D.(14,7,-11)
2.若 a=(2,3,-1) ,b=(2,0,3) ,c=(0,2,2) ,则 a·(b+c) 的
值为( )
A.(4,6,-5) B.5
C.7
D.36
3.若向量 a,b 的坐标满足 a+b=(-2,-1,2) ,a-b=(4,-3,-2) ,
所以( (- -xx, ,1--yy,,2- -zz) )= =mn( (- -11, ,01, ,20) ), ,
x=-1, 解得y=1, 即 D(-1,1,2).
z=2,
(2)依题意,得A→B =(-1,1,0),A→C =(-1,0,2),B→C =(0,-1,2).假设
存在实数α,β,使得A→C =αA→B +βB→C 成立,则有(-1,0,2)=α(-1,1,
空间向量运算的坐标表示及应用 第1课时 空间向量运算的坐标表示、空 间向量平行(共线)和垂直的条件
必备知识·自主学习
1.空间向量的坐标运算 设a=(a1,a2,a3),b=(b1,b2,b3), ①a+b=_(_a_1_+__b_1,__a_2_+__b_2_,__a_3+__b_3_)_, ②a-b=_(_a_1_-__b_1,__a_2_-__b_2_,__a_3-__b_3_)_, ③λa=_(_λ__a_1_,__λ__a_2,__λ__a_3_)_, ④a·b=_a_1_b_1+__a_2_b_2_+__a_3b_3_.
关键能力·合作学习 类型一 用坐标表示空间向量(直观想象)
【典例】(1)已知点 A 在基{a,b,c}下的坐标为(8,6,4),其中 a=i+j,b=j +k,c=k+i,则点 A 在基{i,j,k}下的坐标是( ) A.(12,14,10) B.(10,12,14) C.(14,12,10) D.(4,3,2) (2)在棱长为 1 的正方体 ABCDA′B′C′D′中,E,F,G 分别为棱 DD′,D′C ′,BC 的中点,以{A→B ,A→D , AA' }为基,求向量A→E ,A→G ,A→F 的坐标.
A.(6,3,-7) B.(-2,-1,-1) C.(2,1,-5) D.(14,7,-11)
2.若 a=(2,3,-1) ,b=(2,0,3) ,c=(0,2,2) ,则 a·(b+c) 的
值为( )
A.(4,6,-5) B.5
C.7
D.36
3.若向量 a,b 的坐标满足 a+b=(-2,-1,2) ,a-b=(4,-3,-2) ,
所以( (- -xx, ,1--yy,,2- -zz) )= =mn( (- -11, ,01, ,20) ), ,
x=-1, 解得y=1, 即 D(-1,1,2).
z=2,
(2)依题意,得A→B =(-1,1,0),A→C =(-1,0,2),B→C =(0,-1,2).假设
存在实数α,β,使得A→C =αA→B +βB→C 成立,则有(-1,0,2)=α(-1,1,
空间向量运算的坐标表示及应用 第1课时 空间向量运算的坐标表示、空 间向量平行(共线)和垂直的条件
必备知识·自主学习
1.空间向量的坐标运算 设a=(a1,a2,a3),b=(b1,b2,b3), ①a+b=_(_a_1_+__b_1,__a_2_+__b_2_,__a_3+__b_3_)_, ②a-b=_(_a_1_-__b_1,__a_2_-__b_2_,__a_3-__b_3_)_, ③λa=_(_λ__a_1_,__λ__a_2,__λ__a_3_)_, ④a·b=_a_1_b_1+__a_2_b_2_+__a_3b_3_.
关键能力·合作学习 类型一 用坐标表示空间向量(直观想象)
【典例】(1)已知点 A 在基{a,b,c}下的坐标为(8,6,4),其中 a=i+j,b=j +k,c=k+i,则点 A 在基{i,j,k}下的坐标是( ) A.(12,14,10) B.(10,12,14) C.(14,12,10) D.(4,3,2) (2)在棱长为 1 的正方体 ABCDA′B′C′D′中,E,F,G 分别为棱 DD′,D′C ′,BC 的中点,以{A→B ,A→D , AA' }为基,求向量A→E ,A→G ,A→F 的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
,
1 4
, 1
,
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
D1
F1
C1
DF1
0
,
1 4
,1
(0
,
0
,
0)
0
,
1 4
,1 .
A1
E1 B1
BE1
DF1
0
0
1 4
1 4
11
15 16
,
D
O
A
x
C
y | BE1、
B(x2 , y2 , z2 ),则 AB ( x2 x1 , y2 y1 , z2 z1)
| AB | AB AB (x2 x1)2 ( y2 y1)2 (z2 z1)2
d A,B ( x2 x1)2 ( y2 y1)2 (z2 z1)2
2.两个向量夹角公式
cos a,b a b | a || b |
注意:
a1b1 a2b2 a3b3
;
a12 a22 a32 b12 b22 b32
(1)当 cos a , b 1 时,a 与 b 同向; (2)当 cos a , b 1 时,a 与 b 反向;
(3)当cos a , b 0 时,a b 。
a // b a1 b1,a2 b2 ,a3 b3( R) ; a1 / b1 a2 / b2 a2 / b2 .
a b a1b1 a2b2 a3b3 0 ;
已知=(3,-2,4),=(-2,5,-3),则
a b __________
a b __________
3a 5b ________________
D1F1
A1B1 4
,求
BE1
与
DF1
所成的角的余弦值。
z
解:设正方体的棱长为1,如图建
D1
F1
C1
立空间直角坐标系 O xyz ,则
A1
E1 B1
B(1,1, 0)
,
E1 1,
3 4
, 1
,
D
O
A
x
Cy
D(0 , 0 , 0)
,
F1
0
,
1 4
,1 .
B
BE1
1 ,
3 4
, 1
(1,1,
0)
(1) A(1,1, 0) , B(1,1,1) ;
(2) C(3 ,1, 5) , D(0 , 2 , 3) .
三、应用举例
例1 已知A(3 , 3 ,1)、B(1, 0 , 5) ,求:A (1)线段 AB 的中点坐标和长度;
解:设 M(x , y , z) 是 AB的中点,则
M
B
OM
1 2
(OA
OB)
1 2
(3 ,
3
, 1)
1 ,
0
,
5
2
,
3 2
,
3
,
O
∴点 M的坐标是
2
,
3 2
,
3
.
dA,B (1 3)2 (0 3)2 (5 1)2 29 .
(2)到 A 、B两点距离相等的点 P(x , y , z) 的
坐标 x , y , z 满足的条件。
解:点P(x , y , z)到 A 、B 的距离相等,则
思考:当 0 cos a , b 1 及1 cos a , b 0 时,的夹角在什么范围内?
练习一: 1.求下列两个向量的夹角的余弦:
(1) a (2 , 3 , 3) , b (1 , 0 , 0) ;
(2) a (1, 1,1) , b (1, 0 ,1) ; 2.求下列两点间的距离:
(x 3)2 ( y 3)2 (z 1)2 (x 1)2 ( y 0)2 (z 5)2 ,
化简整理,得 4x 6 y 8z 7 0 即到 A 、B 两点距离相等的点的坐标 (x , y , z) 满 足的条件是 4x 6 y 8z 7 0
例2 如图,在正方体 ABCD A1B1C1D1 中,B1E1
3.1.5 空间向量运算的坐标
表示
一、向量的直角坐标运算
设a (a1, a2 , a3), b (b1,b2 , b3)则
a b (a 1b1,a2 b2 ,a3 b3 ) ; a b (a 1b1,a2 b2 ,a3 b3 );
a (a1,a2,a3),( R) ;
a b a1b1 a2b2 a3b3 ;
a b __________
(2a b) (a 2b) ____
二、距离与夹角
1.距离公式
(1)向量的长度(模)公式
| a |2 a a a12 a22 a32
| b |2 b b b12 b22 b32
注意:此公式的几何意义是表示长方体的对 角线的长度。
(2)空间两点间的距离公式 终点坐标减
思考题:
九州娱乐网 九州娱乐网 uyd31vau
说:“是这样的,树和庄禾一样,长得过密了就会合挤着往上窜!”耿直不解,瞪着俩眼儿问爹爹:“那又是为什么呢?”耿 老爹怜爱地看着小儿子骨碌碌转动黑眼珠,伸手摸摸他的脑袋意味深长地说:“它们得晒太阳啊!晒不着太阳,它们就长不结 实哩!”“唔,我明白了。这树和庄禾晒太阳,敢情就好像我们人吃饭一样啊!”耿直的话把大家都给逗乐了。小青拍着手说: “我终于知道了,为什么你们三个吃饭都那么香呢,原来是争着晒太阳啊!”耿英追上去要打小青,嘴里直嚷着:“好你这张 利嘴,看我怎么收拾你!”小青咯咯地笑着拐个弯儿突然不见了。大家快步追上去也都来了一个90度的急转弯,这才发现, 眼前已经是齐刷刷的一排淋灰池子了。小青调皮地说:“怎么样,我就说藏着的嘛!”耿正说:“真还别说,要不是到了跟前, 谁会想到就在这里了呢!”小青用手指着十几步之外的几间平房说:“耿伯伯,卖石灰膏的人就住在那里!”于是,大家一起 向那几间平房走去。还没有走出几步,一只硕大的黑狗突然窜了出来,冲着众人“汪汪汪”直叫,凶巴巴的大有随时就要冲上 来的样子。耿正赶快就手捡起一根木棍拿在手里,挺身挡在大家的面前。耿直也随手拾起一块儿石头做出要扔出去的姿势。大 黑狗不敢往前冲了,但仍然还站在原地狂吠不止。耿老爹说:“你们不要打它!它一叫,卖石灰膏的人就会出来了。”果然, 耿老爹话音未落,就见一个略显肥胖的中年男人走了出来。他上下打量着对面的五个人,突然认出小青来了,大声说:“哦, 这不是小青姑娘吗?这几个人是”小青接过他的话音说:“来买你们的石灰膏!”中年男人笑了,说:“好一个嘎巴萝卜脆! 来买我们的石灰膏,好啊,快请屋里坐!”说着,轻轻踢一脚那只大黑狗:“去,一边去!”大黑狗乖乖地溜达到一边卧着去 了。耿老爹说:“这位兄弟啊,不用进屋啦,我们就在这里说话吧。喏,我先看看你们的货。可以吗?”中年男人说:“当然 可以了。靠西边这五个池子里的石灰膏都已经熟透了,你随便看啊。”说着,弯下腰挨着个儿掀起覆盖在池子上面的油布,请 大家逐个查看池子里的石灰膏。耿老爹看到每一个池子里的石灰膏都非常干净细腻,实在无可挑剔,就说:“行,我要买五间 新屋亮家所需要的石灰膏,价格就按照你们的销售价吧。我不砍你们的价,但你们一定得给我把料装足了!”中年男人说: “大哥你办事痛快,我自然也要够意思了!”他说完这话,随即大声地冲屋子里喊:“大伢子,肥子,你们快出来,装石灰膏 送货去啊!你们推两挂车过来,再带上八只最大号的桶!”只见一个大个子的年轻后生和另一个胖墩墩的大男娃儿应声而出。 俩人从旁边的一间房子里推出来两挂大块头的平车
17 4 , | DF1 |
17 . 4 15
B
cos
BE1
,
DF1
|
BE1 DF1 BE1 | | DF1
|
16 15 . 17 17 17 44
练习二:
D1 F A1
D A
C1 B1
E
C B
练习三:
C1
A1
B1
M
N C
A
B
四、课堂小结:
1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。 2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。