数字信号处理-答案第三章
第三章---数字信号处理课后答案刘顺兰版

第三章 部分习题解答(数字信号处理(第二版),刘顺兰,版权归作者所有,未经许可,不得在互联网传播)3.1如果一台通用计算机的速度为平均每次复乘需100μs ,每次复加需20μs ,今用来计算N=1024点的)]([n x DFT ,问用直接运算需要多少时间,用FFT 运算需要多少时间? 解: ∑−=====101010,21024,)()(N n nk N M N Wn x k X直接运算所需的总时间为s N N s N T d μμ20)1(1002×−+×=秒分62126201023102410010242=≈××+×=s s s μμFFT 运算所需总时间为 s NM s M N T F μμ201002×+×=s s s 717.02010102410010102421=××+×××=μμ3.2在基-2FFT 算法中,最后一级或开始一级运算的系数10==N p N W W ,即可以不做乘法运算。
问(1)乘法可节省多少次,所占百分比为多少? 解: 可节省2N 次,所占百分比为 %100log 1%100log 2222×=×N N N N 如 8=N 则为%3.33%10031≈×3.11以20kHz 的采样率对最高频率10kHz 的带限信号()a x t 采样,然后计算)(n x 的1000N =个采样点的DFT ,即210()()N j nk N n X k x n eπ−−==∑,1000N =.(1)试求频谱采样点之间的频率间隔是多少?(2)在()X k 中,200k =对应的模拟频率是多少?(3)在()X k 中,700k =对应的模拟频率是多少?解:(1)频谱采样点之间的频率间隔为:20000201000s f f Hz N Δ=== (2)200k =对应的模拟频率为 20000200400041000s k f f k Hz kHz N ==×== (3)因700k =大于N/2,故其对应的模拟频率为 20000()300600061000s k f f N k Hz kHz N =−=×== 3.12 对一个连续时间信号)(t x α采样1s 得到一个4096个采样点的序列:(1) 若采样后没有发生频谱混叠,)(t x α的最高频率是多少?(2) 若计算采样信号的4096点DFT,DFT 系数之间的频率间隔是多少Hz?(3) 假定我们仅仅对Hz f Hz 300200≤≤频率范围所对应的DFT 采样点感兴趣,若直接用DFT,要计算这些值需要多少次复乘?若用按时间抽取FFT 则需要多少次? 解:(1)由题意可知:4096s f Hz =,故)(t x α的最高频率/22048h s f f Hz == (2)409614096s f f Hz N Δ=== (3)直接用DFT 计算,所需要的复乘次数为(3002001)1014096413696d M N =−+=×=若用按时间抽取FFT 则需要的复乘次数为10log 204812245762F N M N ==×= 3.17若给定两个实序列)(1n x 、)(2n x ,令:)()()(21n jx n x n g +=,)(kG 为其傅里叶变换,可以利用快速傅里叶变换来实现快速运算,试利用傅里叶变换的性质求出用)(k G 表示的)(1n x 、)(2n x 的离散傅里叶变换)(1k X 、)(2k X 。
数字信号处理 Chapter03答案

11
3.2 Properties of the z-Transform
Ex. ( linearity) x(n) = [3(2n) – 4(3n)] u(n) 3 4 – 1 – 2z –1 1 – 3z –1
X(z) =
ROC: |z| > 3
12
3.2 Properties of the z-Transform
z = re
jθ
=
n =−∞
∑ x ( n )r
−n
∞
− n − jθ n
e
X ( z) ≤
n =−∞
∞
∑
−1
x (n) r
+∑
n=0
∞
∞
x ( n) rn
x (n) rn
≤ ∑ x ( −n ) r + ∑
n n =1 n =0
7
3.1 The z-Transform
3.1.1 The Direct z-Transform
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
14
3.2 Properties of the z-Transform
X(z) = ∑ x(n) z – n
15
X(z) = ∑ x(n) z – n
16
3.3 Rational z-Transforms
1 2 −1 1 2 2
X ( z ) = 1+ z + (
X ( z) = 1 1− z
1 2 −1
)
z + .... + (
−2
1 n 2
)
z −n
数字信号处理第三版(姚天任、江太辉) 答案 第三章

3.1 图 P3.1 所示的序列 x(n) 是周期为 4 的周期性序列。请确定其傅里叶级数的系数 X (k) 。
∑ ∑ ∑ 解: X (k)
=
N −1
x(n)WNnk
=
N −1
x(−n)WNnk
=
−( N −1)
x(n)WN−nk
=
X (−k)
解:图 P3.5_1 所示的是计算这两个序列的周期卷积 x3 (n) 的过程,可以看出,x3 (n) 是 x1 (n) 延时 1 的结果, 即 x3(n) = x1(n −1) 。
3.6 计算下列序列的N点DFT:
(1) x(n) = δ (n)
(2) x(n) = δ [(n − n0 )]N * RN (n), 0 < n0 < N
总计需要时间: (105 + 21)s = 126s
用 FFT 计算 DFT:
复数乘法:
N 2
log2
N
=
5120次, 5120 ×100μ s
≈
0.512s
复数加法: N log2 N = 10240次,10240× 20μs ≈ 0.2048s
总计需要时间: (0.512 + 0.2048)s = 0.7168s
(2) x2 (n) = x ⎡⎣(2 − n)⎤⎦4 R4 (n)
解: x1(n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x(n) 。 (1)绘出 x(n) 与 x(n) 的线性卷积结果的图形。 (2)绘出 x(n) 与 x(n) 的 4 点循环卷积结果的图形。 (3)绘出 x(n) 与 x(n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷
数字信号处理第三版(姚天任、江太辉) 答案 第三章

第三章离散傅里叶变换及其快速算法习题答案参考3.1 图P3.1所示的序列(xn 是周期为4的周期性序列。
请确定其傅里叶级数的系数(X k。
解:(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.2 (1设(xn 为实周期序列,证明(x n 的傅里叶级数(X k 是共轭对称的,即*((X k X k =− 。
(2证明当(xn 为实偶函数时,(X k 也是实偶函数。
证明:(1 111**((([(]((N nk N n N N nk nkNNn n Xk x n W Xk x n W xn W X−−=−−−==−=−===∑∑∑ k(2因(xn 为实函数,故由(1知有 *((Xk X k =− 或*((X k X k −= 又因(xn 为偶函数,即((x n x n =− ,所以有(111*0((((((N N N nk nk nk N N N n n n X k x n W x n W x n W X k X k −−−−−=====−= =−=∑∑∑3.3 图P3.3所示的是一个实数周期信号(xn 。
利用DFS 的特性及3.2题的结果,不直接计算其傅里叶级数的系数(Xk ,确定以下式子是否正确。
(1,对于所有的k; ((10Xk X k =+ (2((Xk X k =− ,对于所有的k; (3; (00X=(425(jkX k eπ,对所有的k是实函数。
解:(1正确。
因为(x n 一个周期为N =10的周期序列,故(X k 也是一个周期为N=10的周期序列。
(2不正确。
因为(xn 一个实数周期序列,由例3.2中的(1知,(X k 是共轭对称的,即应有*((Xk X = k −,这里(X k 不一定是实数序列。
(3正确。
因为(xn (0n ==在一个周期内正取样值的个数与负取样值的个数相等,所以有 10(0N n Xx −=∑ (4不正确。
现代数字信号处理 姚天任 第三章答案上

第三章答案3.1解: (1):由题设:h (n) =)()(10n h n hy (n)=)1()(-n yn y 则u (n) =h (n) y (n)所以可得最陡下降法解:h (n=1) =h *+(I-2μR )2h (0)- h *其中R =)0()1()1()0(yy yy yy yy R R R = 3223(2):h *= R1-P =3 =1-(3):由于R =5225 则可得λ1=1,λ2=5;所以μ的取值范围为:0<μ<51当μ=61时迭代公式收敛。
(4):μ=61时h (n) = 14- + 100132× h (0) - 14-=14- +32--(0) - 14-3.2解:(1)空(2)e (n) = x (n)-y (n)[2μe (n-1)y (n-1)+h (n-1)] = x (n)-u (n)[2μe (n-1)y (n-1)+h (n-1)] 对e (n)进行z 变换: e (Z) = x (z) - 2μZ1-e (Z) - Z1-h (Z)由h (n)=2μe (n-1)u (n-1)+h (n-1) 得 h (Z)=2μZ1-e (Z) + Z1-h (Z)h (Z)=1-11)(Z 2--ZZ e μ 所以:e (Z) = x (Z)-2μZ1-e (Z)- Z1-1-11)(z 2--zz e μH (Z) = 11)1(211---+-ZZ μ 所以零点在单位园上,极点在Z = 1-2μ园上。
(3):要使H(Z)稳定,则极点在单位园内即: 0121><-μμ且3.3(1)性能曲面函数:[][][]⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---+=-+=+-=-==+-=-=-=-====-==⎥⎦⎤⎢⎣⎡---==-+=1022202222010222)1([)]()1([)]1()([)([102)]([)()55(2125)]1()([0)]()([10)]([85585)]()1([)]1()([25)]1([25)]([)2cos(2)()2sin()()()()()1()()()()]()([)1([)]()1([)]1()([)([)]()([2)]([)(W W n x E n x n x E n x n x E n x E W W WP RW W n d E n n x n d E n x n d E n d E n x n x E n x n x E n x E n x E n N n d n N n x n W n W n W n x n d n x n d E n X n d E P n x E n x n x E n x n x E n x E n X n X E R WP RW W n d E n T T TTT T ξππξ[]⎥⎦⎤⎢⎣⎡--10)1()()()(2W W n x n d n x n d[]⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-+=10202585585]855852510W W W W⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+--10)55(212502W W1211020)55(21525)45545(2510w w w w w ++++-++=(2)误差性能曲面matlab 程序: (3)[][][][][])1(*)(*2)1(**2)(*)1(**2)(*)(*2)(*)1(**2)(**2 210112001---+-=∂∂-+-+=∂∂⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂=∇n x n d n x E w n x n X E w w n x n d n x n X E w n X E w w w w w Tξξξξξ (4)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎥⎦⎤⎢⎢⎣⎡==---* 2.1029-0.6498 7553.40 0.4422 0.1367-0.1367- 0.4422 7553.402.5 0.77250.7725 2.5 )1()()()(1)-(n x 1)-x)n *x(n)1)-x(n *n) x( )( *11221n x n d n x n d n x pR w(5)[][]91-10 1029.2698.04.7553- 0-10 *)(2min ==⎥⎦⎤⎢⎣⎡-=-=*w p n d E T ξ 3.4[][]2725.3*2*27275.1*2*20.70717071.0 0.7071- 7071.02725.3 7275.1 2.5 .0.77250.7725 2.5 1)-(n x 1)-x(n *x(n)1)-x(n * x(n) )(1120102111021w2==∂∂==∂∂====⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=λλξλλξV V V V n x E R TT[][][][]4216142)2( 8722242 8722112 )]([ 2)]([)(15..3101021201010101010101022+--++=+-⎥⎦⎤⎢⎣⎡+++=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=-+=ωωωωωωωωωωωωωωωωωωωωωωωεn d E P R n d E n T )解:([][][][]()()()[]6222)5(30014'300113122112'21124 )4(438423287)]([)]([ )3(323296872112872112 210'1''1'0min 2min 2110min 2*2min *1*03131*1*011*2'122'02====⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=Λ+=⎥⎦⎤⎢⎣⎡=Λ∴--=--=⎥⎦⎤⎢⎣⎡--=-Λ+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+=+==-=⎥⎦⎤⎢⎣⎡-=-==⇒⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⇒⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡==∂∂∂∂--λλεελλλλλλεεεεωεωωωωωεεv v T T TTv v v v v v R E v v v v v v Rv v n d E P n d E P R )、(3.6 解:(1)[][]()()[][][][][][][][][]NN N NN NN N N N N N T NN NN N N N N n N N N TT TT T T T n d E n n E n d E E n E n n E n n E n r n x n d n r n x n d E n X n d E P R n n n n x n E n r n x E n x n x E n r n x n r n x E n r n x E n nr E n r E n E n r n E n r n x E n r n x n r n x E n r n x n r n x E E n X n X E R n n n X n d E n n X n X E n n n y n d E n e E n ππππππππππππππππππππππππωωωωωϕωωωωϕϕωωεϕϕϕφωωωωωωεπ212021*********221221211022222242222212212212122124221222212cos -122222222210222sin 2cos ))(5.0(2sin 02cos cos )]([)(2]cos 4[)]([sin 0][sin ][sin )]1(sin )1([cos sin cos 2[)]1()1()(())()()(([)]()([cos cos cos ))]cos((cos E[ )]1(sin sin E[1)]-E[x(n)x(n 1)]-E[r(n)r(n )]1()[()]1()([)]1()([))]1()1())(()([(]))1()1([(E )(sin 2)(sin ))((sin ]r(n))E[(x(n)]))1()1([())]()())(1()1([())]1()1())(()([(]r(n))E[(x(n) ]1)-r(n 1)-x(n r(n)x(n)1)-r(n 1)-x(n r(n)x(n)[])()([1)-r(n 1)-x(n r(n)x(n)X(n) )()()]()([2)(])()([)()](E[d ]))()([()]([)(N 4+++++=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+++=∴====--=-+-+==⎥⎦⎤⎢⎣⎡++=∴=--=-==+-+-+-=-+-+-+-=+=+⎥⎦⎤⎢⎣⎡=++=+=+⎥⎦⎤⎢⎣⎡-+-+-+--+-++=++++==++==-+=-==[]05.0][1044/1T 14.54/1(4)T )21/(1u 0 : ][021][)cos(2/11/2 0 ]cos cos [R -E ]cos cos [)3())cos()21/(()sin()21(2))cos()21/(()sin()cos(20)sin(2)cos(2)5.0(0)cos(2)5.0( )2(2mse21mse112122122122121212212212122221*222220*2201210101======+<<∴<<+=+=+==------=++=⎪⎩⎪⎨⎧-++-=-+=⇒⎪⎩⎪⎨⎧=+++==++===∇-+=∂∂∂∂∂∂∂∂∂∂R ut M u u u R t u R t R r r r N N NN N N N N N N N N N T λλϕϕλλϕλϕλϕλλϕϕϕϕωϕωωωϕωωϕππππππππππππωεπωεωεωεωε值范围为系统收敛的3.11答案:11)(4)(4.0)()]()([2))(()()]([)(min))(()()()()()()1(22222+-=-+===-=n h n h n h n y n x E n y E n h n x E n n e E n n y n h n x n e ξξ5)(04)(8.0)()(==-=n h n h n dh n d ξ (2)μμμξ4)()2.31())(8.04()())(()()1(48.0)(+-=-+=-∇+=+-=∂∂=∇n h n h u n h n n h n h h hn 数迭代计算公式为:最陡下降法推导加权系(3)求加权系数表达式]10)0([)8.01(10])0([)2()(**--+=--+=h h h R I h n h nn μμ要求1max 0-<<λμ5.204.010<<<<∴μμ即3.12答案:2102][][0)1(1011<<==<<∑=--μλμμ即满足为保证收敛应使k k R tr R tr器的收敛速度相同。
数字信号处理课后答案 第3章DFT FFT.

N 1
j
2π kn N
1 N 1 j(0 2Nπ k ) n N 1 j(0 2Nπ k ) n e e 2 j n 0 n 0
j0 N j0 N 1 1 e 1 e 2 2π j(0 - k) j(ω0 k ) 2j N N 1 e 1 e
(10) 解法一
X (k )
n 0
N 1
kn nWN
k 0, 1, , N 1
上式直接计算较难, 可根据循环移位性质来求解X(k)。 因 为x(n)=nRN(n), 所以 x(n)-x((n-1))NRN(n)+Nδ(n)=RN(n)
等式两边进行DFT, 得到
X(k)-X(k)WkN+N=Nδ(k)
k 整数 m k 整数 m
所以
k mX m X (k ) 0
k 整数 m k 整数 m
7. 证明: 若x(n)为实序列, X(k)=DFT[x(n)]N, 则 X(k)为共轭对称序列, 即X(k)=X*(N-k); 若x(n)实偶对 称, 即x(n)=x(N-n), 则X(k)也实偶对称; 若x(n)实奇对称, 即x(n)=-x(N-n), 则X(k)为纯虚函数并奇对称。
解法二
因为
由DFT共轭对称性可得同样结果。
x9 (n) cos(0 n) RN (n) Re[x7 (n)]
1 * X 9 (k ) X 7e (k ) [ X 7 (k ) X 7 ( N k )] 2
j 0 N j 0 N 1 1 e 1 e 2π 2π 2 j(0 k ) j(0 ) k N N 1 e 1 e
数字信号处理教程课后习题及答案

x(n
− m)sin
2π 9
+
π 7
即 T [x(n − m)] = y(n − m)
∴系统是移不变的
T [ax1(n) + bx2 (n)]
=
[ax1
(n)
+
bx2
(n
)]sin(
2π 9
+
π 7
)
即有 T [ax1(n)+ bx2 (n)]
= ay1(n) + by2 (n)
∴系统是线性系统
(1) T [ x(n)] = g(n)x(n) (2) (3) T [ x(n)] = x(n − n0 ) (4)
(c)
x (n )
=
e
j
(
n 6
−π )
分析:
序列为 x (n ) = A cos( ω 0n + ψ ) 或 x(n) = A sin( ω 0n +ψ ) 时,不一定是周期序列,
①当 2π / ω 0 = 整数,则周期为 2π / ω 0 ;
7
②当 2π = P ,(有理数 P、Q为互素的整数)则周期 为 Q ; ω0 Q
(3) y(n) = δ (n − 2) * 0.5n R3(n) = 0.5n−2 R3(n − 2) (4) x(n) = 2n u(−n −1) h(n) = 0.5n u(n)
当n ≥ 0 当n ≤ −1
∑ y(n) = −1 0.5n−m 2m = 1 ⋅ 2−n
m = −∞
3
y(n) = ∑n 0.5n−m 2m = 4 ⋅ 2n
∴所给系统在 y(0) = 0 条件下是线性系统。
6.试判断:
数字信号处理第三章习题作业答案

1 e 当 k 2, 4, 6,... 时,X 1 (k ) 0
序列3:
x3 (n) x1 (n) x1 (n 4)
根据序列移位性质可知
X 3 (k ) X1 ( k ) e j k X1 ( k ) (1 e j k )
即 x(n) 是以 n 0 对称轴的奇对称
故这三个序列都不满足这个条件
(3)由于是8点周期序列,其DFS:
nk X (k ) x(n )WN x (n )e n 0 n 0 N 1 7 j 2 nk 8
序列1:
X 1 (k ) e
n 0
3
y 解: 序列 x(n) 的点数为 N1 6 , (n) 的点数为 N 2 15, 故 x(n) y (n) 的点数应为
N N1 N 2 1 20
是线性卷积以15为周期周期延拓后取主值序列 19( N 1) 0
15 ( L)
又 f (n) 为 x(n) 与 y (n) 的15点的圆周卷积,即L=15。
第三章习题讲解
n 1, 0 n 4 h(n) R4 (n 2) 3.设 x(n) 其他n 0, h 令 x(n) x((n))6 , ( n) h((n)) 6 ,
试求 x(n) 与 h (n) 的周期卷积并作图。
解:
y ( n ) x ( m )h ( n m )
4 ( L N 1)
15 ( L)
34 ( L N 1)
混叠点数为N-L=20-15=5 n 0 ~ n 4( N L 1) 故 f (n)中只有 n 5到 n 14的点对应于 x(n) y (n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~ 解: (1)要使X (k )为实数,即要求 : ~ ~ X * (k ) X (k ) 根据DFT的性质可知 : ~ x (n)在其 一个周期内应满足实部偶对称 , 虚部奇对称 (关于n 0为轴) , 又 由图知:~ x (n)为实序列, 虚部为零, 故 x(n) 应满足偶对称: ~ x ( n) ~ x (n), 即~ x (n)以n 0为对称轴偶对称 , 故第二个序列满足这个 条件。
1 a[ 2
e e
j
0N
2
0N
2
(e
e
j
0N
2 1 2 j ( k 0 ) 2 N
1 2 j ( k 0 ) 2 N j
(e
2
1 2 j ( k 0 ) 2 N j
e
j
0N
0N
2
e e 1 a[ 2
(e
e
0N
2
)
1 2 j ( k 0 ) 2 N j
第三章 离散傅立叶变换
1.如下图,序列 x(n)是周期为 6 的周期性序列,试求其傅立叶级数的系数。
~ 解 : X(k )
n 0 j 2 k 14 12e 6
x (n )W6nk ~
5
n 0 2 j 2k j 2 3k 10e 6 8e 6
j x ( n )e ~
n 1, 0 n 4 3. 设x(n) , h(n) R4 (n 2) , 0 , 其它n ~ 令 ~ x (n) x(( n)) 6 , h (n) h(( n)) 4 , ~ 试求~ x (n)与h (n) 的周期卷积并作图。
解:在一个周期内的计算值 ~ ~ ~ y (n) ~ x (n ) * h (n ) h (n m) ~ ~ ~ y (n) ~ x (n ) * h (n ) h (n m)
0 0 0
e
j
0 N 2
(e
j
0 N 2
e
j
0 N 2
)
1 2 1 2 j ( k 0 ) j ( k 0 ) 2 N e (e 2 N
0
1 2 j ( k 0 e 2 N
) )
N j N e 2 sin( 0 ) 1 2 a 1 2 2 j 2 ( N k ) 1 sin( k 0 ) e N 2
jk
)
1 (1) k
j k
1 e 4 ~ 当 k 2,4,6 时, X 3 (k ) 0
第一, 第三个序列满足 ~ X (k ) 0 , k 2 , 4 ,
7 在下图中画出了两个有限长序列 , 试画出它们的六点圆周卷积 。
5 y ( n ) x1 ( m ) x 2 ((n m )) 6 R6 ( n ) m 0
6. 如图画出了几个周期序列~ x (n).这些序列可以表示成 傅里叶级数 ~ x ( n) 1 N
X ( k )e
k 0
N 1
~
j ( 2 / N ) nk
;问:
(1) 哪些序列能够通过选择时间原点使所有的 X (k )成为实数 ? (2) 哪些序列能够通过选择时间原点使所有的 X (k ) [除 X (0) 外] 成虚数 ? (3) 哪些序列列能做到 ~ x (k ) 0, k 2,4,6,
解 : ( 1 ) x ( n ) a (cos 0 n ) RN ( n ) X (k )
N 1 n 0
a(cos0
j 2 nk n )e N R
N (k )
j 2 nk j n N 1 j 0 n 1 0 a (e e ) e N RN ( k ) 2 n 0
5
2 nk 6
6e
j 2 4 k 6
10e
j 2 5k 6
计算求得:
~ ~ X (0) 60 ; X (1) 9 j3 3 ; ~ ~ X (3) 0 ; X (4) 3 j 3 ;
~ X (2) 3 j 3 ; ~ X (5) 9 j3 3 。
0
e
j
0 N
2
1 2 j ( k 0 e 2 N
2 ) 1 sin( k 0 ) N 2 sin(
0 N
)
(2) x ( n ) a n RN ( n ) X (k )
N 1 n 0
a
n
e
j2 nk N Nhomakorabea1 aN 1 ae
等各序列。
x ( n ) a (cos 0 n ) RN ( n ) X ( k ) a (cos 0 n )e
n 0 N 1 n 0 N 1
j 2N nk
RN ( k )
j 2N nk
j 0 n 1 e j0n )e 2 a[ ( e
]RN ( k ) ]R N ( k ) ]R N ( k ) ) ) ] )
n 0 j 2 k e 3
j x ( n )e ~
5
2 nk 6
4. 已知x (n )如图P3 1所示, 试画出 x((n ))5 , x ((n ))6 R6 (n ), x((n ))3 R3 (n ) x((n ))6 ,
解:
x ((n 3))5 R5 (n ), x((n ))7 R7 (n )
( N 1) 2
(2n 1)W
n 1
N 1
nk N
N ( N 2) 2
nW
n 1
N 1
nk N
N ( N 2) 2 X 1 ( k ) N ( N 2) X (k ) 2N k 1 WN
k N ( N 2)W N N2 k 2 (1 W N )
(e
1 2 j ( k 0 ) 2 N
e )
1 2 j ( k 0 ) 2 N
0N
2
1 e sin( k 0 ) N 2 0N j N e 2 sin( 0 ) 2 ] 1 2 j ( k 0 ) 1 e 2 N sin( k 0 ) N 2
~ 2. 设x(n) R4 (n), x (n) x((n))6 . ~ ~ 试求X (k )并作图表示~ x (n), X (k ) 。
~ 解 : X (k )
n 0
x (n )W6nk ~
j k
5
1 e 3 e jk ~ ~ ~ 计算求得:X (0) 4 ; X (1) j 3 ; X (2) 1 ; ~ ~ ~ X (3) 0 ; X (4) 1 ; X (5) j 3 。
(k )
(4)x(n) nR N (n)
nk X (k ) nW N R N (k ) n 0 k ( n 1) k WN X (k ) nW N R N (k ) n 0 k nk ( n 1) k X (k )(1 W N ) nW N nW N n 0 n 0 N 1 N 1 N 1 N 1
1 2 j ( k 0 ) 2 N
e
sin(
0N
2
5
试求以下有限长序列的 N点DFT (闭合形式表达式 ) (1) x ( n ) a (cos 0 n ) R N ( n ) ( 2) (3) (4) (5) x(n) a n RN (n) x ( n ) (n - n 0 ), x(n) nR N ( n ) x(n ) n 2 RN (n) 0 n0 N
k N 1 j ( 2N 1 a e 2 n 0
0
0
)n
N 1 j ( 2 ) n 0 e N R n 0
0
N (k )
1 e j N 1 e j N 1 a 2 j ( 2 k ) j ( 2 k N 1 e N 1 e
j 2 k N
(3) x ( n ) ( n n0 ) , 0 n0 N X (k )
N 1 n 0 N 1 n 0
x ( n )e
j 2 nk N R
N
(k )
N
( n n0 ) e
N
j 2 nk N R
(k )
j 2 n0k e N R
n W
2 n0
N 1
( n 1) k N
k X (k )(1 W N ) k WN
n0
N 1
nk n 2W N
n W
2 n0
N 1
( n 1) k N
2k 4W N
3k 9W N
( N 1) k 2k 3k ( N 1) 2 W N [W N 4W N ( N 1) k 2 ( N 2) 2 W N (N 1 ) ]
e
n0
2
j nk 4
1
3 j k e 4 j k e 4
当 k 2,4,6
1 ~ 时, X 1 (k ) 0
对于第三个序列: ~ x 3 ( n) ~ x1 (n) ~ x1 (n 4) 根据序列移位性质可知 : ~ ~ ~ X 3 (k ) X 1 (k ) e jk X 1 (k ) (1 e