32第2课时利用移项解一元一次方程

合集下载

3.2.2 一元一次方程的解法(一)移项(教学设计)七年级数学上册(人教版)

3.2.2 一元一次方程的解法(一)移项(教学设计)七年级数学上册(人教版)

3.2.2 一元一次方程的解法(一)移项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.2.2 一元一次方程的解法(一)移项,内容包括:运用移项解形如“ax+b=cx+d”的一元一次方程.2.内容解析本节课的教学内容是新人教版七年级上册第三章《解一元一次方程(一)》的第2课时一移项.方程是现实世界中一类具有等量关系问题的重要的数学模型,是解决问题的重要工县之一,它既与现实生活密切联系,又贯穿于整个初中阶段数学的学习,它在义务教育阶段的数学课程中占重要地位;求属标准中的“数与代数”领域。

解方程是方程中最基本而且重要的初步知识.本章的主要内容是解一元一次方程,以及用方程解决实际问题这些知识是今后学习其它方程、不等式及函数的重要基础.为了使学生牢固掌握解方程的方法,体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法.并通过练习归纳掌握解方程的基本步骤和技能。

在解决实际问题的过程中使学生了解到数学的价值,发展学生“用数学”的信心,提高学生的数学素养.本节课不管是在知识的运用上,还是在对学生技能形成、思维训练、能力发展、智能提升、应用意识培养上,都有着举足轻重的作用.另外,其中蕴涵的类比、归纳、化归的数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益:在教学时尤其要注重对这些数学思想方法的渗透.基于以上分析,确定本节课的教学重点为:运用移项解形如“ax+b=cx+d”的一元一次方程.二、目标和目标解析1.目标(1)理解移项的意义,掌握移项的方法.(2)学会运用移项解形如“ax+b=cx+d”的一元一次方程.(3)能够抓住实际问题中的数量关系列一元一次方程解决实际问题.2.目标解析知道移项的依据和移项的必要性;给定一个方程,能够准确地进行移项解方程,知道移项的作用可以简化方程,使方程向x-a 的形式转化,在此过程中体会化归思想;通过对图书分配问题的研究,建立axtb=cx+d类型的方程观察与分析方程的特征,进而能够讨论出通过移项解这类方程;在“列方程”“解方程”的过程中,能够体会方程思想的应用价值.三、教学问题诊断分析七年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼、直观形象,且贴近学生的生活,从而引起学生的有意注意;七年级学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知;七年级学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究.基于以上学情分析,确定本节课的教学难点为:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.四、教学过程设计(一)复习回顾解下列方程:(1)4x -9x=10; (2)-52y+32y=5; (3)x 2+x+2x=210; (4)x 2-x 3=-5. (1)解:合并同类项,得-5x=10系数化为1,得 x=-2(2)解:合并同类项,得 -y=5系数化为1,得y=-5(3)解:合并同类项,得 72x=210 系数化为1,得 x=60(4)解:合并同类项,得 x 6=-5 系数化为1,得 x=-30(二)自学导航问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少名学生?这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢? 解:设这个班有x 名学生.每人分3本,共分出____本,加上剩余的20本,这批书共____________本.每人分4本,需要______本,减去缺的25本,这批书共______________本.这批书的总数是一个定值,表示它的两个式子应相等,即表示同一个量的两个不同的式子相等.根据这一相等关系列方程得:+=-3x204x25思考:方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?3x+20=4x-253x-4x+20=4x-4x-253x-4x+20=-253x-4x+20-20=-25-203x-4x=-25-20思考:比较下面的两个方程,你发现了什么?移项的定义一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.移项的依据及注意事项移项实际上是利用等式的性质1.注意:移项一定要变号由上可知,这个班有45名学生.思考:上面解方程中“移项”起了什么作用?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”. 早在一千多年前,数学家阿尔-花拉子米就已经对“合并同类项”和“移项”非常重视了.(三)考点解析例1.解下列方程:(1)2x -6=4x -1; (2)13x -6=-12x+4.解:(1)移项,得2x -4x=-1+6.合并同类项,得-2x=5.系数化为1,得x=-52. (2)移项,得13x+12x=4+6. 合并同类项,得56x=10.系数化为1,得x=12.【迁移应用】1.解方程5x -3=2x+2,移项正确的是( )A.5x -2x=2+3B.5x+2x=2+3C.5x -2x=2-3D.5x+2x=2-32.若x 的2倍与8的和等于6与x 的2倍的差,则x=_____.3.当:x=_____时,2x -3与3x+1的值互为相反数.4.若单项式-2a 3b 2n-1与a m -1b 3n+2的和仍是单项式,则m+n=_____. 5.解下列方程:(1)4-3x=6-5x ; (2)2.5m+10m -15=6m -21.5; (3)13x -2=x+14. 解:(1)移项,得-3x+5x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(2)移项,得2.5m+10m -6m=-21.5+15.合并同类项,得6.5m=-6.5.系数化为1,得m=-1.(3)移项,得13x -x=14+2.合并同类项,得-23x=94. 系数化为1,得x=-278.例2.七年级(2)班全班同学去郊游,需要一定费用,如果每位同学付5元,那么还差5.6元;如果每位同学付5.5元,那么就多出10.4元.这个班有多少名同学?总费用是多少元?解:设这个班有x名同学.根据题意,得5x+5.6=5.5x-10.4.移项,得5x-5.5x=-10.4-5.6.合并同类项,得-0.5x=-16.系数化为1 ,得x=32.所以5x+5.6=165.6.答:这个班有32名同学,总费用为165.6元.【迁移应用】1.甲仓库有200t煤,乙仓库有80t煤,若甲仓库每天运出15t煤,乙仓库每天运进25t煤,则_____天后两仓库存煤量相等.2.《九章算术》中有一个“盈不足术”的问题,其大意是:若干人共同出资买羊,每人出5钱,则差45钱;每人出7钱,则差3钱.问:人数和羊价各是多少?解:设人数为x.根据题意,有5x+45=7x+3.移项,得5x-7x=3-45.合并同类项,得-2x=-42.系数化为1, 得x=21.所以5x+45=150.答:人数为21,羊价为150钱.例3.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数交换位置,所得的新两位数比原两位数大27,求原两位数的大小.分析:设原两位数十位,上的数为x.相等关系:新两位数=原两位数+27.解:设原两位数十位上的数为x,则个位上的数为2x.根据题意,得10×2x+x=10x+2x+27.移项,得20x+x-10x-2x=27.合并同类项,得9x=27.系数化为1,得x=3.所以2x=6.答:原两位数为36.【迁移应用】1.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内的数字为x.则列出的方程正确的是( )A.3×2x+5=2xB.3×20x+5=10x×2C.3×20+x+5=20xD.3(20+x)+5=10x+22.有一个两位数,个位上的数比十位上的数大4,且个位上的数与十位上的数的和比这个两位数小9.求这个两位数.解:设这个两位数十位上的数为x,则个位上的数为x+4.根据题意,得x+4+x=10x+x+4-9,解得x=1.所以x+4=5.答:这个两位数为15.例4.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A.28B.54C.65D.75月历中数的关系:同一行中,相邻两数相差1;同一列中,相邻两数相差7.另外,月历上的日期数最小为1,日期数的最大值(不超过31)与月份有关,且日期数都是正整数.解析:设三个数中中间的数为2x,则最小的数为x-7,最大的数为x+7,所以三个数的和为(x-7)+x+(x+7)=3x.故三个数的和是3的倍数.【迁移应用】1.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排列位置不可能是( )2.如图,规定:上方相邻两数之和等于这两数下方箭头共同指向的数.(1)用含有x的式子表示:m=_____,n=________;(2)若y=-2,求x的值.解:由题意得m=3x,n=2x+3,y=m+n,因为y=-2,所以3x+2x+3=-2.解得x=-1.(四)小结梳理移项的定义一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.移项的依据及注意事项移项实际上是利用等式的性质1.注意:移项一定要变号五、教学反思。

2019秋人教版七年级数学上册习题课件:3.2 第2课时 用移项法解一元一次方程

2019秋人教版七年级数学上册习题课件:3.2   第2课时  用移项法解一元一次方程

探究培优拓展练
(1)将分数化为小数:74= 1.75
(2)将小数化为分数:0.4.=
4 9
,141=
.. 0.36

. 23
,1.53= 15 ;
【点拨】设 0.4.=x,根据题意,得 10x=4+x,解得 x=49.
设 0.03. =x,则 10x=0.3+x,解得 x=310.
所以 1.53. =32+310=2135.
平移表中带阴影的方框,方框中三个数的和可能是( D )
A.2 019
B.2 018
C.2 016
D.2 013
夯实基础逐点练
13.解方程:x-3=-12x-4.
错解:移项,得 x-12x=-4-3.合并同类项,得12x=-7. 系数化为 1,得 x=-14. 诊断:在解方程中移项时,所移的项一定要变号,不管移的项 还是没移的项一律都变号或都不变号,这两种做法都是不正确的. 正解:移项,得 x+12x=-4+3.合并同类项,得32x=-1. 系数化为 1,得 x=-23.
整合方法提升练
16.【2017•安徽】《九章算术》中有一道阐述“盈不足 术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人 数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出8元,还盈余3元; 每人出7元,则还差4元,问共有多少人?这个物品的 价格是多少?请解答上述问题.
探究培优拓展练
.. (3)将小数 1.02 化为分数,并写出推理过程.
.. 解:设 0.02=x,根据题意得 100x=2+x, 解得 x=929. 所以 1.0. 2. =1+929=19091.
探究培优拓展练
18.若新规定这样一种运算法则:a※b=a2+2ab,如

第2课时 利用移项解一元一次方程课件2024-2025学年人教版七年级数学

第2课时 利用移项解一元一次方程课件2024-2025学年人教版七年级数学

溯源
约 820 年,阿拉伯数学家花拉子米著有《代数学》 (又称《还原与对消计算概要》),其中,“还原”指 的是“移项”,“对消”隐含着移项后合并同类项,我国 古代数学著作《九章算术》的“方程”章,更早使用了 “对消”和“还原”的方法.
练 习 【选自教材P124 练习 第1题】
1. 解下列方程:
(1)3x = 4x + 3;
例 题 【教材P123】
例 4 某制药厂制造一批药品,如用旧工艺,则废水排 量要比环保限制的最大量还多 200 t;如用新工艺,则废水 排量比环保限制的最大量少 100 t. 新、旧工艺的废水排量 之比为 2∶5,采用两种工艺的废水排量各是多少?
分析:因为采用新、旧工艺的废水排量之比为 2∶5,所以可设它们分别为 2x t 和 5x t,再根据它们 与环保限制的最大量之间的关系列方程.
3
2
(2)移项,得
11
3 x + 2 x = 4 + 6.
合并同类项,得 5 x = 10.
6
系数化为 1,得 x = 12 .
利用移项解一元一次方程的步骤:
(1)移项:把含未知数的项移到等号一边, 把常数项移到等号另一边;
(2)合并同类项; (3)系数化为 1.
一般把含未知数的项 放等号左边,常数项 放等号右边.
2y = 2 系数化为 1,得
y= 1
1 y3 y6 24
合并同类项,得
1 y6 4
系数化为 1,得
y 24
【选自教材P124 练习 第2题】
2. 解根据本章引言中的问题列出的方程 1.2x + 1 = 0.8x + 3. 1.2x + 1 = 0.8x + 3

人教版数学七年级上册3.2第2课时用移项的方法解一元一次方程2-课件

人教版数学七年级上册3.2第2课时用移项的方法解一元一次方程2-课件
(2)会出现两种移动电话计费方式收费一 样吗?
解:(1)
150分 300分
方式一 95分 140元
方式二 85元 160元
(2)设累计通话t分,则按方式一要收费( 50+0.3t)元,按方式二要收费(10+0.4t).如果两 种移动电话计费方式收费一样,
则 50+0.3t= 10+0.4t 移项,得 0.3t-0.4t=10-50 合并同类项,得 -0.1t=-40. 系数化为1,得 t=400. 由上可知,如果一个月内通话400分,那么两 种计费方式的收费一样.
解:设这三个相邻数中的第1个数为x, 那么第2个数就是-2x, 第3个数就是-2×(-2x)=4x. 根据这三个数的和是1536,得 x-2x+4x=1 536.
合并同类项,得 3x=1 536. 系数化为1,得
x=512. 所以 -2x=-1 024, 4x=2 048. 答:这三个数是512、-1 024、2 048.
归纳总结
移项:把等式一边的某项变号后移到
另一边,叫做移项.
通过移项,含未知数的项与常数 项分别位于方程左右两边,使方程更 接近于x=a的形式.
练习: 1、下面的移项对不对?如果不对,请改正?
(1)从5+2x=10,得2x=10+5 2x=10-5
(2)从3x=2x-5,得3x+2x=5
3x-2x=-5 (3) 从-2x+5=1-3x,得-2x+3x=1+5
3.2解一元一次方程 --合并同类项与移项
第二课时: 用移项的方法解一元一次方程
例1:解方程
(1)5x-3x=-10
解:合并同类项,得 2x=-10 系数化为1,得 x=-5.
2 1x5x7
33
解:合并同类项,得 2x=7

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案

人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。

本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。

教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。

但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。

三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。

2.能够运用移项法解一元一次方程。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。

2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。

五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。

六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。

2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。

示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。

3.操练(10分钟)教师给出一些练习题,让学生独立完成。

教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。

4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。

教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。

5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。

七年级数学上册(人教版)3.2解一元一次方程第2课时移项优秀教学案例

七年级数学上册(人教版)3.2解一元一次方程第2课时移项优秀教学案例
在教学实践中,我发现学生的学习兴趣被充分激发,他们在课堂上积极参与,提出问题和解决问题,对移项概念和技巧的理解更加深入,教学效果显著。
二、教学目标
(一)知识与技能
本节课的知识与技能目标是让学生掌握移项的概念,了解移项在解一元一次方程中的作用,并能够熟练地进行移项操作。在教学过程中,我会通过具体的例子,让学生观察和分析,引导学生发现移项的规律和方法。通过实践活动,让学生亲自动手操作,进一步巩固移项的技巧。同时,我还会设计一些综合性的练习题,让学生在解决实际问题的过程中,灵活运用移项的方法,提高解题能力。
针对这种情况,我制定了本节课的教学目标:通过实例讲解和练习,让学生理解移项的概念,掌握移项的方法和技巧,能够熟练地进行移项操作,并解决实际问题。
在教学过程中,我采用了问题驱动的教学方法,引导学生主动思考,通过合作交流,发现和总结移项的规律。同时,我还运用了多媒体教学手段,以生动形象的动画演示,帮助学生更好地理解和掌握移项技巧。
(二)讲授新知
在学生对移项有了初步理解后,我会进行新知的讲授。我会从理论的角度出发,讲解移项的定义、移项的规则以及移项的方法。在这个过程中,我会用简洁明了的语言阐述移项的原理,同时结合具体的例子,让学生在实践中感受移项的方法和技巧。
例如,我会讲解在移项过程中,如何改变变量的系数、如何处理常数项等。同时,我还会强调移项过程中的注意事项,如变量的符号变化、移项后的方程形式等。通过这些讲解,学生能够系统地掌握移项的方法和技巧。
七年级数学上册(人教版)3.2解一元一次方程第2课时移项优秀教学案例
一、案例背景
本节课是人教版七年级数学上册第3.2节“解一元一次方程”的第2课时,主要内容是移项。在之前的课程中,学生已经学习了方程的概念和一元一次方程的定义,掌握了基本的解题技巧。但是,对于移项这一概念,学生可能存在一定的困惑,不知道如何正确地进行移项操作。

新人教部编版初中七年级数学上册3.2 第2课时 用移项的方法解一元一次方程

新人教部编版初中七年级数学上册3.2 第2课时 用移项的方法解一元一次方程
3 则该同学把 m 看成了( C ) A.3 B.-128 C.8 D.-8
9
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
13.随着某大型文博探索节目的热播,小米对历史文 物产生了浓厚的兴趣.她了解到西周戎生青铜编钟 是由八个大小不同的小编钟组成的(如图),其中最 大编钟的高度比最小编钟高度的 3 倍少 5 cm,且它们的高度相差 37 cm,则最大编钟的高度是
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
11.(2019-2020·青山区期末)定义:“*”运算为“a*b =ab+2a”.若(3*x)+(x*3)=22,则 x 的值为( D ) A.1 B.-1 C.-2 D.2
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
12.(2019-2020·襄州区期末)小明同学在解方程 5x -1=mx+3 时,把数字 m 看错了,解得 x=- 4 ,
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
17.如图所示的数据是小明同学用一些奇数排成的, 你能与小明一起探讨下列问题吗?动手试一试. (1)框中的四个数有什么关系? 解:(1)对角两数的和相等.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
(2)在数阵图中任意画一个类似(1)中的框,设左上角 的一个数为 x,那么其他的三个数怎样表示? (2)右上角、左下角、右下角的三个数分别为 x+2, x+8,x+10.
长冲中学-“四学一测”活力课堂
长冲中学“四学一测”活力课堂
9.甲厂库存钢材 100 吨,每月用去 15 吨;乙厂库存 钢材 82 吨,每月用去 9 吨,经过 x 个月后,两厂剩 下的钢材相等,则 x 等于( B ) A.2 B.3 C.4 D.5

3.2 第2课时 用移项、合并同类项解一元一次方程

3.2 第2课时 用移项、合并同类项解一元一次方程

(8)答:参与种树的人数有______ 6 人.
3.2 解一元一次方程(一)——合并同类项与移项
变式1
y- 6 y+ 6 = 10 12 . 原问题中,若设树苗有y棵,则可列方程____________
变式2
朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还差3
( B )
个,如果每人2个又多2个,则共有小朋友
了(2x-400)件矿泉水,根据总共捐赠2000件,可建立方程.
3.2 解一元一次方程(一)——合并同类项与移项
解:设该企业捐给乙学校的矿泉水是x件,则捐给甲学校的矿泉 水是(2x-400)件,根据题意,得 2x-400+x=2000. 解得x=800,
则捐给甲学校的矿泉水是2x-400=2×800-400=1200(件). 答:该企业捐给甲、乙两所学校的矿泉水分别为1200件和
知识点二
解简单一元一次方程的步骤
(1)________ 移项 ;
(2)________________ ; 合并同类项
(3)____________ 系数化为1 . [点拨] 移项的根据是等式的性质1;合并未知项的根据是乘法
的分配律,合并常数项的根据是加法的法则;系数化为1的根
据是等式的性质2.
3.2 解一元一次方程(一)——合并同类项与移项
活动2 教材导学 用移项、合并同类项解一元一次方程 解下列方程: (1)x-5=7;
解:(1)由 x -5 =7,
(2)4x=3x-4.
(2)由 4x= 3x -4,
两边都加上 5,得 x=7 +5 , 两边都减去 3x,得 4x -3x =-4,
即 x=-4. 即 x=12. 这两小题中方程的变形有什么共同点?
重难互动探究

人教版初中七年级上册数学《3.2 解一元一次方程(一)》课件

人教版初中七年级上册数学《3.2 解一元一次方程(一)》课件

课堂检测
基础巩固题
1. 以下方程合并同类项正确的选项是D 〔 〕 A. 由 3x-x=-1+3,得 2x =4 B. 由 2x+x=-7-4,得 3x =-3 C. 由 15-2=-2x+ x,得 3=x D. 由 6x-2-4x+2=0,得 2x=0
课堂检测
基础巩固题
2. 假如2x与x-3的值互为相反数,那么x等于〔B 〕
〔1〕 -41x5-15 = 9

“-15〞这一项
4x = 9 +15

从方程的左边移到了方程的右边.
“-15〞这项挪动后, 符号由“-〞变“+〞
探究新知
〔2〕 2x = 5x -21.
〔2〕 2x5=x 5x -21 ③
解:两边都减5x,得
2x- 5x = -21 ④
2x-5x= 5x-21 -5x
移项
ax-cx=d-b
合并同类项
〔a-c〕x=d-b
系数化为1
巩固练习
1. 解以下方程:
〔1〕 5x-7=2x-10; 解:移项,得
A.-1 B.1
C.-3
D.3
3. 某中学七年级〔5〕班共有学生56人,该班男生的
人数是女生人数的2倍少1人.设该班有女生有x人, 可列方程为__2_x_-_1_+_x_=_5_6___.
课堂检测
能力提升题
解方程: 〔1〕-3x+0.5x=10.
解:合并同类项得 -2.5x=10,
系数化为1,得 x=-4.
x+2x+14x=25500, 解得x=1500, 那么2x=3000,14x=21000.
答:方案消费Ⅰ型洗衣机1500台,Ⅱ型洗衣机3000台,Ⅲ型 洗衣机21000台.

3.2解一元一次方程-移项(教案)

3.2解一元一次方程-移项(教案)
举例:在方程3x + 4 = 7中,将4移项到等号右边,变为3x = 7 - 4,这一过程就是移项,强调移项时符号的改变。
2.教学难点
-理解移项的数学原理,特别是为何移项时要改变符号,这是学生容易混淆的地方。
-在含有多个项的方程中,正确区分哪些项需要移项,哪些项保持不变。
-对于一些特殊类型的方程,如含有绝对值、分数等,如何应用移项法则。
3.2解一元一次方程-移项(教案)
一、教学内容
本节课选自教材第三章第二节“解一元一次方程-移项”。教学内容主要包括以下两个方面:
1.理解移项的概念及其实质,掌握移项的法则,即同号相加、异号相减。
2.学会运用移项法解一元一次方程,包括简单方程和含有多项式的方程,如ax+b=c、ax+b=cx+d等类型。
三、教学难点与重点
1.教学重点
-理解并掌握移项的概念及实质:即改变等式两边同类项的符号,从等式一边移到另一边。
-学会运用移项法则,包括同号相加、异号相减,解决一元一次方程。
-能够正确识别方程中的未知数、已知数和常数项,并应用移项法求解。
-通过实际例题,强化移项步骤的顺序和规范操作,如先确定移项的方向,再改变符号等。
-设计不同难度的习题,从简单到复杂,逐步引导学生掌握移项的规律。
-通过小组讨论和同伴互助,让学生在交流中澄清疑惑,加深理解。
-结合生活实例,让学生感受数学的实用价值,激发学习兴趣,降低应用题的难度感知。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2解一元一次方程-移项”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平衡收支、调整物品数量等情况?”这个问题与我们将要学习的移项法密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索移项法的奥秘。

人教版数学七年级上册说课稿:3.2《解一元一次方程移项》(第2课时)

人教版数学七年级上册说课稿:3.2《解一元一次方程移项》(第2课时)
2.解释移项法则:通过讲解和示例,让学生掌握移项的符号变化规律,理解移项的原理。
3.逐步引导:从简单到复杂,通过典型例题的讲解,引导学生逐步掌握移项的方法和技巧。
4.互动讨论:组织学生讨论移项过程中的关键步骤和注意事项,加深对知识点的理解。
(三)巩固练习
为帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
2.提出问题:在情境中提出问题,引导学生思考如何解决这一问题,从而引出一元一次方程的移项。
3.引发思考:通过提问方式,让学生回顾一元一次方程的基本概念和解法,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.演示移项过程:利用教具和多媒体资源,直观演示移项的过程,让学生形象地理解移项法则。
3.学会分析问题,找出解题关键,提高解题能力。
过程与方法:
1.通过自主探究、合作交流,培养学生的观察能力和逻辑思维能力;
2.通过典型例题的讲解和练习,让学生掌握解一元一次方程的方法;
3.培养学生分析问题、解决问题的能力。
情感态度与价值观:
1.培养学生对待数学问题的积极态度,增强学习数学的兴趣;
2.培养学生严谨、细心的学习习惯;
4.互动游戏:设计数学游戏,让学生在游戏中运用移项法则,提高课堂趣味性,增强学生的学习积极性。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过讲述一个与移项有关的生活实例,如分配物品的问题,让学生感受到数学在生活中的应用,激发他们的学习兴趣。
人教版数学七年级上册说课稿:3.2《解一元一次方程移项》(第2课时)
一、教材分析

人教版数学七年级上册3.2第2课时用移项的方法解一元一次方程[1]-课件

人教版数学七年级上册3.2第2课时用移项的方法解一元一次方程[1]-课件
移项,得 0.3t- 0.4t =10-50.
合并同类项,得 -0.1t =-40. 系数化为1,得 t =400. 答:一个月内通话400分钟时,两种计费方式的
移项的依据及注意事项 移项实际上是利用等式的性质1. 注意:移项一定要变号
小试牛刀
1.下列方程的变形,属于移项的是( D )
A.由 -3x=24得x=-8 B.由 3x+6-2x=8 得 3x-2x+6=8 C.由4x+5=0 得-4x-5=0 D.由2x+1=0得 2x=-1
易错提醒: 移项是方程中的某 一项从方程的一边 移到另一边,不要 将其与加法的交换 律或等式的性质2弄 混淆.
程解决实际问题.(难点)
导入新课
情境引入
约公元825年,中亚细亚数学家阿 尔—花拉子米写了一本代数书, 重点论述怎样解方程.这本书的拉 丁译本取名为《对消与还原》.
对消,顾名思义,就是将方程中
各项成对消除的意思.相当于现
代解方程中的“合并同类项”. “还原”是什么意思呢?
阿尔—花拉子米,乌兹别克 族著名数学家、天文学家、 地理学家.代数与算术的整 理者,被誉为“代数之父”.
解:若设新工艺的废水排量为2x t,则旧工艺的 废水排量为5x t.由题意得
5x-200=2x+100, 移项,得5x-2x=100+200,
合并同类项,得3x=300,
系数化为1,得x=100,
所以2x=200,5x=500. 答:新工艺的废水排量为 200 t,旧工艺的废水 排量为 500 t.
x=-4.
二 列方程解决问题
例2 某制药厂制造一批药品,如果用旧工艺,则 废水排量要比环保限制的最大量还多200 t;如果 用新工艺,则废水排量要比环保限制的最大量少 100 t.新旧工艺的废水排量之比为2:5,两种工艺的 废水排量各是多少?

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档