图形的相似易错题汇编及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴△DCE∽△DAC,
∴ ,即 ,
解得,AD=8,
∴AE=AD DE=8 2=6,
故选:C.
【点睛】
本题考查的是相似三角形的判定和性质、圆周角定理,掌握相似三角形的判定定理和性质定理是解题的关键.
10.在平面直角坐标系中,把△ABC的各顶点的横坐标都除以 ,纵坐标都乘 ,得到△DEF,把△DEF与△ABC相比,下列说法中正确的是()
【详解】
解:如图所示:
∵在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,
∴CD= AB=AD=4,
∴∠A=∠ACD,
∵EF垂直平分CD,
∴CE= CD=2,∠CEF=∠CEG=90°,
∴tan∠ACD= =tanA=y,
∵∠ACD+∠FCE=∠CFE+∠FCE=90°,
∴∠ACD=∠FCE,
图形的相似易错题汇编及答案
一、选择题
1.如图, 是 的中点,将面积为 的菱形 沿 方向平移 长度得到菱形 ,则图中阴影部分的面积是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据题意得,▱ABCD∽▱OECF,且AO=OC= ,故四边形OECF的面积是▱ABCD面积的
【详解】
解:如图,
由平移的性质得,▱ABCD∽▱OECF,且AO=OC=
由勾股定理得:EG2=BE2+BG2,
即:( a+x)2=( a)2+(a-x)2解得:x=
∴BG=2AG,
故②正确;
∵BE=EF,
∴△BEF是等腰三角形,易知△GED不是等腰三角形,
∴△EBF与△DEG不相似,
故③错误;来自百度文库
连接CF,
∵BE=CE,
∴BE= BC,
∴S△BFC=2S△BEF.
故④错误,
13.如图,在 中, , 则 的长为()
A. B.
C. D.
【答案】D
【解析】
【分析】
先利用相似三角形的相似比证明点D是AB的中点,再解直角三角形求得AB,最后利用直角三角形斜边中线性质求出DF.
【详解】
解:∵ ,
∴ ,
∵ ,
∴点D是AB的中点,
∵ , ,
∴∠B=30°,
∴ ,
∴DF=3,
故选:D.
故选D
【点睛】
该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.
4.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()
【详解】
解:如图,由折叠和正方形性质可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
,
∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形ABCD的边长为a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= a
∴GE= a+x
【点睛】
此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.
14.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PM•PA=3PD2,其中正确的是( )
故选:C.
【点睛】
本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.
9.如图, 为 的直径, 为 上一点,弦 平分 ,交弦 于点 , , ,则 的长为()
A.2B.4C.6D.8
【答案】C
综上可知正确的结论的是2个.
故选:B.
【点睛】
本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.
7.如图,将 沿 边上的中线 平移到 的位置.已知 的面积为16,阴影部分三角形的面积9.若 ,则 等于()
A.2B.3C.4D.
A.3:4B.9:16C.9:1D.3:1
【答案】B
【解析】
【分析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:16.
故选B.
3.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数 、 的图象交于B、A两点,则∠OAB大小的变化趋势为()
A.逐渐变小B.逐渐变大C.时大时小D.保持不变
【答案】D
【解析】
【分析】
如图,作辅助线;首先证明△BEO∽△OFA,,得到 ;设B为(a, ),A为(b, ),得到OE=-a,EB= ,OF=b,AF= ,进而得到 ,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB= 为定值,即可解决问题.
A. B. C. D.
【答案】C
【解析】
【分析】
连接OE、OF、OC,利用切线长定理和切线的性质求出∠OCF=∠FOE,证明△EOF∽△ECO,利用相似三角形的性质即可解答.
【详解】
解:连接OE、OF、OC.
∵AD、CF、CB都与⊙O相切,
∴CE=CB;OE⊥CF;FO平分∠AFC,CO平分∠BCF.
∴∠BED=90°=∠CBA,
∵∠BAC=∠EDB,
∴△ABC∽△DEB,
∴ ,
∴ ,
∴DB= ,
在Rt△ABD中,AD= ,
故选:D.
【点睛】
此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.
12.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则 =()
故四边形OECF的面积是▱ABCD面积
即图中阴影部分的面积为4cm2.
故选:C
【点睛】
此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.
2.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()
【解析】
【分析】
根据角平分线的定义得到∠CAD=∠BAD,根据圆周角定理得到∠DCB=∠BAD,证明△DCE∽△DAC,根据相似三角形的性质求出AD,结合图形计算,得到答案.
【详解】
解:∵AD平分∠BAC,
∴∠CAD=∠BAD,
由圆周角定理得,∠DCB=∠BAD,
∴∠CAD=∠DCB,又∠D=∠D,
【答案】B
【解析】
【分析】
由S△ABC=16、S△A′EF=9且AD为BC边的中线知 , ,根据△DA′E∽△DAB知 ,据此求解可得.
【详解】
、 ,且 为 边的中线,
, ,
将 沿 边上的中线 平移得到 ,
,
,
则 ,即 ,
解得 或 (舍),
故选: .
【点睛】
本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的
∴△CEG∽△FEC,
∴ = ,
∴y= ,
∴y2= ,
∴ =FE2,
∵FE2=CF2﹣CE2=x2﹣4,
∴ =x2﹣4,
∴ +4=x2,
故选:A.
【点睛】
本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
【分析】
根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP≌△ECP,由相似三角形的性质得到AD=CE,作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质得到 ,得到BP=3PK,故③错误;作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN= ,故②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD2,故④正确.
∵AF∥BC,
∴∠AFC+∠BCF=180°,
∴∠OFC+∠OCF=90°,
∵∠OFC+∠FOE=90°,
∴∠OCF=∠FOE,
∴△EOF∽△ECO,
∴ ,即OE2=EF•EC.
设正方形边长为a,则OE= a,CE=a.
∴EF= a.
∴ = .
故选:C.
【点睛】
本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..
性质、相似三角形的判定与性质等知识点.
8.如图, 是平行四边形 的对角线交点, 为 中点, 交 于点 ,若平行四边形 的面积为 ,则 的面积是()
A. B. C. D.
【答案】C
【解析】
【分析】
由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.
【详解】
解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,
则△BEO∽△OFA,
∴ ,
设点B为(a, ),A为(b, ),
则OE=-a,EB= ,OF=b,AF= ,
可代入比例式求得 ,即 ,
根据勾股定理可得:OB= ,OA= ,
∴tan∠OAB= = =
∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.
A. B. C. D.
【答案】A
【解析】
【分析】
由直角三角形斜边上的中线性质得出CD= AB=AD=4,由等腰三角形的性质得出∠A=∠ACD,得出tan∠ACD= =tanA=y,证明△CEG∽△FEC,得出 ,得出y= ,求出y2= ,得出 =FE2,再由勾股定理得出FE2=CF2﹣CE2=x2﹣4,即可得出答案.
6.如图,正方形 中,点 在边 上, ,将 沿 对折至 ,延长 交边 于点 ,连接 , .给出以下结论:① ;② ;③ ;④ .其中所有正确结论的个数是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG,可判断①的正误;设正方形ABCD的边长为a,AG=FG=x,BG=a−x,根据勾股定理得到x= a,得到BG=2AG,故②正确;根据已知条件得到△BEF是等腰三角形,易知△GED不是等腰三角形,于是得到△EBF与△DEG不相似,故③错误;连接CF,根据三角形的面积公式得到S△BFC=2S△BEF.故④错误.
11.如图,在四边形 中, ,连接 ,以 为直径的圆交 于点 .若 ,则 的长为( )
A. B. C. D.
【答案】D
【解析】
【分析】
先判断出△ABC与△DBE相似,求出BD,最后用勾股定理即可得出结论.
【详解】
如图1,
在Rt△ABC中,AB=5,BC=10,
∴AC= ,
连接BE,
∵BD是圆的直径,
A.横向扩大为原来的4倍,纵向缩小为原来的
B.横向缩小为原来的 ,纵向扩大为原来的3倍
C.△DEF的面积为△ABC面积的12倍
D.△DEF的面积为△ABC面积的
【答案】A
【解析】
【分析】
【详解】
解:△DEF与△ABC相比,横向扩大为原来的4倍,纵向缩小为原来的 ;△DEF的面积为△ABC面积的 ,
故选A.
5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为( )
A.(8,6)B.(9,6)C. D.(10,6)
【答案】B
【解析】
【分析】
直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.
【详解】
解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,
∴ ,
∵BC=2,
∴EF=BE=6,
∵BC∥EF,
∴△OBC∽△OEF,
∴ ,
解得:OB=3,
∴EO=9,
∴F点坐标为:(9,6),
故选:B.
【点睛】
此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.
【详解】
解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,
∴EM:AN=BE:AB,
∵ 为 中点,
∴BE= AB,
∴EM= AN,
∵平行四边形ABCD的面积为8,
∴2× ×AN×BD=8,
∴AN×BD=8
∴S△OED= ×OD×EM= × BD× AN= AN×BD=1.
∴ ,即 ,
解得,AD=8,
∴AE=AD DE=8 2=6,
故选:C.
【点睛】
本题考查的是相似三角形的判定和性质、圆周角定理,掌握相似三角形的判定定理和性质定理是解题的关键.
10.在平面直角坐标系中,把△ABC的各顶点的横坐标都除以 ,纵坐标都乘 ,得到△DEF,把△DEF与△ABC相比,下列说法中正确的是()
【详解】
解:如图所示:
∵在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,
∴CD= AB=AD=4,
∴∠A=∠ACD,
∵EF垂直平分CD,
∴CE= CD=2,∠CEF=∠CEG=90°,
∴tan∠ACD= =tanA=y,
∵∠ACD+∠FCE=∠CFE+∠FCE=90°,
∴∠ACD=∠FCE,
图形的相似易错题汇编及答案
一、选择题
1.如图, 是 的中点,将面积为 的菱形 沿 方向平移 长度得到菱形 ,则图中阴影部分的面积是()
A. B. C. D.
【答案】C
【解析】
【分析】
根据题意得,▱ABCD∽▱OECF,且AO=OC= ,故四边形OECF的面积是▱ABCD面积的
【详解】
解:如图,
由平移的性质得,▱ABCD∽▱OECF,且AO=OC=
由勾股定理得:EG2=BE2+BG2,
即:( a+x)2=( a)2+(a-x)2解得:x=
∴BG=2AG,
故②正确;
∵BE=EF,
∴△BEF是等腰三角形,易知△GED不是等腰三角形,
∴△EBF与△DEG不相似,
故③错误;来自百度文库
连接CF,
∵BE=CE,
∴BE= BC,
∴S△BFC=2S△BEF.
故④错误,
13.如图,在 中, , 则 的长为()
A. B.
C. D.
【答案】D
【解析】
【分析】
先利用相似三角形的相似比证明点D是AB的中点,再解直角三角形求得AB,最后利用直角三角形斜边中线性质求出DF.
【详解】
解:∵ ,
∴ ,
∵ ,
∴点D是AB的中点,
∵ , ,
∴∠B=30°,
∴ ,
∴DF=3,
故选:D.
故选D
【点睛】
该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.
4.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()
【详解】
解:如图,由折叠和正方形性质可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
在Rt△ADG和Rt△FDG中,
,
∴Rt△ADG≌Rt△FDG(HL),故①正确;
设正方形ABCD的边长为a,AG=FG=x,BG=a−x,
∵BE=EC,
∴EF=CE=BE= a
∴GE= a+x
【点睛】
此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.
14.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PM•PA=3PD2,其中正确的是( )
故选:C.
【点睛】
本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.
9.如图, 为 的直径, 为 上一点,弦 平分 ,交弦 于点 , , ,则 的长为()
A.2B.4C.6D.8
【答案】C
综上可知正确的结论的是2个.
故选:B.
【点睛】
本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.
7.如图,将 沿 边上的中线 平移到 的位置.已知 的面积为16,阴影部分三角形的面积9.若 ,则 等于()
A.2B.3C.4D.
A.3:4B.9:16C.9:1D.3:1
【答案】B
【解析】
【分析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:16.
故选B.
3.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数 、 的图象交于B、A两点,则∠OAB大小的变化趋势为()
A.逐渐变小B.逐渐变大C.时大时小D.保持不变
【答案】D
【解析】
【分析】
如图,作辅助线;首先证明△BEO∽△OFA,,得到 ;设B为(a, ),A为(b, ),得到OE=-a,EB= ,OF=b,AF= ,进而得到 ,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB= 为定值,即可解决问题.
A. B. C. D.
【答案】C
【解析】
【分析】
连接OE、OF、OC,利用切线长定理和切线的性质求出∠OCF=∠FOE,证明△EOF∽△ECO,利用相似三角形的性质即可解答.
【详解】
解:连接OE、OF、OC.
∵AD、CF、CB都与⊙O相切,
∴CE=CB;OE⊥CF;FO平分∠AFC,CO平分∠BCF.
∴∠BED=90°=∠CBA,
∵∠BAC=∠EDB,
∴△ABC∽△DEB,
∴ ,
∴ ,
∴DB= ,
在Rt△ABD中,AD= ,
故选:D.
【点睛】
此题考查勾股定理,相似三角形的判定和性质,正确作出辅助线是解题的关键.
12.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则 =()
故四边形OECF的面积是▱ABCD面积
即图中阴影部分的面积为4cm2.
故选:C
【点睛】
此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是应用相似多边形的性质解答问题.
2.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()
【解析】
【分析】
根据角平分线的定义得到∠CAD=∠BAD,根据圆周角定理得到∠DCB=∠BAD,证明△DCE∽△DAC,根据相似三角形的性质求出AD,结合图形计算,得到答案.
【详解】
解:∵AD平分∠BAC,
∴∠CAD=∠BAD,
由圆周角定理得,∠DCB=∠BAD,
∴∠CAD=∠DCB,又∠D=∠D,
【答案】B
【解析】
【分析】
由S△ABC=16、S△A′EF=9且AD为BC边的中线知 , ,根据△DA′E∽△DAB知 ,据此求解可得.
【详解】
、 ,且 为 边的中线,
, ,
将 沿 边上的中线 平移得到 ,
,
,
则 ,即 ,
解得 或 (舍),
故选: .
【点睛】
本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的
∴△CEG∽△FEC,
∴ = ,
∴y= ,
∴y2= ,
∴ =FE2,
∵FE2=CF2﹣CE2=x2﹣4,
∴ =x2﹣4,
∴ +4=x2,
故选:A.
【点睛】
本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解析】
【分析】
根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP≌△ECP,由相似三角形的性质得到AD=CE,作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质得到 ,得到BP=3PK,故③错误;作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN= ,故②正确;然后根据射影定理和三角函数即可得到PM•PA=3PD2,故④正确.
∵AF∥BC,
∴∠AFC+∠BCF=180°,
∴∠OFC+∠OCF=90°,
∵∠OFC+∠FOE=90°,
∴∠OCF=∠FOE,
∴△EOF∽△ECO,
∴ ,即OE2=EF•EC.
设正方形边长为a,则OE= a,CE=a.
∴EF= a.
∴ = .
故选:C.
【点睛】
本题考查切线的性质、切线长定理、相似三角形的判定与性质,其中通过作辅助线构造相似三角形是解答本题的关键..
性质、相似三角形的判定与性质等知识点.
8.如图, 是平行四边形 的对角线交点, 为 中点, 交 于点 ,若平行四边形 的面积为 ,则 的面积是()
A. B. C. D.
【答案】C
【解析】
【分析】
由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.
【详解】
解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,
则△BEO∽△OFA,
∴ ,
设点B为(a, ),A为(b, ),
则OE=-a,EB= ,OF=b,AF= ,
可代入比例式求得 ,即 ,
根据勾股定理可得:OB= ,OA= ,
∴tan∠OAB= = =
∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.
A. B. C. D.
【答案】A
【解析】
【分析】
由直角三角形斜边上的中线性质得出CD= AB=AD=4,由等腰三角形的性质得出∠A=∠ACD,得出tan∠ACD= =tanA=y,证明△CEG∽△FEC,得出 ,得出y= ,求出y2= ,得出 =FE2,再由勾股定理得出FE2=CF2﹣CE2=x2﹣4,即可得出答案.
6.如图,正方形 中,点 在边 上, ,将 沿 对折至 ,延长 交边 于点 ,连接 , .给出以下结论:① ;② ;③ ;④ .其中所有正确结论的个数是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG,可判断①的正误;设正方形ABCD的边长为a,AG=FG=x,BG=a−x,根据勾股定理得到x= a,得到BG=2AG,故②正确;根据已知条件得到△BEF是等腰三角形,易知△GED不是等腰三角形,于是得到△EBF与△DEG不相似,故③错误;连接CF,根据三角形的面积公式得到S△BFC=2S△BEF.故④错误.
11.如图,在四边形 中, ,连接 ,以 为直径的圆交 于点 .若 ,则 的长为( )
A. B. C. D.
【答案】D
【解析】
【分析】
先判断出△ABC与△DBE相似,求出BD,最后用勾股定理即可得出结论.
【详解】
如图1,
在Rt△ABC中,AB=5,BC=10,
∴AC= ,
连接BE,
∵BD是圆的直径,
A.横向扩大为原来的4倍,纵向缩小为原来的
B.横向缩小为原来的 ,纵向扩大为原来的3倍
C.△DEF的面积为△ABC面积的12倍
D.△DEF的面积为△ABC面积的
【答案】A
【解析】
【分析】
【详解】
解:△DEF与△ABC相比,横向扩大为原来的4倍,纵向缩小为原来的 ;△DEF的面积为△ABC面积的 ,
故选A.
5.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为( )
A.(8,6)B.(9,6)C. D.(10,6)
【答案】B
【解析】
【分析】
直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.
【详解】
解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为 ,
∴ ,
∵BC=2,
∴EF=BE=6,
∵BC∥EF,
∴△OBC∽△OEF,
∴ ,
解得:OB=3,
∴EO=9,
∴F点坐标为:(9,6),
故选:B.
【点睛】
此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.
【详解】
解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,
∴EM:AN=BE:AB,
∵ 为 中点,
∴BE= AB,
∴EM= AN,
∵平行四边形ABCD的面积为8,
∴2× ×AN×BD=8,
∴AN×BD=8
∴S△OED= ×OD×EM= × BD× AN= AN×BD=1.