§2动能势能动能定理
动能与势能相互转化
1、 在距离地面20m高处以15m/s的初速度 水平抛出一小球,不计空气阻力,取g= 10m/s2,求小球落地速度大小? 答案:25m/s
2 、如图所示,在竖直平面内有一段四分 之一圆弧轨道,半径OA在水平方向,一个质量 为m的小球从顶端A点由静止开始下滑,不计摩 擦,求小球到达轨道底端 B 点时小球对轨道压 力的大小为多少? 答案:3mg
重力势能相互转化,但 总量保持不变
(2)、动能与弹性势能的相互转化
实验探究
1 、运动中小球动能和势能如何 变化? 2、上述实验现象说明了什么? 结论:运动中动能与
弹性势能相互转化,但 总量保持不变
二、机械能守恒定律
如图,质量为m的物体在空中做平抛运动,在高度h1的A处 时速度为v1,在高度为h2的B处速度为v2。
E E
Ek 2 Βιβλιοθήκη p 2 Ek1 E p1
a、
1 1 2 2 mv2 mgh2 mv1 mgh1 2 2
意义:系统的初、末状态的机械能守恒,运用时必须 选取参考平面,把初末状态的重力势能正负表示清楚
B、
EP减 Ek增
E E E E
P1 P2 K2
K1
意义:系统减少(增加)的重力势能等于系统 增加(减少)的动能,运用时无需选取参考 平面,只需判断运动过程中系统的重力势能 的变化
C、
EA减 EB增
意义:A物体减少的机械能等于B物体增 加的机械能,运用时无需选取参考平面
机械能守恒定律的守恒条件
机 械 能 守 恒 定 律
只有重力(弹力)做功包括: ①只受重力(或系统内的弹力),不受其 他力(如所有做抛体运动的物体,不计阻力)。 ②还有其它力,但其它力都不做功或其他 力做功代数和时刻为零(只有重力和系统内部 的弹力做功) 。
大学物理-动能定理
4. 势能曲线
Ep (h)
E
Eh
Ep
o
H H h
重力势能
Ep
E
o
Ek
Ep
3-4 动能定理
Ep (x)
AE
B
Ek
Ep
o
x
弹性势能
Ek 0
x
引力势能
26
势能曲线的作用:
3-4 动能定理
(1)根据势能曲线的形状可以讨论物体的运动。
(2)利用势能曲线,可以判断物体在各个位置 所受保守力的大小和方向。
力提供园周运动的向心力而不做功,摩擦力做负
功使滑块动能减少。
W
1 mv2 2
1 2
mv0
2
(1)
34
3-4 动能定理
v2 N m
(2)
R
N m dv
(3)
dt
将式(2)代入式(3),整理变形为
v2 dv dv d v dv R dt dt d R d
分离变量并积分,得
做功,它们所做元功之和为
dA fij dri f ji drj
因
fij f ji
mi
drji
dri
rij
rij drij
所以
fij
dA fij (dri drj ) fij drij
f ji m j drj
讨论:内力做功的特点
14
成对力的功
对它所作的功为零.
非保守力:力所作的功与路径有关. (例如摩擦力)
23
3. 势能
3-4 动能定理
必修2 动能定理
平抛运动
第二步:抓好关键点,找出突破口
小物块能通过“8”字轨道最高点 D 点的临界速度为 vD=0,A 到 D,由动能定理求初速度的最小值;A
至 J 由动能定理求出小物块通过 J 点的速度,再由平抛运动的规律求落地点到 J 点正下方的水平距离; 分析两种情况:①小物块恰过“0”字最高点 G,由重力提供向心力。小物块 A 至 G 由动能定理列式, 求出“0”字轨道半径 R′。 ②小物块恰到达“0”字轨道半径高度时速度为零,运用动能定理求出“0”字轨道半径 R′,再得到“0”字 轨道半径 R′的范围。
A.W1>W2,F=2Ff C.P1<P2,F>2Ff
B.W1=W2,F>2Ff D.P1=P2,F=2Ff
2.如图 9 甲所示,一质量为 4 kg 的物体静止在水平地面上,让物体在随位移均匀减小的水平推力 F 作用下开始运动,推力 F 随位移 x 变化的关系如图乙所示,已知物体与地面间的动摩擦因数μ=0.5, (取 g=10 m/s2),则下列说法正确的是( )
应用动能定理解题的基本思路
1.如图 5 所示,质量为 m 的小球,从离地面 H 高处从静止开始释放,落到地面后继续陷入泥中 h 深 度而停止,设小球受到空气阻力为 f,重力加速度为 g,则下列说法正确的是( ) A.小球落地时动能等于 mgH B.小球陷入泥中的过程中克服泥的阻力所做的功小于刚落到地面时的动能 C.整个过程中小球克服阻力做的功等于 mg(H+h) D.小球在泥土中受到的平均阻力为 mg(1+H)
科学思维——动能定理的综合应用 物理计算题历来是高考拉分题,试题综合性强,涉及物理过程较多,所给物理情境较复杂,物理模型 较模糊甚至很隐蔽,运用的物理规律也较多,对考生的各项能力要求很高,为了在物理计算题上得到 理想的分值,应做到细心审题、用心析题、规范答题。 【例】 (2018·3 月浙江温州选考适应性考试)如图 11 所示,某玩具厂设计出一个“2018”字型的竖直 模型玩具,固定在足够长的水平地面上,四个数字等高,“2”字和“8”字用内壁光滑的薄壁细圆管弯成, 过“2”字出口 H 点的竖直虚线与“2”字上半圆相切,“0”字是半径为 R 的单层光滑圆轨道,“1”字是高度 为 2R 的具有左右两条通道的光滑竖直细管道,所有轨道转角及连接处均平滑,H、F、B、C 间的距 离分别为 3R、3R、2R。一小物块(可视为质点)分别从“1”字轨道 A 端的左、右两侧通道进入模型开始 运动,小物块与 FB、BC 段轨道的动摩擦因数μ1=0.4,与 HF 段轨道的动摩擦因数μ2=0.15,已知 R =1 m。
动能和动能定理
2
1 2
Ekt mvt
2
W合
由动能定理
1 2 1 2
W合外力 mvt mv0
2
2
应用动能定理
得:
课堂小结
一、动能的表达式 Ek = mv2
1.标量:动能总是正值
2.相对性:相对于地面的速度
3.与速度关系:
(1)数值关系:
(2)瞬时关系:
(3)变化关系:
弹力做功WF
弹性势能kx2/2
?力做功 W
动能表达式?
【情景1】光滑水平面上,质量为m的物体,在与运动方向相同
的恒力F 的作用下发生一段位移l,速度由v1增加到v2。试求这
个过程中力F做的功。
【解析】根据牛顿第二定律有: F=ma
v22 - v12
速度与位移的关系式: l
2a
2
2
2
1
v -v
例:从高为h的山崖上,以
初速度V0抛出一石块,抛出
的速度方向与水平方向之间
的夹角为θ,不计空气阻力。
求石块落到地面上时的速度
大小。
答案: V V0 2 2 gh
动能定理的解题思路
选择研究对象
确定研究过程
确定
过程初末状态动能
受力分析
求合外力的总功
教材 第88页
解:以______为研究过程
1 2
④匀速圆周运动的动能变化吗?
一、动能的表达式
1.定义:物体由于运动而具有的能量叫作动能
E
=
mv2
2.表达式: k
3.单位:焦耳
1kg·m2/s2=1N·m=1J
如图小球碰墙后以原速率反弹 ,
动力学中的动能定理与势能定理
动力学中的动能定理与势能定理在动力学中,动能定理和势能定理是两个重要的物理定理,它们揭示了物体在不同力场中运动时的能量变化规律。
动能定理描述了物体动能的变化与物体所受力之间的关系,而势能定理则说明了物体在势能变化时所受力的大小。
本文将详细介绍这两个定理的含义和应用。
1. 动能定理动能定理是描述物体动能变化的定理,它表明物体所受的合外力所做的功等于物体动能的增量。
设物体质量为m,初始速度为v1,末速度为v2,根据动能定理可得:[公式]其中K1和K2分别表示初始和末态的动能。
根据动能定理,当物体所受的合外力做功时,物体的动能会发生变化。
动能定理的应用非常广泛,其中一个重要的应用是运动力学中动量定理的推导。
通过将动能定理与牛顿第二定律结合可以得到动量定理:[公式]其中F是物体所受的合外力,dp/dt是物体的动量变化率。
2. 势能定理势能定理是描述物体势能变化的定理,它表明物体在势能发生变化时所受的力的大小等于势能的变化率。
对于某个力场中的物体,在两个位置A和B之间势能的变化为∆U,根据势能定理可得:[公式]其中W_AB是对物体施加力的功,U_A和U_B分别表示位置A和位置B处的势能。
势能定理可以帮助我们理解力场对物体的作用。
在重力场中,物体从高处下落时,势能逐渐转化为动能,因此物体会加速下落。
同样地,在弹簧振子中,势能也会转化为动能,并在运动的过程中不断变化。
总结:动能定理和势能定理是研究物体在力场中运动时能量变化的重要定理。
动能定理表明物体所受的合外力做功等于物体动能的增量,而势能定理则说明物体在势能变化时所受力的大小。
这两个定理在物理学的研究和应用中发挥着重要的作用,帮助我们理解和分析物体的运动过程。
注:本文水平有限,仅提供基本的介绍和解释。
如需深入了解动力学中的动能定理与势能定理,请参考相关教材或专业资料。
动能定理与势能
动能定理与势能动能定理和势能是物理学中关于物体运动的两个重要概念。
本文将逐一介绍动能定理和势能的定义、原理及其应用。
动能定理动能定理是描述物体运动能量变化的一个基本原理。
它表明物体的动能与物体所受力之间存在着一定的关系。
动能定理可以用数学公式表示为:动能定理公式:K = 1/2 mv²其中,K代表物体的动能,m代表物体的质量,v代表物体的速度。
动能定理的基本原理是,当一个物体在运动过程中受到合力F作用,物体的速度将会发生改变,从而导致动能的变化。
如果合力F与物体的速度方向一致,物体的速度将增加,动能也将增加;如果合力F与物体的速度方向相反,物体的速度将减小,动能也将减小。
动能定理的应用非常广泛。
在机械领域中,它可以用来计算物体的机械能,从而分析物体的运动状态。
在运动学中,动能定理可以用来计算物体在不同速度下的动能变化情况。
在动力学中,动能定理可以用来分析物体在受力作用下的加速度和速度变化情况。
势能势能是物体由于其位置或状态而具有的能量。
势能可以分为多种类型,如重力势能、弹性势能、化学势能等。
本文将以重力势能为例进行介绍。
重力势能是物体在地球表面上的高度位置所具有的势能。
它可以用数学公式表示为:重力势能公式:E = mgh其中,E代表物体的重力势能,m代表物体的质量,g代表重力加速度,h代表物体的高度。
重力势能的基本原理是物体在高处具有较大的势能,当物体下落时,其重力势能将会转化为动能。
这个过程通常被称为势能转化为动能。
同样地,当物体上升时,动能将会转化为势能。
重力势能的应用广泛。
在日常生活中,我们可以根据物体的质量、高度和重力加速度来计算物体的重力势能,进而分析物体的动能和势能的转化情况。
在工程领域中,重力势能的概念与应用也是不可或缺的。
结论动能定理和势能是描述物体运动能量变化的两个重要概念。
动能定理通过描述物体的动能与所受力之间的关系,揭示了物体在运动中能量转化的规律。
而势能则描述了物体由于其位置或状态而具有的能量。
工程力学课件(动能定理)全
重力的功只与始、末位置有关,与路径无关。
得
几种常见力的功
2、弹性力的功
弹簧刚度系数k(N/m)
弹性力
弹性力的功为
因
式中
得
即
弹性力的功也与路径无关
3. 定轴转动刚物体上作用力的功
则
若 常量
由
得
从角 转动到角 过程中力 的功为
§13-2 质点和质点系的动能
2、质点系的动能
由
得
取杆平衡位置为零势能位置:
即
3. 机械能守恒定律
由
即:质点系仅在有势力作用下运动时,机械能守恒.此类系统称保守系统
及
得
质点系在势力场中运动,有势力功为
M0
M1
M2
例:已知:重物m=250kg, 以v=0.5m/s匀速下降,钢索 k=3.35× N/m .
求:圆心C无初速度由最低点到达最高点时,O处约束力
解:
得
例 均质杆AB,l, m,初始铅直静止,无摩擦
求:1.B端未脱离墙时,摆至θ角位 置时的 , ,FBx ,FBy
2. B端脱离瞬间的θ1
3.杆着地时的vC及 2
解:(1)
(2) 脱离瞬间时
(3) 脱离后,水平动量守恒,脱离瞬时
例:已知 轮I :r, m1; 轮III :r,m3; 轮II :R=2r, m2;压力角(即齿轮间作用力与图中两圆切线间的夹角)为20度,物块:m;摩擦力不计.
求:O1 O2处的约束力.
其中
解:
利用
其中
研究 I 轮
压力角为
研究物块A
研究II轮
例9:已知,m,R, k, CA=2R为弹簧原长,M为常力偶.
1、质点的动能
动能势能动能定理
图5-2-5
热点三 用动能定理求变力的功
【例3】用汽车从井下提重物,重物质量为m,定滑轮高为H,如图5-2-6所示,已知 汽车由A点静止开始运动至B点时的速度为v,此时轻绳与竖直方向夹角为θ。 这一过程中轻绳的拉力做功多大?
【答案】 mgH1 cocsos1 2mv2sin2
【解析】绳对重物的拉力为变力,应用动能定理列方程。 以 绳重 方物 向由h为 的=图研 分H5/究 速-c2o对 度-6s象 相θ所-: 同示H③,W,则T重-mv物mg的=hv末=s1i速n/θ2度②mvmvm与2汽①车在B点的速度v沿图5-2-6
η=1.8×108 kW·h/(2.4×108 kW·h)×100%=75%,故C正确;该
图5-2-2
水电站能用于发电的水的重力势能为水库中的水的重力mg与其“重心”(即在水面下d/2处)下降高度的
乘积即Ep=mg(H-d/2)=ρVg(H-d/2),故A错,B对;由于年发电量为1.8×108 kW·h,故每天发电量 为1.8×108 kW·h/365=4.93×105 kW·h,可见能供约5 h,故D错。
要点二 动能定理的应用
1.用动能定理解题的步骤 (1)选取研究对象,明确分析运动过程。 (2)分析受力及各力做功的情况,求出总功;也可由动能的变化求总功。 (3)明确过程始、末状态的动能Ek1及Ek2。 (4)列方程W=Ek2-Ek1,必要时注意分析题目潜在的条件,列辅助方程进行求解。 2.应用动能定理要注意的几个问题 (1)正确分析物体受力,要考虑物体受到的所有力,包括重力。 (2)要弄清各力做功情况,计算时应把已知功的正、负代入动能定理表达式。 (3)有些力在物体运动全过程中不是始终存在,导致物体的运动包括几个物理过程, 物体运动状态、受力情况均发生变化,因而在考虑外力做功时,必须根据不同情况分别 对待。 3.应用动能定理解题的优越性 应用动能定理解题时,在分析过程的基础上无需深究物体运动过程中状态变化的 细节,只需考虑整个过程的功及过程始末的动能。若过程包含了几个运动性质不同的分 过程,既可分段考虑,也可对整个过程考虑。但求功时,有些力不是全过程都作用的, 必须根据不同的情况分别对待求出总功,计算时要把各力的功连同符号(正负)一同代入 公式。
【高中物理】动能定理
湛江市二中物理
组
、3
一、动能EK 1.定义:物体由于运动而具有的能叫动能, 2.公式:Ek=1/2mv2,单位:J. 3.动能是标量,是状态量,V 4.动能的变化△Ek=1/2mVt2-1/2mV02. △Ek>0, 表示物体的动能增加; △Ek<0,表示物体的 动能减少.
二、动能定理
我们在处理问题时可以从能量变化来求功,也可以从物体做功的多少来求能量的变化.
P初
P末,
力做功等于重力势能的增加量W =ΔE =E -E 动能是标量,是状态量,V是瞬时速度。
(2)动能定理适用于单个物体,也适用于系统; 外力对物体做的总功为正功,则物体的动能增加;
克
P增 P末 P
初应用:利用动能定理求变力的功
(3)应用动能定理解题,一般比牛顿第二定律解题要简便. 一般牵扯到力与位移关系的题目中,优先考虑使用动能 定理
3.应用动能定理解题的基本步骤: (1) (2)分析研究对象的受力情况和各个力的做功情 况:受哪些力?每个力是否做功,做正功还ห้องสมุดไป่ตู้做 负功?做多少功?然后求各个力做功的代数和. (3)明确物体在过程的始未状态的动能EK0和EKt (4)列出动能的方程W合=EKt-EK0,及其他必要辅 助方程,进行求解.
P91 题型二
4、使用动能定理应注意的问题:
①物体动能的变化是由于外力对物体做功 引起的.外力对物体做的总功为正功,则 物体的动能增加;反之将减小.外力对物 体所做的总功,应为所有外力做功的代数 和,包含重力.
②有些力在物体运动全过程中不是始终存在的, 若物体运动过程中包含几个物理过程,物体运动 状态、受力等情况均发生变化,因而在考虑外力 做功时,必须根据不同情况分别对待.
(完整版)动能定理
动能定理知识梳理 一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能.2.公式:E k =mv 2,动能的单位是焦耳. 说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能. (二)动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E -E ,W 是外力所做的总功,E 、E 分别为初末状态的动能.若初、末速度分别为v 1、v 2,则E =mv 21,E =mv . 3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.利用动能定理来求解变力所做的功通常有以下两种情况: ①如果物体只受到一个变力的作用,那么:W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k ,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F 1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W 1+W 其他=ΔE k .可见应把变力所做的功包括在上述动能定理的方程中. ③注意以下两点:122k 1k 1k 1k 1k 122k 1222a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。
动能、势能、动能定理
动能、势能、动能定理目标认知学习目标1.理解动能、势能的概念,会计算物体的动能和势能。
2.理解重力势能变化和重力做功的关系,知道重力做功与路径无关是重力做功的特点。
3.了解弹性势能并探究弹性势能与哪些因素有关。
4.理解动能定理,知道动能定理的适用条件,会用动能定理进行计算。
5.会推导动能定理。
学习重点、难点1.理解动能定理,会使用动能定理进行计算。
2.探究功与物体速度变化的关系。
知识要点梳理知识点一:重力势能要点诠释:1.重力做功及特点物体运动时,重力对它做的功只跟它起点和终点的位置有关,而跟物体运动的路径无关;物体被举高时,重力做负功,物体下降时,重力做正功。
2.重力势能(1)物体的重力势能等于它所受重力与所处高度的乘积(2)重力势能的表达式:,国际单位是焦耳(J)(3)重力势能是状态量,它描述了物体所处的一定状态,与物体所处的位置或时刻对应(4)重力势能具有相对性、系统性。
重力势能为物体与地球这个系统所共有的。
中的是相对参考平面的高度,物体在参考平面的上方,重力势能为正,反之为负,重力势能的大小与参考平面的选择有关,同一物体选择不同的参考平面会有不同的重力势能值。
3.重力做功跟重力势能变化的关系重力势能的变化过程,也是重力做功的过程,二者的关系为,表示在初位置的重力势能,表示在末位置的重力势能(1)当物体由高处运动到低处时,,表明重力做正功时,重力势能减少,减少的重力势能等于重力所做的功。
(2)当物体由低处运动到高处时,,表明重力做负功时(即物体克服重力做功),重力势能增加,增加的重力势能等于克服重力所做的功。
知识点二:探究弹性势能的表达要点诠释:1.弹性势能发生弹性形变的物体的各部分之间,由于有弹力的相互作用,也具有势能,这种势能叫做弹性势能。
2.弹性势能的大小跟形变的大小有关,形变量越大,弹性势能越大。
对于弹簧来说,弹性势能还与劲度系数有关,当形变量一定时,劲度系数越大的弹簧弹性势能也越大。
动能定理和势能定理
动能定理和势能定理1. 引言在物理学中,描述物体运动状态和相互作用的规律称为动力学。
动力学中最基本的定理之一就是动能定理和势能定理。
动能定理和势能定理是物理学中描述物体运动状态和相互作用的两个重要定律,它们分别描述了物体动能和势能的变化规律。
本文将详细介绍动能定理和势能定理的定义、表达式以及应用。
2. 动能定理2.1 定义动能定理指出:物体由于运动而具有的能量叫做动能,且物体的动能与其质量和速度的平方成正比。
2.2 表达式动能定理的表达式为:[ E_k = mv^2 ]其中,( E_k ) 表示动能,( m ) 表示物体的质量,( v ) 表示物体的速度。
2.3 应用动能定理在实际问题中的应用非常广泛,例如:•在直线运动中,物体受到的合外力做功等于物体动能的增加量。
•在曲线运动中,物体受到的合外力做功等于物体动能和势能的总量变化。
3. 势能定理3.1 定义势能定理指出:物体由于位置或状态的改变而具有的能量叫做势能,且物体的势能与其质量和位置的高度成正比。
3.2 表达式势能定理的表达式为:[ E_p = mgh ]其中,( E_p ) 表示势能,( m ) 表示物体的质量,( g ) 表示重力加速度,( h ) 表示物体相对于某一参考点的高度。
3.3 应用势能定理在实际问题中的应用也非常广泛,例如:•在重力场中,物体从一点移动到另一点,其势能的变化等于物体受到的重力做的功。
•在弹性势能中,物体由于形变而具有的能量,当物体恢复原状时,这部分能量会转化为物体的动能。
4. 动能定理与势能定理的关系动能定理和势能定理虽然描述的是不同的能量形式,但它们之间存在着密切的关系。
在物体运动的过程中,动能和势能可以相互转化。
例如,在竖直上抛运动中,物体上升过程中势能增加,动能减小;下降过程中势能减小,动能增加。
5. 结论动能定理和势能定理是物理学中描述物体运动状态和相互作用的两个重要定律。
本文详细介绍了动能定理和势能定理的定义、表达式以及应用。
动能和势能·知识点精解
动能和势能·知识点精解1.动能的概念物体由于运动而具有的能叫做动能,用Ek表示。
2.动能的量度公式(1)物体的动能等于它的质量跟它的速度平方的乘积。
(3)从上式可知动能为标量,单位由m、v决定为焦耳。
因为1[千克·米2/秒2]=1[千克·米/秒2][米]=1牛·米=1焦。
(4)物体的动能具有相对性,相对不同参考系物体动能不同,因而在同一问题中应选择同一参考系。
一般物体速度都是对地球的。
(5)动能的变化量又叫动能增量,指的是未动能与初动能之差。
ΔEk=少。
(6)物体的动能与动量均与物体的质量和速度有关系,但表示的意义不同。
动量表示运动效果,动能表示运动能量。
且动量为矢量,动能为标量。
它们之间的数值关系为P2=2mEk。
3.动能定理(1)动能定理内容外力对物体做功的代数和(或合外力对物体做的功),等于物体动能的增量。
这就是动能定理。
动能定理也可以说成:外力对物体做功,等于物体动能的增量;物体克服外力做功,等于物体动能的减少。
(2)动能定理的表达式(3)关于动能定理的理解①动能定理的计算为标量式,不能分方向,v为相对同一参考系的速度。
②动能定理的研究对象是单一物体,或者可以看成单一物体的物体系。
若相互作用的物体系统由几个物体组成,则应按隔离法逐一对物体列动能定理方程。
③以上两式(1)式用的较少。
(1)式中要求求出F合,则应用矢量合成较复杂,力F都应为恒力方可求合力,且物体在整个过程中物体受力保持不变。
(2)式所要求的是物体所受各力做功的代数和,其中对力没做任何要求,力可以是各种性质的力(包括重力和弹力),既可以是变力也可以是恒力;既可以同时作用,也可以分段作用。
只要求出在作用过程中各力做功的多少正负即可。
这也正是动能定理的优越性所在。
④功和动能均为标量,但功有正负之分,在求未知功时,一般认为是正值。
若求得为正值,说明该力做正功,负值则为物体克服该力做功。
⑤应用动能定理时应注意动能定理的形式。
动能定理与势能定理的关系
动能定理与势能定理的关系动能定理和势能定理是力学中两个核心概念,它们分别描述了物体的动能和势能之间的关系。
本文将探讨动能定理和势能定理之间的紧密联系。
一、动能定理的介绍动能定理是描述物体动能与力之间的关系的定理。
它在力学中具有重要的应用价值。
动能是物体在运动过程中所具有的能量,它的大小取决于物体的质量和速度。
动能定理说明了物体所受到的净力在作用下,物体的动能会发生变化。
动能定理的数学表达如下:$E_k = \frac{1}{2}mv^2$ (式1)其中,$E_k$代表物体的动能,m代表物体的质量,v代表物体的速度。
二、势能定理的介绍势能定理描述了物体势能和力之间的关系。
势能是物体由于其位置或状态而具有的能量,它的大小取决于物体的质量、重力加速度和高度差。
势能定理说明了物体所受到的保守力在作用下,物体的势能会发生变化。
势能定理的数学表达如下:$E_p = mgh$ (式2)其中,$E_p$代表物体的势能,m代表物体的质量,g代表重力加速度,h代表高度差。
三、动能定理与势能定理的关系动能定理和势能定理之间存在着紧密的关系。
这种关系可以通过能量守恒定理来解释。
能量守恒定理指出,在封闭系统中,能量的总量保持不变。
在物体的运动中,动能和势能是两个重要的能量形式。
当物体从一个位置运动到另一个位置时,其中一种能量形式会减少,而另一种能量形式会相应增加,两者的总和保持不变。
根据能量守恒定理,动能和势能之间存在如下的关系:$E_k + E_p = \text{常数}$ (式3)式3表明,物体的动能和势能之和保持不变。
当物体在运动中丧失动能时,它会转化为势能;相反,当物体获得了动能时,它会减少势能。
动能定理和势能定理都是能量守恒定理的应用,它们描述了能量在物体运动过程中的转换和转移。
通过动能定理和势能定理,我们可以更好地理解物体的运动过程。
在实际应用中,这两个定理经常结合使用,帮助我们分析和解释各种力学问题,例如弹簧振子、自由落体等。
§2-动能--势能--动能定理
§2-动能--势能--动能定理D上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G=mg△h.所以重力做的功等于重力势能增量的负值,即W G= -△E p= -(mgh2-mgh1).三、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W =ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
【例1】 一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间内,其中一个力做的功为A .261mvB .241mvC .231mvD .221mv 错解:在分力F 1的方向上,由动动能定理得2221161)30cos 2(2121mv v m mv W =︒==,故A 正确。
第2讲动能和动能定理
第2讲 动能和动能定理1.动能(1)定义:物体由于运动而具有的能.(2)公式:E k =12m v 2.(3)单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. (4)矢标性:动能是标量,只有正值. (5)动能是状态量,因为v 是瞬时速度.1.(2012·苏州模拟)一个小球从高处自由落下,则球在下落过程中的动能( ). ①与它下落的距离成正比 ②与它下落距离的平方成正比 ③与它运动的时间成正比 ④与它运动时间的平方成正比A .①②B .③④C .①④D .②③ 答案 C2.(2012·中山模拟)质量为m 的物体在水平力F 的作用下由静止开始在光滑地面上运动,前进一段距离之后速度大小为v ,再前进一段距离使物体的速度增大为2v ,则( ).A .第二过程的速度增量大于第一过程的速度增量B .第二过程的动能增量是第一过程动能增量的3倍C .第二过程合外力做的功等于第一过程合外力做的功D .第二过程合外力做的功等于第一过程合外力做功的2倍解析 由题意知,两个过程中速度增量均为v ,A 错误;由动能定理知:W 1=12m v 2,W 2=12m (2v )2-12m v 2=32m v 2,故B 正确,C 、D 错误.答案 B3.一个25 kg 的小孩从高度为3.0 m 的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0 m/s.取g =10 m/s 2,关于力对小孩做的功,以下结果正确的是( ).A .合外力做功50 JB .阻力做功500 JC .重力做功500 JD .支持力做功50 J解析 合外力做的功W 合=E k -0,即W 合=12m v 2=12×25×22 J =50 J ,A 项正确;W G -W 阻=E k -0,故W 阻=mgh -12m v 2=750 J -50 J =700 J ,B 项错误;重力做功W G =mgh =25×10×3 J =750 J ,C错;小孩所受支持力方向上的位移为零,故支持力做的功为零,D 错.答案 A4.如图4-2-1所示,一半径为R 的半圆形轨道BC 与一水平面相连,C 为轨道的最高点,一质量为m 的小球以初速度v 0从圆形轨道B 点进入,沿着圆形轨道运动并恰好通过最高点C ,然后做平抛运动.求:图4-2-1(1)小球平抛后落回水平面D 点的位置距B 点的距离.(2)小球由B 点沿着半圆轨道到达C 点的过程中,克服轨道摩擦阻力做的功.解析 (1)小球刚好通过C 点,由牛顿第二定律mg =m v C 2R小球做平抛运动,有2R =12gt 2 s =v C t解得小球平抛后落回水平面D 点的位置距B 点的距离 s =2R(2)小球由B 点沿着半圆轨道到达C 点,由动能定理 -mg ·2R -W f =12m v C 2-12m v 02解得小球克服摩擦阻力做功 W f =12m v 02-52mgR . 答案 (1)2R (2)12m v 02-52mgR考点一 对动能定理的理解 1.动能定理公式中等号的意义等号表明合力做功与物体动能的变化间的三个关系: (1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因. 2.准确理解动能定理动能定理⎝⎛⎭⎫W =ΔE k =12m v t 2-12m v 02适用于任何力作用下,以任何形式运动的物体(或系统),是一标量式,不存在方向问题,它把过程量(做功)与状态量(动能)联系在一起,常用于求变力做功、分析复杂运动过程、判断能量间的转化关系等.【典例1】如图4-2-2所示,图4-2-2电梯质量为M ,在它的水平地板上放置一质量为m 的物体.电梯在钢索的拉力作用下由静止开始竖直向上加速运动,当上升高度为H 时,电梯的速度达到v ,则在这个过程中,以下说法中正确的是( ).A .电梯地板对物体的支持力所做的功等于m v 22B .电梯地板对物体的支持力所做的功小于m v 22C .钢索的拉力所做的功等于m v 22+MgHD .钢索的拉力所做的功大于m v 22+MgH解析 以物体为研究对象,由动能定理W N -mgH =12m v 2,即W N =mgH +12m v 2,选项A 、B 错误.以系统为研究对象,由动能定理得:W T -(m +M )gH =12(M +m )v 2,即W T =12(M +m )v 2+(M +m )gH >m v 22+MgH ,选项D 正确,选项C 错误. 案 D【变式1】 (2012·山东东营)图4-2-3人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图4-2-3所示,则在此过程中( ).A .物体所受的合外力做功为mgh +12m v 2B .物体所受的合外力做功为12m v 2C .人对物体做的功为mghD .以上说法都不对解析 物体沿斜面做匀加速运动,根据动能定理:W 合=W F -W f -mgh =12m v 2,其中W f 为物体克服摩擦力做的功.人对物体做的功即是人对物体的拉力做的功,所以W 人=W F =W f +mgh +12m v 2,A 、C 错误,B 正确. 答案 B考点二 动能定理在多过程中的应用 优先考虑应用动能定理的问题 (1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题. (3)变力做功的问题.(4)含有F 、s 、m 、v 、W 、E k 等物理量的力学问题. 【典例2】如图4-2-4所示,用特定材料制作的细钢轨竖直放置,半圆形轨道光滑,半径分别为R 、2R 、3R 和4R ,R =0.5 m ,水平部分长度L =2 m ,轨道最低点离水平地面高h =1 m .中心有孔的钢球(孔径略大于细钢轨直径),套在钢轨端点P 处,质量为m =0.5 kg ,与钢轨水平部分的动摩擦因数为μ=0.4.给钢球一初速度v 0=13 m/s.取g =10 m/s 2.求:图4-2-4(1)钢球运动至第一个半圆形轨道最低点A 时对轨道的压力. (2)钢球落地点到抛出点的水平距离.解析 (1)球从P 运动到A 点过程 由动能定理得: mg ·2R -μmg ·L =12m v 12-12m v 02由牛顿第二定律:N -mg =m v 12R 由牛顿第三定律:N =-N ′解得:N ′=-178 N .故对轨道压力为178 N 方向竖直向下(2)设球到达轨道末端点速度为v 2,对全程由动能定理得:-μmg ·5L -4mgR =12m v 22-12m v 02解得v 2=7 m/s 由平抛运动h +8R =12gt 2 s =v 2t 解得:s =7 m. 答案 (1)178 N 竖直向下(2)7 m——应用动能定理的解题步骤【变式2】如图4-2-5所示,物体在有动物毛皮的斜面上运动,由于毛皮的特殊性,引起物体的运动有如下特点:①顺着毛的生长方向运动时,毛皮产生的阻力可以忽略,②逆着毛的生长方向运动时,会受到来自毛皮的滑动摩擦力,且动摩擦因数μ恒定.斜面顶端距水平面高度为h =0.8 m ,质量为m =2 kg 的小物块M 从斜面顶端A 由静止滑下,从O 点进入光滑水平滑道时无机械能损失,为使M 制动,将轻弹簧的一端固定在水平滑道延长线B 处的墙上,另一端恰位于水平轨道的中点C .已知斜面的倾角θ=53°,动摩擦因数均为μ=0.5,其余各处的摩擦不计,重力加速度g =10 m/s 2,下滑时逆着毛的生长方向.求:图4-2-5(1)弹簧压缩到最短时的弹性势能(设弹簧处于原长时弹性势能为零). (2)若物块M 能够被弹回到斜面上,则它能够上升的最大高度是多少?(3)物块M 在斜面上下滑过程中的总路程.解析 (1)物块M 从斜面顶端A 运动到弹簧压缩到最短,由动能定理得mgh -μmg cos θh sin θ-E p =0 则弹性势能E p =mgh -μmg cos θhsin θ=10 J.(2)设物块M 第一次被弹回,上升的最大高度为H ,由动能定理得mg (h -H )-μmg cos θh sin θ=0 则H =h -μcos θhsin θ=0.5 m.(3)物块M 最终停止在水平面上,对于运动的全过程,由动能定理有mgh -μmg cos θ·s =0物块M 在斜面上下滑过程中的总路程s =hμcos θ=2.67 m.答案 (1)10 J (2)0.5 m (3)2.67 m考点三 用动能定理求变力的功(小专题) 一、状态分析法动能定理不涉及做功过程的细节,故求变力功时只分析做功前后状态即可. 【典例3】如图4-2-6所示,图4-2-6质量为m 的物体被线牵引着在光滑的水平面上做匀速圆周运动,拉力为F 时,转动半径为r .当拉力增至8F 时,物体仍做匀速圆周运动,其转动半径为r2,求拉力对物体做的功.解析 对物体运用牛顿第二定律得拉力为F 时,F =m v 12r ,①拉力为8F 时,8F =m v 22r 2.②联立①②及动能定理得:拉力做功W =12m v 22-12m v 12=2Fr -12Fr =32Fr .答案 32Fr二、过程分割法有些问题中,作用在物体上的某个力在整个过程中是变力,但若把整个过程分为许多小段,在每一小段上此力就可看做是恒力.分别算出此力在各小段上的功,然后求功的代数和.即可求得整个过程变力所做的功.【典例4】如图4-2-7所示,质量为m 的物体静图4-2-7止于光滑圆弧轨道的最低点A ,现以始终沿切线方向、大小不变的外力F 作用于物体上使其沿圆周转过π2到达B 点,随即撤去外力F ,要使物体能在竖直圆轨道内维持圆周运动,外力F 至少为多大? 解析 物体从A 点到B 点的运动过程中,由动能定理可得 W F -mgR =12m v B 2①如何求变力F 做的功呢?过程分割,将AB 划分成许多小段,则当各小段弧长Δs 足够小时,在每一小段上,力F 可看做恒力,且其方向与该小段上物体位移方向一致,有W F =F Δs 1+F Δs 2+…+F Δs 1+…=F (Δs 1+Δs 2+…+Δs 1+…)=F ·π2R ②从B 点起撤去外力F ,物体的运动遵循机械能守恒定律,由于在最高点维持圆周运动的条件是mg ≤m v 2R ,即在圆轨道最高点处速度至少为Rg .故由此机械能守恒定律得: 12m v B 2=mgR +m (Rg )22③联立①②③式得:F =5mg π. 答案 5mgπ三、对象转换法在有些求功的问题中,作用在物体上的力可能为变力,但转换对象后,就可变为求恒力功. 【典例5】如图4-2-8所示,质量为2 kg 的木块套在光滑的竖直杆上,图4-2-8用60 N 的恒力F 通过轻绳拉木块,木块在A 点的速度v A =3 m/s 则木块运动到B 点的速度v B 是多少?(木块可视为质点,g 取10 m/s 2)解析 先取木块作为研究对象,则由动能定理得: W G +W T =12m v B 2-12m v A 2①其中W G =-mg ·AB ,W T 是轻绳上张力对木块做的功, 由于力的方向不断变化,这显然是一个变力做的功,对象转换: 研究恒力F 的作用点,在木块由A 运动到B 的过程中,恒力F 的功W F =F (AC -BC ),它在数值上等于W T .故①式可变形为:-mgAB +F (AC -BC )=12m v B 2-12m v A 2,代入数据解得v B =7 m/s.答案 7 m/s【典例】 (2011·浙江卷,24)(20分)节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车.有一质量m =1 000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW.当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电;(3)轿车仅用其在上述减速过程中获得的电能E 电维持72 km/h 匀速运动的距离L ′. 解 (1)轿车牵引力与输出功率的关系P =F 牵v将P =50 kW ,v 1=90 km/h =25 m/s 代入得 F 牵=Pv 1=2×103 N .(4分)当轿车匀速行驶时,牵引力与阻力大小相等,有F 阻=2×103 N .(2分)(2)在减速过程中,注意到发动机只有15P 用于汽车的牵引.根据动能定理有15Pt -F 阻L =12m v 22-12m v 12(5分) 代入数据得Pt =1.575×105 J(3分)电源获得的电能为E 电=50%×45Pt =6.3×104 J .(2分)(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为F 阻=2×103 N .在此过程中,由能量守恒定律可知,仅有电能用于克服阻力做功,则E 电=F 阻L ′(2分)代入数据得L ′=31.5 m .(2分)答案 (1)2×103N (2)6.3×104J (3)1.5 m 一、动能及动能定理的单独考查(低频考查) 1.(2009·上海单科,5)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,到达最高点后再下落至离地高度h 处,小球的势能是动能的2倍,则h 等于( ).A.H 9B.2H 9C.3H 9D.4H 9 解析 设小球的初动能为E k0,阻力为F ,根据动能定理,上升到最高点有,E k0=(mg +F )H ,上升到离地面h 处有,E k0-2mgh =(mg +F )h ,从最高点到离地面h 处,有(mg -F )(H -h )=12mgh ,解以上三式得h =49H . 答案 D2.(2011·课标全国卷,15改编)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能不可能( ).A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大解析 若力F 的方向与初速度v 0的方向一致,则质点一直加速,动能一直增大,选项A 正确.若力F 的方向与v 0的方向相反,则质点先减速至速度为零后反向加速,动能先减小至零后增大,选项B 正确.若力F 的方向与v 0的方向成一钝角,如斜上抛运动,物体先减速,减到某一值,再加速,则其动能先减小至某一非零的最小值,再增大,选项D 正确. 答案 C二、动能定理的应用且综合其他考点出现(高频考查) 3.(2009·上海单科,20)质量为5×103 kg 的汽车在t =0时刻速度v 0=10 m/s ,随后以P =6×104 W 的额定功率沿平直公路继续前进,经72 s 达到最大速度,该汽车受恒定阻力,其大小为2.5×103 N .求:(1)汽车的最大速度v m ;(2)汽车在72 s 内经过的路程s .解析 (1)达到最大速度时,牵引力等于阻力P =f v m v m =P f =6×1042.5×103m/s =24 m/s(2)由动能定理可得Pt -fs =12m v m 2-12m v 02所以s =2Pt -m (v m 2-v 02)2f =2×6×104×72-5×103×(242-102)2×2.5×103m =1 252 m 答案 (1)24 m/s(2)1 252 m图4-2-94.(2011·江苏卷,14)如图4-2-9所示,长为L 、内壁光滑的直管与水平地面成30°角固定放置.将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M =km 的小物块相连,小物块悬挂于管口.现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变.(重力加速度为g ).(1)求小物块下落过程中的加速度大小; (2)求小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于22L .解析 (1)设细线中的张力为T ,根据牛顿第二定律得Mg -T =Ma T -mg sin 30°=ma 且M =km 解得a =2k -12(k +1)g .(2)设M 落地时速度大小为v ,m 射出管口时速度大小为v 0.M 落地前由动能定理得Mg ·L sin 30°-mg ·L sin 30°·sin 30°=12(M +m )v 2,对m ,M 落地后由动能定理得-mg (L -L sin 30°)sin 30°=12m v 02-12m v 2 联立解得v 0=k -22(k +1)gL (k >2).(3)小球做平抛运动,则s =v 0t L sin 30°=12gt 2 解得s =Lk -22(k +1)由k -22(k +1)<12得s =Lk -22(k +1)<22L .答案 (1)2k -12(k +1)g (2)k -22(k +1)gL (k >2) (3)见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2 动能 势能 动能定理教学目标:理解功和能的概念,掌握动能定理,会熟练地运用动能定理解答有关问题 教学重点:动能定理 教学难点:动能定理的应用教学方法:讲练结合,计算机辅助教学 教学过程:一、动能1.动能:物体由于运动而具有的能,叫动能。
其表达式为:221mv E k =。
2.对动能的理解(1)动能是一个状态量,它与物体的运动状态对应.动能是标量.它只有大小,没有方向,而且物体的动能总是大于等于零,不会出现负值.(2)动能是相对的,它与参照物的选取密切相关.如行驶中的汽车上的物品,对汽车上的乘客,物品动能是零;但对路边的行人,物品的动能就不为零。
3.动能与动量的比较(1)动能和动量都是由质量和速度共同决定的物理量,221mv E k ==m p 22或 k mE p 2= (2)动能和动量都是用于描述物体机械运动的状态量。
(3)动能是标量,动量是矢量。
物体的动能变化,则其动量一定变化;物体的动量变化,则其动量不一定变化。
(4)动能决定了物体克服一定的阻力能运动多么远;动量则决定着物体克服一定的阻力能运动多长时间。
动能的变化决定于合外力对物体做多少功,动量的变化决定于合外力对物体施加的冲量。
(5)动能是从能量观点出发描述机械运动的,动量是从机械运动本身出发描述机械运动状态的。
二、重力势能1.重力势能:物体和地球由相对位置决定的能叫重力势能,是物体和地球共有的。
表达式:mgh E p =,与零势能面的选取有关。
2.对重力势能的理解(1)重力势能是物体和地球这一系统共同所有,单独一个物体谈不上具有势能.即:如果没有地球,物体谈不上有重力势能.平时说物体具有多少重力势能,是一种习惯上的简称.重力势能是相对的,它随参考点的选择不同而不同,要说明物体具有多少重力势能,首先要指明参考点(即零点).(2)重力势能是标量,它没有方向.但是重力势能有正、负.此处正、负不是表示方向,而是表示比零点的能量状态高还是低.势能大于零表示比零点的能量状态高,势能小于零表示比零点的能量状态低.零点的选择不同虽对势能值表述不同,但对物理过程没有影响.即势能是相对的,势能的变化是绝对的,势能的变化与零点的选择无关.(3)重力做功与重力势能重力做正功,物体高度下降,重力势能降低;重力做负功,物体高度上升,重力势能升高.可以证明,重力做功与路径无关,由物体所受的重力和物体初、末位置所在水平面的高度差决定,即:W G =mg △h .所以重力做的功等于重力势能增量的负值,即W G = -△E p = -(mgh 2-mgh 1).三、动能定理 1.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W =ΔE K动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
和动量定理一样,动能定理也建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
和动量定理不同的是:功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
【例1】 一个质量为m 的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,那么在这段时间,其中一个力做的功为A .261mv B .241mv C .231mv D .221mv 错解:在分力F 1的方向上,由动动能定理得2221161)30cos 2(2121mv v m mv W =︒==,故A 正确。
正解:在合力F 的方向上,由动动能定理得,221mv Fs W ==,某个分力的功为211412130cos 30cos 230cos mv Fs s F s F W ==︒︒=︒=,故B 正确。
2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功. 功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。
和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统的物体间不能有相对运动。
(原因是:系统所有力的总冲量一定是零,而系统所有力做的总功不一定是零)。
(2)对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
(4)写出物体的初、末动能。
(5)按照动能定理列式求解。
【例2】 如图所示,斜面倾角为α,长为L ,AB 段光滑,BC 段粗糙,且BC =2 AB 。
质量为m 的木块从斜面顶端无初速下滑,到达C 端时速度刚好减小到零。
求物体和斜面BC 段间的动摩擦因数μ。
解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgL sinα,摩擦力做的功为αμcos 32mgL -,支持力不做功。
初、末动能均为零。
mgL sin ααμcos 32mgL -=0,αμtan 23= 点评:从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。
【例3】 将小球以初速度v 0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。
由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。
设空气阻力大小恒定,求小球落回抛出点时的速度大小v 。
解:有空气阻力和无空气阻力两种情况下分别在上升过程对小球用动能定理:2021mv mgH =和()20218.0mv H f mg =+,可得H=v 02/2g ,mg f 41= 再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。
全过程重力做的功为零,所以有:22021218.02mv mv H f -=⨯⋅,解得053v v =点评:从本题可以看出:根据题意灵活地选取研究过程可以使问题变得简单。
有时取全过程简单;有时则取某一阶段简单。
原则是尽量使做功的力减少,各个力的功计算方便;或使初、末动能等于零。
αC Bvv /f GGfh /10h【例4】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h /10停止,则 (1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h /8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。
解析:(1)取钢珠为研究对象,对它的整个运动过程,由动能定理得W =W F +W G =△E K =0。
取钢珠停止处所在水平面为重力势能的零参考平面,则重力的功W G =1011mgh ,阻力的功W F =101-F f h , 代入得1011mgh 101-F f h =0,故有F f /mg =11。
即所求倍数为11。
(2)设钢珠在h 处的动能为E K ,则对钢珠的整个运动过程,由动能定理得W =W F +W G =△E K =0,进一步展开为9mgh /8—F f h /8= —E K ,得E K =mgh /4。
点评:对第(2)问,有的学生这样做,h /8—h /10= h /40,在h /40中阻力所做的功为F f h /40=11mgh /40,因而钢珠在h 处的动能E K =11mgh /40。
这样做对吗?请思考。
【例5】质量为M 的木块放在水平台面上,台面比水平地面高出h =0.20m ,木块离台的右端L =1.7m 。
质量为m =0.10M 的子弹以v 0=180m/s 的速度水平射向木块,并以v =90m/s 的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s =1.6m ,求木块与台面间的动摩擦因数为μ。
解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段。
所以本题必须分三个阶段列方程:子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v 1,mv 0=mv +Mv 1……①木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v 2,有:22212121Mv Mv MgL -=μ……②木块离开台面后的平抛阶段,g hv s 22=……③由①、②、③可得μ=0.50点评:从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理。
从本题还应引起注意的是:不要对系统用动能定理。
在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。
如果对系统在全过程用动能定理,就会把这个负功漏掉。
四、动能定理的综合应用动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。
但是,我们用动能定理来解就比较简捷。
我们通过下面的例子再来体会一下用动能定理解决某些动力学问题的优越性。
1.应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
【例6】 如图所示,AB 为1/4圆弧轨道,半径为R =0.8m ,BC 是水平轨道,长S =3m ,BC 处的摩擦系数为μ=1/15,今有质量m =1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
解析:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =μmg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W 外=0,所以mgR -μmgS -W AB =0即W AB =mgR -μmgS =1×10×0.8-1×10×3/15=6J【例7】一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H .提升时,车加速向左运动,沿水平方向从A 经过B 驶向C .设A 到B 的距离也为H ,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.解析:设绳的P 端到达B 处时,左边绳与水平地面所成夹角为θ,物体从井底上升的高度为h ,速度为v ,所求的功为W ,则据动能定理可得:221mv mgh W =- 因绳总长不变,所以: H Hh -=θsin 根据绳联物体的速度关系得:v =v B cosθ由几何关系得:4πθ=由以上四式求得:H mg mv W B )12(412-+=2.应用动能定理简解多过程问题。