初三数学九上九下压轴题难题提高题培优题(含答案解析)

合集下载

初三九年级上册数学压轴题(培优篇)(Word版 含解析)

初三九年级上册数学压轴题(培优篇)(Word版 含解析)

初三九年级上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.2.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.3.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.4.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.5.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.6.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.7.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.8.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.9.如图,已知在矩形ABCD中,AB=2,BC=23.点P,Q分别是BC,AD边上的一个动点,连结BQ,以P为圆心,PB长为半径的⊙P交线段BQ于点E,连结PD.(1)若DQ=3且四边形BPDQ是平行四边形时,求出⊙P的弦BE的长;(2)在点P,Q运动的过程中,当四边形BPDQ是菱形时,求出⊙P的弦BE的长,并计算此时菱形与圆重叠部分的面积.10.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.11.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式.(2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F ,(1)如图①,当点F 与点B 重合时,DE DC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DE DC 的值; (3)如图③,若DE CF =,求DE DC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4【解析】【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解.【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F∴BE EF =,80BEF ∠=∴180502BEF EBF BFE -∠∠=∠== ,即50BFD ∠= ∵AB=AC=4,D 是BC 的中点∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠=∴50CFD BAD ∠=∠=∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥∴9040ABC BAD ∠=-∠=∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立(3)由(1)和(2)知,//CF AB∴点F 的运动路径在CF 上如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置∴故当点E 与点A 重合时,AF 最小此时AF 1=AB=AC=4,即AF 的最小值为4.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.2.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ;(2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+= ∵OD m ⊥,m l ⊥∴//OD l∵OB OQ =∴122AH BH AB x === ∴2CD x =∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9. (3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.3.(1)BQ ,2tcm ,PB ,()5t cm -;(2)当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由见解析.【解析】【分析】(1)根据点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,可以求得BQ ,PB .(2)用含t 的代数式分别表示PB 和BQ 的值,运用勾股定理求得PQ 为22(5)(2)t t -+=25据此求出t 值.(3)根据题干信息使得五边形APQCD 的面积等于226cm 的t 值存在,利用长方形ABCD 的面积减去PBQ △的面积即可,有PBQ △的面积为4,由此求得t 值.【详解】解:(1)点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,故BQ 为2tcm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,AB =5cm ,故PB 为()5t cm -.(2)由题意得:22(5)(2)t t -+=25,解得:1t =0,2t =2;当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由如下:长方形ABCD 的面积是:56⨯=()230cm ,使得五边形APQCD 的面积等于226cm ,则PBQ △的面积为3026-=()24cm , ()15242t t -⨯⨯=, 解得:1t =4(不合题意舍去),2t =1.即当t =1秒时,使得五边形APQCD 的面积等于226cm .【点睛】本题结合长方形考查动点问题,其本质运用代数式求值,利用含t 的代数式表示各自线段的直接,根据题干数量关系即可确立等量关系式,从而求出t 值.4.(1)详见解析;(2)21y 2x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AEBE BC =,y x =,即212y x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,602AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC ,∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,2y x x =,∴212y x =-+,∵212y x =-+=213(22x -+,当x =y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30°∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°,如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH中,360AHsinAB=︒=,∵AB=23∴AH=3,所以点H移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.5.(1)OA=6,AB=10;(2)3011;(3)0<t≤1813或3011<t≤5.【解析】【分析】(1)在Rt△AOB中,tan B=34,OB=8,即可求解;(2)利用△ACD∽△ABO、AD+OQ=OA,即可求解;(3)分QC与圆P相切、QC⊥OA两种情况,求解即可.【详解】解:(1)在Rt△AOB中,tan B=34,OB=8,∴34OAOB=,∴OA=6,则AB=10;(2)OP=AP﹣t,AC=2t,∵AC是圆直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴AC ADAB AO=,即:2,106t AD=∴AD=65t,当Q与D重合时,AD+OQ=OA,∴66,5t t+=30.11t∴=(3)当QC与圆P相切时,∠QAC=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A =∠A ,∠QCA =∠ABO , ∴△AQC ∽△ABO ,∴,AQ AC AB AO = 即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t =∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.6.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH 的长为3﹣1或3+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明.(3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩∴△FAG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,理由:如图3,在CA上截取CG=CB,连接FA,FB,FC,∵点F是AFB的中点,∴FA=FB,FA FB=,∴∠FCG=∠FCB,在△FCG和△FCB中,,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩∴△FCG≌△FCB(SAS),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH ,∴AC =AH+GH+CG =2AH+BC , ∴2322AH =+,∴31AH =,当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.7.(1)7-t(2)()()()22904;25{1674725t tSt tππ<≤=-<<(3)516,23t t==【解析】【分析】(1)先判断出点P在BC上,即可得出结论;(2)分点P在边AC和BC上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P在边AC和BC上两种情况:借助(2)求出的圆P的半径等于PC,建立方程求解即可得出结论.【详解】(1)∵AC=4,BC=3,∴AC+BC=7.∵4<t<7,∴点P在边BC上,∴BP=7﹣t.故答案为:7﹣t;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得:AB=5,由运动知,AP=t,分两种情况讨论:①当点P在边AC上时,即:0<t≤4,如图1,记⊙P与边AB的切点为H,连接PH,∴∠AHP=90°=∠ACB.∵∠A=∠A,∴△APH∽△ACB,∴PH APBC AB=,∴35PHt=,∴PH35=t,∴S925=πt2;②当点P在边BC上时,即:4<t<7,如图,记⊙P与边AB的切点为G,连接PG,∴∠BGP=90°=∠C.∵∠B=∠B,∴△BGP∽△BCA,∴PG BPAC AB=,∴745PG t-=,∴PG45=(7﹣t),∴S1625=π(7﹣t)2.综上所述:S22904251674725t tt tππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<);(3)分两种情况讨论:①当点P在边AC上时,即:0<t≤4,由(2)知,⊙P的半径PH35=t.∵⊙P与△ABC的另一边相切,即:⊙P和边BC相切,∴PC=PH.∵PC=4﹣t,∴4﹣t35=t,∴t52=秒;②当点P在边BC上时,即:4<t<7,由(2)知,⊙P的半径PG45=(7﹣t).∵⊙P与△ABC的另一边相切,即:⊙P和边AC相切,∴PC=PG.∵PC=t﹣4,∴t﹣445=(7﹣t),∴t163=秒.综上所述:在⊙P运动过程中,当⊙P与三角形ABC的另一边也相切时,t的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.8.(1)PA13O的半径为393;(2)见解析;(3)⊙O的半径为2或【解析】【分析】(1)过点A 作BP 的垂线,作直径AM ,先在Rt △ABH 中求出BH ,AH 的长,再在Rt △AHP 中用勾股定理求出AP 的长,在Rt △AMP 中通过锐角三角函数求出直径AM 的长,即求出半径的值;(2)证∠APB =∠PAD =2∠PAE ,即可推出结论;(3)分三种情况:当AE ⊥BD 时,AB 是⊙O 的直径,可直接求出半径;当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,通过证△BFE ∽△DAE ,求出BE 的长,再证△OBE 是等边三角形,即得到半径的值;当AE ⊥AB 时,过点D 作BC 的垂线,通过证△BPE ∽△BND ,求出PE ,AE 的长,再利用勾股定理求出直径BE 的长,即可得到半径的值.【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP ,在Rt △ABH 中,∠ABH =60°,∴∠BAH =30°,∴BH =12AB =2,AH =AB •sin60°= ∴HP =BP ﹣BH =1,∴在Rt △AHP 中,AP∵AB 是直径,∴∠APM =90°,在Rt △AMP 中,∠M =∠ABP =60°,∴AM =AP sin 60︒=3,∴⊙O ,即PA ⊙O (2)当∠APB =2∠PBE 时,∵∠PBE =∠PAE ,∴∠APB =2∠PAE ,在平行四边形ABCD 中,AD ∥BC ,∴∠APB =∠PAD ,∴∠PAD =2∠PAE ,∴∠PAE =∠DAE ,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=5;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣533x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或475或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即,∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S菱形833.【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识. 10.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】 (1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.11.(1)点D 的坐标为312),抛物线的解析式为24 3?1?3y x x =-++;(2)①31n =+;②2334S m =+,S 93 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m =2n FB ==,3m =3n FD ==,代入n km b =+,即可求解;②求得NA 33m =,过N 作NQ ⊥EA ,得到NQ=12NA=332,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB 213-=-=,∠ABO=60︒,∴点A 的坐标为(3,0),又∵四边形OBCD 是菱形,且∠ABO=60︒, ∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,3CH=CD+DH=32, ∴点D 的坐标为312),点C 的坐标为332), 将A 30) , C 的坐标为332)代入抛物线的解析式y = ax 2 + bx + 1, 得:3310333142a b a ⎧+=⎪⎨+=⎪⎩, 解得:433a b ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为24 3?1?3y x x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,3FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:1k b ⎧=⎪⎨⎪=⎩∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 3n =, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133226124S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭,∵012-<,当32m ==⎝⎭时,在0m ≤≤范围内,∴132226216S ⎛⎫=⨯-⨯= ⎪ ⎪⎝⎭最大. 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.12.(1)12;(2)tan EAD ∠=13;(3)DE CD = 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=, AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。

初三数学九上九下压轴题难题提高题培优题含问题详解解析汇报

初三数学九上九下压轴题难题提高题培优题含问题详解解析汇报

实用标准文档初三数学九上压轴题难题提高题培优题一.解答题(共8小题)2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1.如图,抛物线y=ax1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2)经过>0+bx(a2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax.,∠AOB=120°轴正半轴上的点B,AO=OB=4点A和x)求这条抛物线的表达式;(1的大小;,求∠AOM2)联结OM(的坐标.C与△AOM相似,求点)如果点C在x轴上,且△ABC(32B)0,A(2,3.如图,在平面直角坐标系中,已知抛物线y=ax交+bx+cx轴于.轴于点,0)两点,交y(6(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?文案大全.实用标准文档2c+bx,OB=2,抛物线y=ax+(﹣4.如图,在平面直角坐标系中,已知点A2,﹣4)三点.O、B经过点A、)求抛物线的函数表达式;(1的最小值;+OM是抛物线对称轴上一点,试求(2)若点MAM为顶点的四边形、BP与点O、A(3)在此抛物线上,是否存在点P,使得以点的坐标;若不存在,请说明理由.是梯形?若存在,求点P2.3)B (4,经过点A(0,1),5.已知抛物线y=﹣x+bx+c)求抛物线的函数解析式;(1的值;∠ABO2)求tan(轴的直线交线y轴,垂足为C,在对称轴的左侧且平行于)过点B作BC⊥x(3的坐标.M为平行四边形,求点交抛物线于点M,若四边形MNCBN段AB于点,轴交于点x>0)与m(x﹣)(m):16.如图,已知抛物线的方程Cy=(﹣x+21的左侧.在点C,且点y轴交于点EB,与B、C的值;,求实数m2MC过点(2,))若抛物线(11的面积;BCE)的条件下,求△)在((21文案大全.实用标准文档(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C上是否存在点F,使得以点B、C、F为顶点的三1角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.2+(b是实数且b>1)x2)与7.如图,已知抛物线y=xx轴的正半﹣(b+轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,20),D(3,4).以A为顶点的抛物线y=ax+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q 的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.文案大全.实用标准文档文案大全.实用标准文档初三数学九上压轴题难题提高题培优题参考答案与试题解析一.解答题(共8小题)2+bx+c(a≠0)经过点A(﹣3,0)、B(1y=ax1.如图,抛物线,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由..解得.解:由题意可知【解答】﹣.∴抛物线的表达式为y=(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).,则.y=kx+b设直线MA的表达式为.解得y=x+MA的表达式为1.∴直线的坐标为(),则点DF的坐标为(.)设点DF=.=文案大全.实用标准文档.的最大值为当时,DF.的坐标为(,即点D)此时,m相似.设P(、A、N为顶点的三角形与△MAO,使得以点(3)存在点PP .)不可能在P中,AO=3MO,要使两个三角形相似,由题意可知,点在Rt△MAO 第一象限.,PN=3ANMN上,∴只能不可能在直线①设点P在第二象限时,∵点P2.又8m=﹣.解得m=﹣3∴,即m(舍去)或+11m+24=0,故此时满足条件的点不存在.0m<﹣3<,上,∴只能PN=3AN在第三象限时,∵点P不可能在直线MA②当点P2.+m24=0+11m∴,即.)8的坐标为(﹣,﹣15或m=﹣8.此时点P3解得m=﹣2﹣mmAN=3PN时,则﹣+3,即在第四象限时,若③当点P.6=0.(舍去)或m=2解得m=﹣3.时,,﹣2m=2).此时点P的坐标为(当2.﹣m30=0,则﹣﹣7m若PN=3NA,即.39)的坐标为(,此时点P10,﹣(舍去)或解得m=﹣3m=10.39,﹣)10、2、158P综上所述,满足条件的点的坐标为(﹣,﹣)(,﹣)(文案大全.实用标准文档2)经过0(aM的抛物线y=ax>+bxxOy2.如图,在平面直角坐标系中,顶点为.AOB=120°,AO=OB=4,∠点A和x轴正半轴上的点B)求这条抛物线的表达式;1(的大小;AOM)联结OM,求∠(2的坐标.CAOM相似,求点在x轴上,且△ABC与△(3)如果点C,Dy轴于点A作AD⊥【解答】解:(1)如图,过点,∵AO=OB=4.0)B(4,∴,∵∠AOB=120°,∴∠AOD=30°.,OA=2∴OD=AD=OA=2.A(﹣2,)2∴2,得:bx+2,0)代入y=ax4),B(A将(﹣2,,解得:,2;x﹣x∴这条抛物线的表达式为y=,E⊥x轴于点(2)过点M作ME22,)xy=﹣﹣﹣x=(x2∵EM=OE=2)(∴.M2,﹣,即,文案大全.实用标准文档=EOM=tan∠.∴∴∠EOM=30°.∴∠AOM=∠AOB+∠EOM=150°.(3)过点A作AH⊥x轴于点H,AH=2,HB=HO+OB=6∵,=∠.ABH=∴tan∴∠ABH=30°,∵∠AOM=150°,∴∠OAM<30°,∴∠OMA<30°,∴点C不可能在点B的左侧,只能在点B的右侧.∴∠ABC=180°﹣∠ABH=150°,∵∠AOM=150°,∴∠AOM=∠ABC.∴△ABC与△AOM相似,有如下两种可能:①△BAC与∽△OAM,②△BAC与∽△OMAME=,,∵OD=2,∴OM=AH=2,∵BH=6,AB=4.∴①当△BAC与∽△OAM时,=得,解得BC=4.由∴C(8,0).1②当△BAC与∽△OMA时,=得,解得由BC=12.∴C(16,0).2综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(8,0)或(16,0).文案大全.实用标准文档2+bx+c交x轴于A(2,03.如图,在平面直角坐标系中,已知抛物线y=ax),B 轴于点.0)两点,交y(6,(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?2,;06,)2,0),B(【解答】解:(1)∵抛物线y=ax+bx+c经过点A(,∴解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,MDF=;∴cos∠∴∠MDF=60°,∴∠EDF=120°;的长为:;EF∴劣弧文案大全.实用标准文档(3)设直线AC的解析式为y=kx+b;经过点,∵直线AC,∴;解得的解析式为:;AC∴直线设点N,,PG交直线AC于坐标为,N则点∵S:S=PN:GN;GNAPNA△△PG=GN;:2,GN=3:GN=1:2,则PG:PN∴①若=即;解得:m=﹣3,m=2(舍去);21=3;时,当m=﹣;∴此时点P的坐标为②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;=即;解得:m=﹣12,m=2(舍去);21=时,m=当﹣12;;P的坐标为∴此时点的面积被直线时,△或PGA综上所述,当点P坐标为两部分.:1分成AC2文案大全.实用标准文档2c++bx,OB=2,抛物线y=axA4.如图,在平面直角坐标系中,已知点(﹣2,﹣4)三点.BO、经过点A、)求抛物线的函数表达式;1(的最小值;OMAM+(2)若点M是抛物线对称轴上一点,试求为顶点的四边形、BAP与点O、(3)在此抛物线上,是否存在点P,使得以点的坐标;若不存在,请说明理由.是梯形?若存在,求点P,0)(2,,可知【解答】解:(1)由OB=2B2,cbx+,0)三点坐标代入抛物线y=ax+O,,﹣4)B(2,0),(02将A(﹣得解得:.∴抛物线的函数表达式为.答:抛物线的函数表达式为,)由(2,可得,抛物线的对称轴为直线x=1的垂直平分线,OBx=1且对称轴是线段点即为所求.MM,x=1连接AB交直线于点MB=ABMA=MA+MO=MB∴,则MO+AB=,∴,轴,垂足为xC,则AC=4BC=4⊥作AC.MAMO∴+的最小值为文案大全.实用标准文档的最小值为MA.答:MO+(3)①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x=﹣4,x=2(不合题意,舍去)21当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,,则m,的表达式为y=kx+设直线AB.﹣2解得,∴AB的表达式为y=x∵AB∥OP,∴直线OP的表达式为y=x.2=0,解得x=0,由,得x(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).文案大全.实用标准文档2.3)4),B (,xy=﹣(+bx+c经过点A0,15.已知抛物线)求抛物线的函数解析式;(1的值;∠ABO(2)求tan轴的直线交线y轴,垂足为C,在对称轴的左侧且平行于⊥(3)过点B作BCx 的坐标.求点MMNCB,交抛物线于点M,若四边形为平行四边形,AB段于点N2,),(,10Acbx﹣)∵抛物线(【解答】解:1y=x++经过点(,)B 43文案大全.实用标准文档,∴,解得2;+1+x所以,抛物线的函数解析式为y=﹣x,于DAD⊥OB⊥x轴于C,过点A作(2)如图,过点B作BC ,)4(,30,1),B ∵A(,BC=3,OC=4,∴OA=1,OB==5根据勾股定理,=,BOC=90°AOD+∠OAD+∠AOD=90°,∠∵∠,BOCOAD=∠∴∠,OCB=90°ADO=∠又∵∠,OBCAOD∽△∴△,=∴=,=即=,解得AD=OD=,,﹣OD=5=﹣∴BD=OB;ABO==∴tan∠=,是常数)k、b(k≠0,+(3)设直线AB的解析式为y=kxb ,则,解得,+1AB的解析式为y=x所以,直线2,)+1N(a,aaM设点(a,﹣,a++1)22,+aa﹣﹣1=﹣4a+﹣则MN=a+a1为平行四边形,MNCB∵四边形,MN=BC∴文案大全.实用标准文档2+4a=3,∴﹣a2﹣4a+a3=0,整理得,解得a=1,a=3,21=x=,﹣∵MN在抛物线对称轴的左侧,抛物线的对称轴为直线,∴a=12,×+1+∴﹣11=.M的坐标为(1),∴点﹣(x+2)(x﹣m)(m>0)与.如图61,已知抛物线的方程C:y=x轴交于点1B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C过点M(2,2),求实数m的值;1(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C上是否存在点F,使得以点B、C、F为顶点的三1角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.代入抛物线的解析式得:﹣×4×(2﹣m)将解:(1x=2,y=2)=2,【解答】解得:m=4,经检验:m=4是分式方程的解.∴m的值为4.文案大全.实用标准文档﹣(x+2)(x﹣m),解得x=(2)y=0得:0=﹣2或x=m,∴B(﹣2,0),C(m,0).由(1)得:m=4,∴C(4,0).﹣×2×(﹣y=m)=2,将x=0代入得:∴E(0,2).∴BC=6,OE=2.BC?OE=×6=×2=6.∴S BCE△(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x 轴的交点为P.﹣x=,∵∴抛物线的对称轴是直线x=1.∴CP=3.∵点B与点C关于x=1对称,∴BH=CH.∴BH+EH=EH+HC.∴当H落在线段EC上时,BH+EH的值最小.∵HP∥OE,∴△PHC∽△EOC.HP=.,即.解得∴,).H∴点的坐标为(1(4)①如图2,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.文案大全.实用标准文档∵BF∥EC,∴∠BCE=∠FBC.2=CE?BF时,△BCE∽△,即BCFBC.∴当,得,由m)).(x+2)(x设点F的坐标为(x﹣,﹣.解得x=m+2.,0)2∴F′(m+.BCE=∠FBC∵∠.,得∴,解得:2=CE?BFBC,又∵∴,整理得:0=16.此方程无解.②如图3,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,∵OE=OB,∠EOB=90°,∴∠EBO=45°.∵∵∠CBF=45°,∴∠EBC=∠CBF,2=BE?BF时,△BCE∽△∴当,即BCBFC.,得(x+2)(x﹣m)=x+2,解得x=2mBFF′在Rt△中,由FF′=BF′.∴F′(2m,0).∴BF′=2m+2,2.BF=2m+∴22.解得.+22BC由)=BE?BF,得(m+2)m=2×(,∵m0>.+2∴m=2.的值为2+2m综上所述,点2+(b是实数且b>xb(+1)2)与x轴的正半.如图,已知抛物线7y=x﹣轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.文案大全.实用标准文档,)0(用含b的代数0),点C的坐标为(1()点B的坐标为(b,式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.2+=0)x,﹣(b【解答】解:(1)令y=0,即+y=x1解得:x=1或b,∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,y=,解得:,),∴点C的坐标为(0,);),(0故答案为:(b,0(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.+?b?y=2b=,??x=S则S+S POBPCOBPCO△四边形△∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPD=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.文案大全.实用标准文档解得由,﹣,即﹣=b由△PEC≌△PDB得EC=DB符合题意.解得b=>2的坐标为(∴P,);中的任意两个三角形和△QAB,使得△QCO,△QOA(3)假设存在这样的点Q 均相似.,∠AQO∠AOQ+∵∠QAB=.>∠AQOAOQ,∠QAB∴∠QAB>∠轴.⊥xBAQ=90°,即QAQOA与△QAB相似,只能∠QAO=∠∴要使△,2∵b>,OA∴AB>.ABQ∴∠Q0A>∠,OQB=90°∠AQB.此时∠∴只能∠AOQ=轴.yQA∥x由QA⊥轴知.OQACOQ=∠∴∠.OQC=90°QCO=90°或∠∴要使△QOA与△OQC相似,只能∠.QOACQO≌△I)当∠OCQ=90°时,△(.AQ=CO=∴22.﹣()由AQ1=OA?AB得:=b.4解得:b=8±,>2∵b.b=8+4∴.2)+∴点Q的坐标是(1,,QOAOCQ∽△(II)当∠OQC=90°时,△2.=OC?AQ∴=,即OQ2,=OA?OB又OQ.b.即?AQ=1×∴OC?AQ=OA?OB符合题意,2b=17>,此时解得:AQ=4.4)的坐标是(∴点Q1,QABQOA和△,△,使得△41Q21Q∴综上可知,存在点(,+)或(,)QCO中的任意两个三角形均相似.文案大全.实用标准文档,(3,(1,0)C8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B2出发,从点Ac过点C.动点为顶点的抛物线3,4).以Ay=axP+bx+D0),(,P 出发,沿线段CD向点D运动.点向点沿线段ABB运动.同时动点Q从点C于点ACPE⊥AB交个单位.Q的运动速度均为每秒1运动时间为t秒.过点P作.E 的坐标,并求出抛物线的解析式;(1)直接写出点A的面积最t为何值时,△ACG,交抛物线于点EF⊥AD于FG,当)过点(2E作大?最大值为多少?内(包括边界)为何值时,在矩形ABCDt3)在动点P,Q运动的过程中,当(的值.为顶点的四边形为菱形?请直接写出tQ,E,H,存在点H,使以C.4)A(1,1【解答】解:()24﹣1)+由题意知,可设抛物线解析式为y=a(x,,0)3∵抛物线过点C(2,+3﹣1)4(∴0=a,1解得,a=﹣22.32x﹣,即)﹣﹣(∴抛物线的解析式为y=x1+4y=x++文案大全.实用标准文档(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).+x=1.6中,解得点E的横坐标为﹣t代入y=﹣2x+∴将y=4﹣4.可求点GG的横坐标为1的纵坐标为+,代入抛物线的解析式中,∴点.=t﹣)﹣)﹣(4﹣t∴GE=(4﹣,GE的距离为GE2的距离为,C到又∵点A到﹣)(?EG?2+S即S=S+?EG=CEGAEGACG△△△2+1.)(t?2(t﹣﹣)=2﹣=当t=2时,S的最大值为1.ACG△(3)第一种情况如图1所示,点H在AC的上方,由四边形CQEH是菱形知CQ=CE=t,根据△APE∽△ABC,知8;,解得=t=20,即﹣=第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知﹣t,MQ=4﹣2t.CQ=QE=EH=HC=t,,PE=tEM=22222+(4﹣,即(2﹣tEMQ则在直角三角形中,根据勾股定理知EM+MQ)=EQ22,=t2t)=,t=4(不合题意,舍去)t解得,.218﹣t=20综上所述,.或t=文案大全.实用标准文档文案大全.。

数学初三九年级上册 压轴解答题(提升篇)(Word版 含解析)

数学初三九年级上册 压轴解答题(提升篇)(Word版 含解析)

数学初三九年级上册 压轴解答题(提升篇)(Word 版 含解析)一、压轴题1.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数; (2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.2.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).3.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F ,①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.4.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 5.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径;(2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.6.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c ,①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.7.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.8.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.9.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C .(1)求抛物线的解析式. (2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)10.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).11.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴;(2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.12.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题:(1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)∠APC=60°,∠BPC=60°;(2)见解析;(315344221π 【解析】【分析】(1)由△ABC是等边三角形,可知∠ABC=∠BAC=∠ACB=60°,由圆周角定理可知∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)利用上题中得到的相等的角和等边三角形中相等的线段利用AAS证得两三角形全等即可;(3)根据CM∥BP说明四边形PBCM是梯形,利用上题证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算四边形的面积即可;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,利用勾股定理求出AB的长,在△ABC中,利用等边三角形的性质求出BN,在△BON中利用勾股定理求出OB,最后根据弧长公式求出弧AB的长.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵=BC BC,=AC AC,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC∵AC=BC,在△ACM和△BCP中,M BPCMAC PBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM≌△BCP(AAS);(3)∵CM∥BP,∴四边形PBCM为梯形,作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CP,AM=BP,又∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=332,∴S四边形PBCM=12(PB+CM)×PH=12(2+3)×33=153;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,∵∠APC=∠BPC=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴PQ=12PB=1,∴在△BPQ中,2221=3-∴在△AQB中,()()2222=113=7AQ BQ+++∵△ABC为等边三角形,∴AN经过圆心O,∴BN=127,∴22212AB BN-,在△BON中,设BO=x,则ON=212x-,∴222721=2x x⎛⎫+-⎪⎪⎝⎭⎝⎭,解得:21∵∠BOA=2∠BCA=120°,∴AB=211202213180ππ⨯【点睛】 本题考查了圆周角定理,全等三角形的判定与性质,等边三角形的判定,四边形的面积,勾股定理,弧长公式,是一道比较复杂的几何综合题,解题关键是能够掌握并灵活运用全等三角形的判定与性质等知识.2.(1)证明见解析;(2)213;(3)23a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明;(2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=11322BC AC ==,∴在Rt △ABG中,333AG BG ==,∵BF ⊥EC ,∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA ,∴123=11532a BF BE AG EG a a ==+, ∵33AG BG ==,∴2525BF a a =⨯=,∴△OFB 的面积=211223BF BM a a ⋅=⨯=. 【点睛】 本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.3.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可. 4.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒ 62=︒,∵BC BD =,∴1802BBCD BDC ︒-∠∠=∠=180622︒-︒=59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==, ∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =- a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根. ②∵AE AD =, 又∵AD EC =,∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+,∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.5.(1)PA O 2)见解析;(3)⊙O 的半径为2或5【解析】 【分析】(1)过点A 作BP 的垂线,作直径AM ,先在Rt △ABH 中求出BH ,AH 的长,再在Rt △AHP 中用勾股定理求出AP 的长,在Rt △AMP 中通过锐角三角函数求出直径AM 的长,即求出半径的值;(2)证∠APB =∠PAD =2∠PAE ,即可推出结论;(3)分三种情况:当AE ⊥BD 时,AB 是⊙O 的直径,可直接求出半径;当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,通过证△BFE ∽△DAE ,求出BE 的长,再证△OBE 是等边三角形,即得到半径的值;当AE ⊥AB 时,过点D 作BC 的垂线,通过证△BPE ∽△BND ,求出PE ,AE 的长,再利用勾股定理求出直径BE 的长,即可得到半径的值. 【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP , 在Rt △ABH 中,∠ABH =60°, ∴∠BAH =30°,∴BH=12AB=2,AH=AB•sin60°=∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=APsin60︒,∴⊙O的半径为3,即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF=5,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP10,∴BP=10x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10x)2+(x)2,解得,x1=(舍),x2,∴AE=∴BE=∴r,∴⊙O的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.6.(1)m=﹣1,n=3,y=﹣x2+2x+3;(2)S=3;(3)①y最大值=4;当x=3时,y最小值=0;②t=﹣1或t=2【解析】 【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答. 【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <, 用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩,∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4), ①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.7.(1)2114y x =-;(2)点P 37(,)216-;(3)(2M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =-故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M SSSx x x x EN ⎡⎤=+=-+-•⎣⎦∴()()104=22m m --- ∴2440m m +-=解得:12m =--,22m =-+(舍去)∴M (2--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析.8.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或.【解析】 【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COFCOD SS =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可. 【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COFCOD SS =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t , 点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t ty x x t t--==, 则点55(5)D t t -,, 把D 点坐标代入抛物线解析式,解得:15t =或25, 则点D 的坐标为(14),或(2)3,;(3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, , ∴()E BO EBO AAS '≌ , ∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点B E '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- ,故点P 1的坐标为17()24-,;当BP 在x 轴下方时,如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠', ∴222E BE OBE EBP OBE ∠'=∠∠=∠, , ∴FEB EBF ∠=∠ , ∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- ,设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,, 由FE BF =,同理可得:12n =, 故点15()24F ,,则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时,同理可得:x =舍去负值),故点458(417P +-+,.故点P 的坐标为:(14),或17()24-,或13209()24--,或(54178+-+,. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.9.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】【分析】(1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩, 解得:132b c =⎧⎪⎨=⎪⎩, ∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+, ∴点M 的坐标为(1,2) 令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =, ∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32, ∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析. 10.(1)详见解析;(2)333CD =+或3;(3)详见解析.【解析】【分析】(1)只要证明△EAF ∽△FEG 即可解决问题;(2)如图3中,作DE ⊥BA 交BA 的延长线于E .设AE=a .在Rt △BDE 中,利用勾股定理构建方程求出a ,分两种情形构建方程求解即可;(3)①当△AFE ∽△EFC 时,连接BC ,AC ,BD .②当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .③当△AFE ∽△CEF 时,分别求解即可,注意答案不唯一.【详解】解:(1)如图1,∵正方形ABCD 中4AB AD CD ===,90A D ∠=∠=,E 为AD 中点∴2AE ED ==,∵1AF DH ==,∴12AF DE AE CD == ∴AEF DCE ∆∆∽∴AEF DCE ∠=∠,AFE DEC ∠=∠∵//AF DH ,∴四边形AFHD 为平行四边形∴AD FH ,∴AEF EFG ∠=∠,DEC EGF AFE ∠=∠=∠∴AEF EFG ∆∆∽∴EF 为四边形AFGE 的相似对角线.(2)如图2,过点D 作DE BA ⊥,垂足为E ,设AE a =∵120A CBD ∠=∠=,∴60EAD ∠=,∴3DE a =∵2AB =,6BD =∴()22236a a ++=31a -=(负根已经舍弃), ∴31AD =-分为两种情况:①如图3,当ABD BCD ∆∆∽时,AD BD BD CD = ∴()316CD -=,∴333CD =②如图4,当ABD BDC ∆∆∽时,AB BD BD CD= ∴26CD =,∴3CD = 综上,333CD =+或3(3)①如图5,∵∠FEC=∠A=90°,∠BEF=∠BEC+∠FEC=∠A+∠AEF ,∴AFE BEC ∠=∠,AF EF AF AE EC BE==,∴AFE BEC ∆∆∽,∴90B ∠= 由“一线三等角”得83AF =.②如图,当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .∵△AFE ∽△FEC ,∴∠AFE=∠FEC ,∴AD ∥EC ,∴∠CEB=∠DAB=90°,∵∠OMA=∠AHC=90°,∴四边形AEOM ,四边形AECH 都是矩形,∵OM ⊥AD ,∴AM=MD=3,∴AM=OE=3,∵OE⊥AB,∴AE=EB=4,∴OA=2234+=5,∴CE=AH=8,设AF=x,则FH=8-x,CH=AE=4,由△AEF∽△HFC,可得AFCH=AEFH,∴448xx =-,解得x=4,经检验x=4是分式方程的解,∴AF=4.③如图当△AFE∽△CEF时易证四边形AECF是矩形,AF=EC=8.综上所述,满足条件的AF的长为83或4或8.(答案不唯一)【点睛】本题属于圆综合题,考查正方形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.11.(1)点B的坐标为(﹣1,0),点A的坐标为(3,0),点C的坐标为(0,3);抛物线的对称轴为直线x=1;(2)⊙P5;(3)1<y<2;(4)3﹣322.【解析】【分析】(1)分别代入y=0、x=0求出与之对应的x、y的值,进而可得出点A、B、C的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF 取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y =0时,﹣(x+1)(x ﹣3)=0,解得:x 1=﹣1,x 2=3,∴点B 的坐标为(﹣1,0),点A 的坐标为(3,0);当x =0时,y =﹣(0+1)×(0﹣3)=3,∴点C 的坐标为(0,3);∵抛物线与x 轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x =1;(2)连接CP 、BP ,如图1所示,在Rt △BOC 中,BC =∵∠AOC =90°,OA =OC =3,∴∠OAC =∠OCA =45°,∴∠BPC =2∠OAC =90°,∴CP =BP =2BC∴⊙P(3)设点D 的坐标为(1,y),当∠BDC =90°时,BD 2+CD 2=BC 2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y 2﹣3y+2=0,解得:y 1=1,y 2=2,∴当1<y <2时,∠BDC >90°;(4)将△ACO 绕点A 逆时针方向旋转45°,点C 落在点C′处,点O 落在点O′处,如图2所示.∵AC =ACO =45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y =﹣x+3﹣∵点E 在线段CO 上,∴点F 在线段C′O′上.过点O 作OF ⊥C′O′于点F ,则△OC′F 为等腰直角三角形,此时线段OF 取最小值, ∵△OC′F 为等腰直角三角形,∴OF =2OC′=23)=3﹣2.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A 、B 、C 的坐标;(2)利用圆周角定理找出∠BPC =90°;(3)利用极限值法求出点D 纵坐标;(4)利用点到直线之间垂直线段最短确定点F 的位置.12.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上, 过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P 与直线AB 相切,∵OC ∥AB ,∴∠AOC =∠OAG ,∴sin ∠AOC =sin ∠OA 45PG G AP==, t 45-t 5∴=, ∴209t =; ⊙P 与BC 相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.。

初三九年级数学上册 压轴解答题(培优篇)(Word版 含解析)

初三九年级数学上册 压轴解答题(培优篇)(Word版 含解析)

初三九年级数学上册 压轴解答题(培优篇)(Word 版 含解析)一、压轴题1.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E . (1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ;②如图3,弦AB 与弦CD 不相交:③如图4,点B 与点C 重合.2.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.3.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,=;①求证: CA CF②若⊙O的半径为3,BF=2,求AC的长.4.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.5.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.6.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA=,过点C作O的切线l,连接OE并延长交直线l 于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC .(2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长. 7.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.8.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C ,3OB OC ==.(1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COF CDF S S =::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO 交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.10.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P3,2),Q3,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.11.()1尺规作图1:已知:如图,线段AB和直线且点B在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.12.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长.(3)连接PQ ,试说明3PQ 2+OA 2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【解析】【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得.【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥∴AB 是直径∴1OC OD CD ===∴OCD 是等边三角形∴60COD ∠=︒∴30DBE ∠=︒∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OD 、OC 、AC ,如图:∵1OD OC CD ===∴OCD 为等边三角形∴60COD ∠=︒∴30DAC ∠=︒∴30EBD ∠=︒∵90ADB ∠=︒∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥∴AB 是直径∴1OC OD CD ===∴OCD 是等边三角形∴60COD ∠=︒∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点 ∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD =∴30A ∠=︒∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.2.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD≌△BCF,得到∠CAD=∠CBF即可得到∠AEF=∠BCF=90°即可;②根据已知条件画图即可;(2)取AB的中点M,根据直角三角形斜边上的中线等于斜边的一半可得到点A,B,C,E四点在同一个圆M上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB︒=∠=,CD CF=∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.3.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.4.(1)详见解析;(2)21y 2x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AEBE BC =,y x =,即212y x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,60AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC ,∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,y x =,∴212y x =-+,∵212y x =-+=213(22x -+,当x =y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA=ME=MF=MH,则A、E、H、F在同一圆上;如图2,连接AH,∵△EFG为等边三角形,H为EG中点,∴∠EFH=30°∵A、E、H、F在同一圆上∴∠EAH=∠EFH=30°,如图2所示的线段AH即为H移动的路径,在直角三角形ABH中,360AHsinAB=︒=,∵AB=23∴AH=3,所以点H移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.5.(1)菱形的周长为8;(2)t=65,∠MAC=105°;(3)当t=1﹣35或t=13圆M与AC相切.【解析】试题分析:(1)过点B作BE⊥AD,垂足为E.由点A和点B的坐标可知:3AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 M与x轴的切线为F,AD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B作BE⊥AD,垂足为E,连接MF,F为 M与AD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MN⊥AC,垂足为N,作ME⊥AD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到33t+2t=5+AE.列方程求解即可.试题解析:(1)如图1所示:过点B作BE AD⊥,垂足为E,∵()B 1,3-,()A 2,0,∴BE 3=,AE 1=,∴22AB AE BE 2=+=,∵四边形ABCD 为菱形,∴AB BC CD AD ===,∴菱形的周长248=⨯=.(2)如图2所示,⊙M 与x 轴的切线为F ,AD 中点为E ,∵()M 3,1-,∴()F 3,0-,∵AD 2=,且E 为AD 中点,∴()E 30,,EF 6=, ∴2t 3t 6+=,解得6t 5=. 平移的图形如图3所示:过点B 作BE AD ⊥,垂足为E ,连接MF ,F 为⊙M 与AD 切点,∵由(1)可知,AE 1=,BE 3=,∴tan EAB 3∠=,∴EAB 60∠=︒,∴FAB 120∠=︒,∵四边形ABCD 是菱形, ∴11FAC FAB 1206022∠∠==⨯︒=︒, ∵AD 为M 切线,∴MF AD ⊥, ∵F 为AD 的中点,∴AF MF 1==,∴AFM 是等腰直角三角形,∴MAF 45∠=︒,∴MAC MAF FAC 4560105∠∠∠=+=︒+︒=︒.(3)如图4所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒,∴DAC 60∠=︒.∵AC 、AD 是圆M 的切线∴MAE 30∠=︒,∵ME MN 1==.∴EA 3=∴3t 2t 53+=-∴3t 1=. 如图5所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD为菱形,DAB120∠=︒,∴DAC60∠=︒,∴NAE120∠=︒,∵AC、AD是圆M的切线,∴MAE60∠=︒,∵ME MN1==,∴3 EA=∴33t2t53+=+,∴3t1=+.综上所述,当3t1=-3t1=+时,圆M与AC相切.点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.6.(1)①补图见解析;②证明见解析;(2)FB=21【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43由(1)可知∠OFC=∠ODC,∴FC=CD=3∵BG⊥l,OC⊥l,∴OC//BG,∴∠CBG=∠OCD=30°,∴CG=12322BC CG-,∴FG=FC+CG=53,∴22FG BG+21【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.7.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥//OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠=290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠=A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==,NE MM '⊥于点E.11()22ME EM MM a b ''∴===+, ()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=, 16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.8.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或. 【解析】【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COF COD S S =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可.【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COF COD S S =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t ,点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,, 把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, , ∴()E BO EBO AAS '≌ ,∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠', ∴222E BE OBE EBP OBE ∠'=∠∠=∠, , ∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- ,设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求, 设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,, 由FE BF =,同理可得:12n =, 故点15()24F ,,则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时,同理可得:x =舍去负值),故点458(417P +-+,.故点P 的坐标为:(14),或17()24-,或13209()24--,或(54178+-+,. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.9.(1)点D 的坐标为(2,12),抛物线的解析式为24 ?1?3y x =-+;(2)①1n =+;②234S m =+,S 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得m =2n FB ==,m =3n FD ==,代入n km b =+,即可求解;②求得NA 3m =,过N 作NQ ⊥EA ,得到NQ=12NA=32,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,=ABO=60︒,∴点A 的坐标为0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD交OA于H,则CH⊥OA,∴DH=12OD=12,3CH=CD+DH=32,∴点D的坐标为312),点C的坐标为332),将A30) , C的坐标为(32,32)代入抛物线的解析式y = ax2 + bx + 1,得:3310333142a ba⎧+=⎪⎨+=⎪⎩,解得:433ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为243?1?3y x x=-+;(2)①在Rt△FEA中,∠FAE=30︒,3FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3,∵动点M、N同时作匀速直线运动,∴n关于m成一次函数,故设此一次函数解析式为:n km b=+,当点M运动到点O时,点N恰好与点B重合,∴3m=2n FB==,当点M运动到点A时,点N恰好与点D重合,∴23m=3n FD==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当3m ==⎝⎭0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】 本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.10.(1)45,45;(2)k=3±3)y﹣2 【解析】【分析】(1)如图3,连接AC ,则∠ABC=45°;设M 是x 轴的动点,当点M 运动到点O 时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M 为圆心,长度1为半径作圆M ,当圆与直线y=kx 相切时,直线y=kx (k≠0)关于线段EF 的视角为90°,即∠EQF=90°,则MQ ⊥直线OE ,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ 的倾斜角为45°,分别作点Q 、P 作x 轴、y 轴的平行线交于点R ,RQ=RP=1,以点R 为圆心以长度1为半径作圆R ,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=3±;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.11.(1) 见解析;(2) 2,2 ;(3)0或222或222x<<【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可; ()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形, 1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。

九年级数学上册 压轴解答题(培优篇)(Word版 含解析)

九年级数学上册 压轴解答题(培优篇)(Word版 含解析)

九年级数学上册压轴解答题(培优篇)(Word版含解析)一、压轴题1.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.2.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 3.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 4.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值. 5.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.6.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P为抛物线上一动点,且满足∠PAB=2∠ACO.求点P的坐标.7.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.8.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.9.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E (30)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点. (1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.10.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.11.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.12.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.2.(1)4;(2)t为4s,203s,283s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P在AB上,一种是P在BC上时.一种是P在CD上时,又分为两种情况,一种是P在Q右侧,一种是P在Q左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ时,四边形APQD为矩形.此时,4t=20-t,解得t=4(s).答:t为4时,四边形APQD为矩形(2)当PQ=4时,⊙P与⊙Q外切.①如果点P在AB上运动.只有当四边形APQD为矩形时,PQ=4.由(1),得t=4(s);②如果点P在BC上运动.此时t≥5,则CQ≥5,PQ≥CQ≥5>4,∴⊙P与⊙Q外离;③如果点P在CD上运动,且点P在点Q的右侧.可得CQ=t,CP=4t-24.当CQ-CP=4时,⊙P与⊙Q外切.此时,t-(4t-24)=4,解得t=203(s);④如果点P在CD上运动,且点P在点Q的左侧.当CP-CQ=4时,⊙P与⊙Q外切.此时,4t-24-t=4,解得t=283(s),∵点P从A开始沿折线A-B-C-D移动到D需要11s,点Q从C开始沿CD边移动到D需要20s,而283<11,∴当t为4s,203s,283s时,⊙P与⊙Q外切.考点:1.矩形的性质;2.圆与圆的位置关系.3.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,证明结论.【详解】解:(1)证明:∵AC=BD,∴AC BD,则AB DC,∴AB=CD;(2)如图1,连接OB、OD,作OH⊥BD于H,∵弧BD的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则BH=3OB=43,∴BD=83,则四边形ABCD的面积=12×AC×BD=96;(3)AD=2OM,连结OB、OC、OA、OD,作OE⊥AD于E,如图2,∵OE⊥AD,∴AE=DE,∵∠BOC=2∠BAC,而∠BOC=2∠BOM,∴∠BOM=∠BAC,同理可得∠AOE=∠ABD,∵BD⊥AC,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE,在△BOM和△OAE中,OMB OEAOBM OAEOB OA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM≌△OAE(AAS),∴OM=AE,∴AD=2OM.【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.4.(1)m=﹣1,n=3,y=﹣x2+2x+3;(2)S=3;(3)①y最大值=4;当x=3时,y最小值=0;②t=﹣1或t=2【解析】【分析】(1)首先解方程求得A、B两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C的坐标,然后确定顶点D的坐标,根据两点的距离公式可得BDC∆三边的长,根据勾股定理的逆定理可得90DBC∠=︒,据此求出△BDC面积;(3)①确定抛物线的对称轴是1x=,根据增减性可知:1x=时,y有最大值,当3x=时,y有最小值;②分5种情况:1、当函数y在1t x t+内的抛物线完全在对称轴的左侧;2、当11t+=时;3、当函数y在1t x t+内的抛物线分别在对称轴的两侧;4、当1t=时,5、函数y 在1t x t+内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m,n分别是方程2230x x--=的两个实数根,且m n<,用因式分解法解方程:(1)(3)0x x+-=,11x∴=-,23x=,1m∴=-,3n=,(1,0)A∴-,(0,3)B,把(1,0)-,(0,3)代入得,103b cc--+=⎧⎨=⎩,解得23bc=⎧⎨=⎩,∴函数解析式为2y x2x3=-++.(2)令2230y x x =-++=,即2230x x --=, 解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4), ①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题. 5.(1)y =﹣14x 2+x +3,顶点B 的坐标为(2,4);(2)(i )点E 的坐标为(85,3)或(125,3);(ii )存在;当点G 落在y 轴上的同时点F 恰好落在抛物线上,此时AE 的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.6.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫- ⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭ 【解析】【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标.【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3),∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩, ∴抛物线的函数表达式为y =x 2+2x -3.(2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1,∴D (﹣1,0),x M =x N =﹣1,设Q (t ,t 2+2t ﹣3)(﹣3<t <1),设直线AQ 解析式为y =dx +e∴2023d e dt e t t +=⎧⎨+=+-⎩解得:33d t e t =+⎧⎨=--⎩,∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6,∴DM =0﹣(﹣2t ﹣6)=2t +6,设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2,∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1,∴B (﹣3,0),∵A (1,0),C (0,﹣3),∴OA =1,OC =3,AC 221310+=AB =4,∴Rt △AOC 中,sin ∠ACO =010A AC =,cos ∠ACO =310OC AC =, ∵AB =AH ,G 为BH 中点,∴AG ⊥BH ,BG =GH ,∴∠BAG =∠HAG ,即∠PAB =2∠BAG ,∵∠PAB =2∠ACO ,∴∠BAG =∠ACO ,∴Rt △ABG 中,∠AGB =90°,sin ∠BAG =1010BG AB =, ∴BG 10210AB =, ∴BH =2BG 410, ∵∠HBI +∠ABG =∠ABG +∠BAG =90°,∴∠HBI =∠BAG =∠ACO , ∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =HIBH =10,cos ∠HBI =310BI BH =, ∴HI =10BH =43,BI =310BH =125, ∴x H =411355-+=-,y H =125-,即1112,55H ⎛⎫-- ⎪⎝⎭, 设直线AH 解析式为y =kx +a ,∴0111255k a k a +=⎧⎪⎨-+=-⎪⎩,解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AH :3344y x =-, ∵2334423y x y x x ⎧=-⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴939,416P ⎛⎫-- ⎪⎝⎭. ②若点P 在x 轴上方,如图2,在AP 上截取AH '=AH ,则H '与H 关于x 轴对称.∴1112,55H ⎛'⎫- ⎪⎝⎭, 设直线AH '解析式为y k x a ='+',∴0111255k a k a +='''⎧-'⎪⎨+=⎪⎩,解得:3434k a ⎧=-⎪⎪⎨''⎪=⎪⎩, ∴直线AH ':3344y x =-+,∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或1545716x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1557,416P ⎛⎫- ⎪⎝⎭. 综上所述,点P 的坐标为939,416⎛⎫-- ⎪⎝⎭或1557,416⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键. 7.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】 (1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4), 故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.8.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1【解析】【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM ∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式. ②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案.【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2 ∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x =设MA :1y kx =-则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去)∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得: 则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩ ∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称,∴a=﹣b ∴m a m b --=0+b 0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--, 则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根, 故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--,亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=, ()111122122m k m k m a m b m m k k m---∴===----, 即m a m b--为一定值1, ∴当点M 不在y 轴上时,m a m b --为一个定值1. 【点睛】本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题.9.(1)点D 的坐标为(2,12),抛物线的解析式为24 ?1?3y x =-+;(2)①1n =+;②234S m =+,S【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得m =2n FB ==,m =3n FD ==,代入n km b =+,即可求解;②求得NA 3m =,过N 作NQ ⊥EA ,得到NQ=12NA=32,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,=ABO=60︒,∴点A 的坐标为0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD交OA于H,则CH⊥OA,∴DH=12OD=12,OH=32,CH=CD+DH=32,∴点D的坐标为312),点C的坐标为332),将A30) , C的坐标为332)代入抛物线的解析式y = ax2 + bx + 1,得:33103331422a ba⎧+=⎪⎨++=⎪⎩,解得:433ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为243?1?3y x x=-+;(2)①在Rt△FEA中,∠FAE=30︒,3FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3,∵动点M、N同时作匀速直线运动,∴n关于m成一次函数,故设此一次函数解析式为:n km b=+,当点M运动到点O时,点N恰好与点B重合,∴3m=2n FB==,当点M运动到点A时,点N恰好与点D重合,∴23m=3n FD==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当3m ==⎝⎭0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】 本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.10.(1)243y x x =-+-;(2)点P 坐标为(-1,-8),(5,-8);(3)①G 的坐标.,,;②t =或t = 【解析】【分析】(1)将A 、B 两点坐标代入抛物线解析式,可确定抛物线解析式;(2)根据A 、B 两点坐标得AB=3-1=2,由三角形面积公式求P 点纵坐标的绝对值,得出P 点纵坐标的两个值,代入抛物线解析式求P 点横坐标;(3)①根据题意,可分为两种情况进行分析:当点G 在对称轴右侧;当点G 在对称轴左侧;结合图像,分别求出点G 的坐标即可;②根据题意,可分为两种情况进行分析:当点G 在对称轴左侧;当点G 在对称轴右侧;结合图像,分别列出方程,求出t 的值即可.【详解】解:(1)把点(1,0)A ,(3,0)B 代入抛物线2y x bx c =-++上,求得:4b =,3c =-,∴243y x x =-+-;(2)依题意,得312AB =-=,设P 点坐标为(,)a n ,当0n >时,则8n =,故2–438x x +-=,即24110x x ++=,∴441111644280∆=-⨯⨯=-=-<2(-), 方程24110x x -++=无实数根;当0n <时,则8n =-故2438x x -+-=-,即2450x x -+-=,解得:11x =-,25x =所求点P 坐标为(-1,-8),(5,-8).(3)①分两种情况当点G 在对称轴右侧,设点G D 的横坐标为m ,则点D 到对称轴的距离为2m -,∵点D 到x 轴和到对称轴的距离相等所以点D 的纵坐标为2m -或2m -﹐当点D 的坐标为(,2)m m -,有2243m m m -=-+-,解得:1352m =,2352m =(不符题意舍去),此时点D 的坐标为:3551(,)22+-. 当点D 的坐标为(,2)m m -时,有 2243m m m -=-+-,解得:1552m +=,2552m -=(不符题意舍去), 此时点D 的坐标为:5515(,)22+--. 当点G 在对称轴左侧,设点D 的横坐标为m ,则点D 到对称轴的距离为2m -﹐因为点D 到x 轴和到对称轴的距离相等所以点D 的纵坐标为2m -或2m -,分别代入解析式可求出点D 的坐标分别为:3551(,)---,5515(,)--+. 综上所述点D 的坐标为:3551(,)+-﹐5515(,)+--,3551(,)---,5515(,)--+. ②分两种情况当点G 在对称轴左侧,此时有1EN t =-,2NF t =﹐因为//EN GF ,点E 为CG 的中点,所以222GF EN t ==-,所以点G 的坐标为(42,2)t t --,将(42,2)t t --代入243y x x =-+-中,得2(42)4(42)3t t t -=--+-2-,解得:1513t +=,2513t -=(不合题意舍去). 当点G 在对称轴右侧,此时有1EN t =-,2NF t =,因为//EN GF ,点E 为CG 的中点,所以222GF EN t ==-,所以点G 的坐标为(42,2)t t --,将(42,2)t t --代入243y x x =-+-中,得 2(42)4(42)3t t t -=--+-2-,解得:15134t +=(不合题意舍去),25134t -=. 综上所述:5134t +=或5134t -=. 【点睛】本题考查了待定系数法求抛物线解析式,三角形面积公式的运用.关键是熟练掌握求二次函数解析式的方法,掌握三角形的高与P 点纵坐标的关系,注意运用数形结合和分类讨论的思想进行解题.11.(1)证明见解析;(2)①215(3)21029y x =【解析】【分析】 ()1由圆内接四边形性质知ABC CDE ∠∠=,由AB AC =知ABC ACB ∠∠=,从而得ADB ACB ABC CDE ∠∠∠∠===;()2①由BAD DCE ∠∠=,ADB CDE ∠∠=可证ADB ∽CDE.从而得AD DB CD DE =; ②连接AO 并延长交BD 于点M ,连接CM ,证MAF ≌DAF 得MF DF =,据此知BM CM CD 3===,MF DF 2==,求得22CF CD DF 5=-=定义可得答案; ()3证ABD ∽AEB 得2AB AD AE.=⋅证ABD ∽CED 得BD CD AD DE.⋅=⋅从而得2ABC BCD 111S S AB AC sin BAC BD CD sin BDC x sin BAC 222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tan CDE 2∠∠==,可设BM 2a =,知AM 5a =,AB 29a =,由面积法可得BN a 29=,即20sin BAC 29∠=,据此得出答案. 【详解】解:()1四边形ABCD 是圆O 的内接四边形,ABC 180ADC CDE ∠∠∠∴=-=.AB AC =,ABC ACB ∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆,BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠,AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=.MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线.BM CM CD 3∴===,MF DF 2∴==,在Rt CDF 中,2222CF CD DF 325=--=,BF 5tan ACB 5CF 5∠∴===. ()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==,ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED ,BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅. 21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==, 如图2,设BM 2a =,则AM 5a =,AB 29a =, 由面积法可得BN a 29=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.12.(1)证明见解析(2)当AM 的长为(1﹣)时,四边形EPGQ 是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。

初三九年级上册数学 压轴解答题(培优篇)(Word版 含解析)

初三九年级上册数学 压轴解答题(培优篇)(Word版 含解析)

初三九年级上册数学 压轴解答题(培优篇)(Word 版 含解析)一、压轴题1.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?3.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.4.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.5.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).6.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由. 7.如图,抛物线2)12(0y ax x c a =-+≠交x 轴于,A B 两点,交y 轴于点C .直线122y x =-经过点,B C .(1)求抛物线的解析式;(2)点P 是抛物线上一动点,过P 作x 轴的垂线,交直线BC 于M .设点P 的横坐标是t .①当PCM ∆是直角三角形时,求点P 的坐标;②当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,求直线解析式y kx b =+(,k b 可用含t 的式子表示).8.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E (30)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点. (1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.9.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(3,2),Q(3+1,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.10.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.11.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.12.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或22)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);② 当四边形OP 2CQ 2为菱形时,OP 2=CP 2 ,由C 坐标为(0,6),得到Q 2纵坐标为3,把y=3代入直线OQ 2解析式y=-x 中,得:x=-3,此时Q 2(-3,3);③当四边形0Q 3P 3C 为菱形时,OC=CP 3,则有OQ 3=OC=CP 3=P 3Q 3=6,设坐标为(x ,-x+6), ∵OC=CP 3∴x 2+x 2= CP 32= OC 2=62解得,x=32,P 的坐标为 (32,6-32) 此时Q 3 (32,-32).综上,点Q 的坐标是(-3,3)或(32,-32)或(6,6). 【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍. 2.(1)见解析;(2)DB DF = 【解析】 【分析】(1)①直接利用三角形的外角性质,即可得到; ②过D 作DGBC 交AB 于点G ,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC =,DGB FCD ∠=∠,然后证明三角形全等,即可得到结论成立; (2)连接BF ,根据题意,可证得BCF BDF A ∠=∠=∠,则B 、C 、D 、F 四点共圆,即可证明结论成立. 【详解】解:(1)①∵BDC A ABD ∠=∠+∠, 即BDF FDC A ABD ∠+∠=∠+∠, ∵BDF A ∠=∠, ∴FDC ADB ∠=∠; ②过D 作DGBC 交AB 于点G ,∴ADG ACB ∠=∠,AGD ABC ∠=∠, 又AB AC =, ∴A ABC CB =∠∠, ∴AGD ADG ∠=∠, ∴AD AG =,∴AB AG AC AD -=-, ∴BG DC =,又ECF ACB AGD ∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,AABC CB=∠∠,∵ECF ACB∠=∠,∴ABC ECF∠=∠,∵BCA CA BCF E F=∠+∠∠+∠,∴A BCF∠=∠,∴BDF A BCF∠=∠=∠,∴B、C、D、F四点共圆,∴180DCB DFB∠+∠=︒,DBF ECF∠=∠,∴ACB DFB∠=∠,∵BC EC ACA F B=∠=∠∠,∴DBF DFB∠=∠,∴DB DF=.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.3.(1)22+;(2)63103t≤≤-或103165-≤≤-3)325m≤-或0m≥【解析】【分析】(1)作直线:y x b=-+平行于直线1l,且与H相交于点P,连接PO并延长交直线1l于点Q,作PM⊥x轴,根据只有一个交点可求出b,再联立求出P的坐标,从而判断出PQ 平分∠AOB,再利用直线1l表达式求A、B坐标证明OA=OB,从而证出PQ即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l的最大距离为TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可. 【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2, ∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-, ∴A(-2,0),B(0,-2), ∴OA=OB=2, 又∵OQ 平分∠AOB , ∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离, ∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒, ∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则,∴2PQ OP OQ =+=+()1,2min D H l =(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH + ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤ 由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =, ∴6310t ≤≤,解得63103t ≤≤103165-≤≤-; (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩, ∴182b a =-+, 又∵点(),D a b 恒在直线3l 上,∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交,∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +,∴(),28m m F ---, 把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E 运动到直线3l 上时,把点E 代入182y x =-+得:18282m m -+=+,解得:0m =, ∵当点E 沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向上运动,即0m ≥,综上所述,325m ≤-或0m ≥. 【点睛】 本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.4.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS )∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE ⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME ∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM ====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.5.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17)π;②21【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB=22AC BC+=216x+,∴OA=2 16x +,∵AF=22EF AE+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,∴216x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=2164x+解得x2=17﹣2(负根已经舍弃),∴AB2=16+4x2=17+8,∴⊙O的面积=π•14•AB2=(17+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭21,∵EF=18x2=98,∴FG=212﹣98,AF22AE EF+158,AH22AE EH+302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴219281530 8-=∴CG 270﹣33010,30=21.故答案为21【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题. 6.(1)()90,3,4--;(2)48QH t =- ;(3)存在,21-或732或2532 【解析】【分析】(1)由于直线y =34t x -3过C 点,因此C 点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A 点的坐标代入抛物线的解析式中即可求出b 的值;(2)求QH 的长,需知道OQ ,OH 的长.根据CQ 所在直线的解析式即可求出Q 的坐标,也就得出了OQ 的长,然后求OH 的长.在(1)中可得出抛物线的解析式,那么可求出B 的坐标.在直角三角形BPH 中,可根据BP=5t 以及∠CBO 的正弦值(可在直角三角形COB 中求出),得出BH 的长,根据OB 的长即可求出OH 的长.然后OH ,OQ 的差的绝对值就是QH 的长;(3)本题要分①当H 在Q 、B 之间.②在H 在O ,Q 之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t 的值.【详解】(1)由于直线y =34tx -3过C 点,C 点在y 轴上,则C 点的坐标为(0,-3), 将A 点坐标代入解析式中,得0=34-b -3,解得b =-94; 故答案为 ()0,3-,94-; (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0).∴OB =4,又∵OC =3,∴BC =5.由题意,得△BHP ∽△BOC ,∵OC ∶OB ∶BC =3∶4∶5,∴HP ∶HB ∶BP =3∶4∶5,∵PB =5t ,∴HB =4t ,HP =3t .∴OH =OB -HB =4-4t .由y =34tx -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t .①当H 在Q 、B 之间时,QH =OH -OQ=(4-4t )-4t =4-8t .②当H 在O 、Q 之间时,QH =OQ -OH=4t -(4-4t )=8t -4.综合①,②得QH =|4-8t |;(3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似.t 11,t 2=732,t 3=2532解析:①当H 在Q 、B 之间时,QH =4-8t ,若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得48334t t t -=, ∴t =732. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得34834t t t -=, 即t 2+2t -1=0.∴t 11,t 2=1-(舍去).②当H 在O 、Q 之间时,QH =8t -4.若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得84334t t t -=, ∴t =2532. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得38434t t t -=, 即t 2-2t +1=0.∴t 1=t 2=1(舍去).综上所述,存在t 的值,t 11,t 2=732,t 3=2532.故答案为(1)()90,3,4--;(2)48QH t =- ;(31或732或2532. 【点睛】 本题是二次函数的综合题,此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.7.(1)211242y x x =--;(2)①P (2,−2)或(-6,10),②1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++ 【解析】【分析】(1)利用一次函数与坐标轴交点的特征可求出点B ,C 的坐标,根据点B ,C 的坐标,利用待定系数法可求出二次函数解析式;(2)①由PM ⊥x 轴可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°两种情况考虑: (i )当∠MPC=90°时,PC //x 轴,利用二次函数可求出点P 的坐标;(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,易证△BOC ∽△COD ,利用相似三角形的性质可求出点D 的坐标,根据点C ,D 的坐标,利用待定系数法可求出直线PC 的解析式,联立直线PC 和抛物线的解析式,通过解方程组可求出点P 的坐标; ②在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线,分开求解三条中位线方程即可求解.【详解】解:(1)因为直线交抛物线于B 、C 两点,∴当x =0时,y =12x −2=−2, ∴点C 的坐标为(0,−2);当y =0时,12x −2=0, 解得:x =4,∴点B 的坐标为(4,0).将B 、C 的坐标分别代入抛物线,得:2144022a c c ⎧⨯-⨯+=⎪⎨⎪=-⎩,解得:142a c ⎧=⎪⎨⎪=-⎩, ∴抛物线的解析式为211242y x x =--. (2)①∵PM ⊥x 轴,M 在直线BC 上,∴∠PMC 为固定角且不等于90,∴可分两种情况考虑,如图1所示:(i )当∠MPC=90时,PC //x 轴,∴点P 的纵坐标为﹣2,将y p =-2,代入抛物线方程可得:2112242x x --=-解得: x 1=2,x 2=0(为C 点坐标,故舍去),∴点P 的坐标为(2,−2);(ii )当∠PCM=90°时,设PC 与x 轴交于点D ,∵∠OBC+∠OCB=90°,∠OCB+∠OCD=90°,∴∠OBC=∠OCD ,又∵∠BOC=∠COD=90°,∴BOC ∽COD (AAA ), ∴OD OC OC OB =,即OD=2OC OB, 由(1)知,OC=2,OB=4,∴OD=1,又∵D 点在X 的负半轴∴点D 的坐标为(-1,0),设直线PC 的解析式为:y =kx +b (k ≠0,k 、b 是常数),将C(0,−2),D(-1,0)代入直线PC 的解析式,得:20b k b =-⎧⎨-+=⎩,解得:22k b =-⎧⎨=-⎩, ∴直线PC 的解析式为y =-2x −2,联立直线PC 和抛物线方程,得:22122142x x x -=---, 解得:x 1=0,y 1=−2,x 2=-6,y 2=10,点P 的坐标为(-6,10),综上所述:当PCM 是直角三角形时,点P 的坐标为(2,−2)或(-6,10);②如图2所示,在ACM 中,如果存在直线使A 、C 、M 到该直线距离相等,则该直线应为ACM 的中位线;(a )当以CM 为底时,过A 点做CM 的平行线AN ,直线AN 平行于CM 且过点A ,则斜率为12,AN 的方程为:1(+2)2y x =,则中位线方程式为:1122y x =-; (b )当以AM 为底时,因为M 为P 点做x 轴垂线与CB 的交点,则M 的横坐标为t ,且在直线BC 上,则M 的坐标为:1,22M t t -(),其中4t >,则AM 的方程为:44+242t t y x t t --=++,过C 点做AM 的平行线CQ ,则CQ 的方程为:4224t y x t -=-+ ,则中位线方程式为:4412424t t y x t t --=+-++; (c )当以AC 为底时,AC 的方程式为:2y x =--,由b 可知M 的坐标为:1,22M t t -(),过M 做AC 的平行线MR ,则MR 的方程为:322y x t =-+-,则中位线方程式为:324y x t =-+-; 综上所述:当点P 在点B 右侧时,存在直线l ,使点,,A C M 到该直线的距离相等,直线解析式为:1122y x =-或324y x t =-+-或4412424t t y x t t --=+-++. 【点睛】本题考查了一次函数坐标轴的交点坐标、待定系数法求二次函数解析式、相似三角形的判定与性质以及平行线的性质等,解题的关键是掌握三角形的顶点到中位线的距离相等.8.(1)点D 的坐标为312),抛物线的解析式为24 3?1?3y x x =-++;(2)①31n =+;②2334S m =+,S 93 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m=时,2n FB==,23m=时,3n FD==,代入n km b=+,即可求解;②求得NA33m=-,过N 作NQ⊥EA,得到NQ=12NA=332m-,利用面积公式得到S关于m的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB213-=-=,∠ABO=60︒,∴点A的坐标为(3,0),又∵四边形OBCD是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD交OA于H,则CH⊥OA,∴DH=12OD=12,3CH=CD+DH=32,∴点D的坐标为312),点C的坐标为332),将A30) , C的坐标为332)代入抛物线的解析式y = ax2 + bx + 1,得:3310 333142a ba⎧+=⎪⎨+=⎪⎩,解得:433ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当32m ==⎝⎭时,在0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.9.(1)45,45;(2)k=3±;(3)y=3x+3﹣2【解析】【分析】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx (k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33±(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.10.(1)见解析;(2)EF=32或512;(3)存在【解析】【分析】(1)先判断出∠ECB=∠EBC,再判断出∠OCB=∠OBC,即可得出结论;(2)先求出EF,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论;(3)先利用面积关系得出53COFO=,进而利用△OAF∽△EFC得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC,∵AC BD=,∴∠ECB=∠EBC,∵OB=OC,∴∠OCB=∠OBC,∴∠OCD=∠ECF=∠ECB﹣∠OCB=∠EBC﹣∠OBC=∠OBA;(2)∵OA=OB,∴∠OAF=∠OBA,∴∠OAF=∠ECF,①当∠AFO=90°时,∵OA5tan∠OBA=12,∴OC=OA5OF=1,AB=4,∴EF=CF•tan∠ECF=CF•tan∠OBA 51 +②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12, ∵OA∴OF =OA •tan ∠OAF, ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴EF CF OC OF OF AF AF +=== ∴EFOF =32, 即:EF =32或12; (3)存在,如图2,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴53CEO EFO S S ∆∆=, ∴53CO FO =, ∴FO =35CO, ∵△OFA ∽△EFC , ∴53CE AD CO EF FO FO ===, ∴BF =BE ﹣EF =CE ﹣EF =23EF ,∴AF=AB﹣BF=4﹣23EF,∵△OAF∽△EFC,∴CF EF FA FO=,∴85523543EF=-,∴EF=3﹣35.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.11.(1)t=3;(2)P(35t+2,45t﹣4);(3)t的值为209秒或4秒或16秒或1609秒【解析】【分析】(1)如图1,过点C作CP⊥OA,交x轴于点P.就可以求出OP的值,由勾股定理就可以求出的OP值,进而求出结论;(2)t<10时,P在OA或AB上运动,所以分两种情况:①当0≤t≤5时,如图1,点P在OA上,OP=t,可得P的坐标;②当5<t<10时,如图2,点P在AB上,构建直角三角形,根据三角函数定义可得P的坐标;(3)设切点为G,连接PG,分⊙P与四边相切,其中P在AB和BC时,与各边都不相切,所以分两种情况:①当P在OA上时,根据三角函数列式可得t的值;②当P在OC上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P与直线AB相切,∵OC∥AB,∴∠AOC=∠OAG,∴sin∠AOC=sin∠OA45PGGAP==,t45-t5 =,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.12.(1)4﹣23;(2)32;(3)4﹣5≤S≤4+5【解析】【分析】(1)在Rt△DCG中,利用勾股定理求出DG即可解决问题;(2)首先证明AH=CH,设AH=CH=m,则DH=AD﹣HD=4﹣m,在Rt△DHC中,根据CH2=CD2+DH2,构建方程求出m即可解决问题;(3)如图,当点G在对角线AC上时,△OGE的面积最小,当点G在AC的延长线上时,△OE′G′的面积最大,分别求出面积的最小值,最大值即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴BC=AD=CG=4,∠D=90°,∵AB=CD=2,∴DG=22CDCG-=2242-=23,∴AG=AB﹣BG=4﹣23,故答案为:4﹣23.(2)如图2中,由四边形CGEF是矩形,得到∠CGE=90°,∵点G在线段AE上,∴∠AGC=90°,∵CA=CA,CB=CG,∴Rt△ACG≌Rt△ACB(HL).∴∠ACB=∠ACG,∵AB∥CD∴∠ACG=∠DAC,∴∠ACH=∠HAC,∴AH=CH,设AH=CH=m,则DH=AD﹣AH=5﹣m,在Rt△DHC中,∵CH2=DC2+DH2,∴m2=22+(4﹣m)2,∴m=52,∴AH=52,GH22AH AG-22522⎛⎫-⎪⎝⎭32.(3)在Rt△ABC中,2225AC AB BC=+=,152OC AC,由题可知,G点在以C点为圆心,BC为半径的圆上运动,且GE与该圆相切,因为GE=AB 不变,所以O到直线GE的距离即为△OGE的高,当点G在对角线AC上时,OG最短,即△OGE的面积最小,最小值=12×OG×EG=12×2×(4545当点G在AC的延长线上时,OG最长,即△OE′G′的面积最大.最大值=12×E′G′×OG′=1×2×(4+5)=4+5.2综上所述,455【点睛】本题考查求一点到圆上点距离的最值、矩形的性质、全等三角形的判定和性质、旋转变换、勾股定理.(1)比较简单,掌握勾股定理和旋转的性质是解决此问的关键;(2)能表示Rt△DHC三边,借助方程思想是解决此问的关键;(2)理解线段GE的运动轨迹,得出面积最小(大)时G点的位置是解决此问的关键.。

初三九年级数学上册 压轴解答题(培优篇)(Word版 含解析)

初三九年级数学上册 压轴解答题(培优篇)(Word版 含解析)

初三九年级数学上册压轴解答题(培优篇)(Word版含解析)一、压轴题1.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2.如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求2AD BD CD2⎛⎫⋅+⎪⎪⎝⎭的最大值,并求出此时⊙O的半径.3.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.4.如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、⊥.FC,且EC EF∽;(1)求证:AEF BCEAC=AB的长;(2)若23△的外接圆圆心之间的距离?(3)在(2)的条件下,求出ABC的外接圆圆心与CEF5.如图,已知矩形ABCD中,BC=2cm,AB=23cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.6.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.7.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.8.(2015秋•惠山区期末)如图,在平面直角坐标系中,半径为1的⊙A的圆心与坐标原点O重合,线段BC的端点分别在x轴与y轴上,点B的坐标为(6,0),且sin∠OCB=.(1)若点Q 是线段BC 上一点,且点Q 的横坐标为m . ①求点Q 的纵坐标;(用含m 的代数式表示) ②若点P 是⊙A 上一动点,求PQ 的最小值;(2)若点A 从原点O 出发,以1个单位/秒的速度沿折线OBC 运动,到点C 运动停止,⊙A 随着点A 的运动而移动.①点A 从O→B 的运动的过程中,若⊙A 与直线BC 相切,求t 的值;②在⊙A 整个运动过程中,当⊙A 与线段BC 有两个公共点时,直接写出t 满足的条件. 9.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.10.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m,n的值及抛物线的解析式;(2)在图1中,把△AOC平移,始终保持点A的对应点P在抛物线上,点C,O的对应点分别为M,N,连接OP,若点M恰好在直线y=x+3上,求线段OP的长度;(3)如图2,在抛物线上是否存在点Q(不与点C重合),使△QAB和△ABC的面积相等?若存在,直接写出点Q的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E( -3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.12.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或22)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);②当四边形OP2CQ2为菱形时,OP2=CP2,由C坐标为(0,6),得到Q2纵坐标为3,把y=3代入直线OQ2解析式y=-x中,得:x=-3,此时Q2(-3,3);③当四边形0Q3P3C为菱形时,OC=CP3,则有OQ3=OC=CP3=P3Q3=6,设坐标为(x,-x+6),∵OC=CP3∴x2+x2= CP32= OC2=62解得,2P的坐标为2,2)此时Q322).综上,点Q的坐标是(-3,3)或2,2)或(6,6).【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.2.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414710【分析】(1)先判断出∠BAD =CAE ,进而得出△ABD ≌△ACE ,得出BD =CE ,∠B =∠ACE ,再根据勾股定理得出DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,即可得出结论;(2)同(1)的方法得,ABD ≌△ACE (SAS ),得出BD =CE ,再用勾股定理的出DE 2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =,再将AD+BD =14,CD =代入AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论. 【详解】解:(1)CD 2+BD 2=2AD 2,理由:由旋转知,AD =AE ,∠DAE =90°=∠BAC , ∴∠BAD =∠CAE , ∵AB =AC ,∴△ABD ≌△ACE (SAS ), ∴BD =CE ,∠B =∠ACE , 在Rt △ABC 中,AB =AC , ∴∠B =∠ACB =45°, ∴∠ACE =45°,∴∠DCE =∠ACB+∠ACE =90°,根据勾股定理得,DE 2=CD 2+CE 2=CD 2+BD 2, 在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2, ∴CD 2+BD 2=2AD 2; (2)BD 2=CD 2+2AD 2, 理由:如图2,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE , 同(1)的方法得,ABD ≌△ACE (SAS ), ∴BD =CE ,在Rt △ADE 中,AD =AE , ∴∠ADE =45°, ∴DE 2=2AD 2, ∵∠ADC =45°,∴∠CDE =∠ADC+∠ADE =90°,根据勾股定理得,CE 2=CD 2+DE 2=CD 2+2AD 2, 即:BD 2=CD 2+2AD 2;(3)如图3,过点C 作CE ⊥CD 交DA 的延长线于E , ∴∠DCE =90°, ∵∠ADC =45°,∴∠E =90°﹣∠ADC =45°=∠ADC , ∴CD =CE ,根据勾股定理得,DE 2=CD 2+CE 2=2CD 2, 连接AC ,BC , ∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°, ∵∠ADC =45°, ∴∠BDC =45°=∠ADC , ∴AC =BC ,∵∠DCE =∠ACB =90°, ∴∠ACE =∠BCD , ∴△ACE ≌△BCD (SAS ), ∴AE =BD , ①AD =6,BD =8, ∴DE =AD+AE =AD+BD =14, ∴2CD 2=142,∴CD =故答案为; ②∵AD+BD =14,∴CD =∴2AD BD ⎛⎫⋅+ ⎪ ⎪⎝⎭=AD•()=AD•(BD+7) =AD•BD+7AD =AD (14﹣AD )+7AD =﹣AD 2+21AD =﹣(AD ﹣212)2+4414,∴当AD =212时,AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭的最大值为4414, ∵AD+BD =14, ∴BD =14﹣212=72,在Rt △ABD 中,根据勾股定理得,AB 2=∴⊙O 的半径为OA =12AB .【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.3.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.4.(1)详见解析;(2)23)12【解析】【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度.【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒,∴90AEF AFE ∠+∠=︒,∵EC EF ⊥,∴90FEC ∠=︒,∴90AEF BEC ∠+∠=︒,∴AFE BEC =∠∠,∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC ,∵E 、F 分别是AB 、AD 的中点,∴22,2AB AE BE AD AF ===;∵AEF BCE ∽,∴AE AF BC BE=, ∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =(3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处,同理,△CEF 的外接圆的圆心在CF 的中点N 处,∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴2AD AB =, ∴22122882MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解.5.(1)详见解析;(2)21y 32x x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AE BE BC =,23y x x -=,即2132y x x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC ,∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,232y x x -=, ∴2132y x x =-+, ∵2132y x x =-+=213(3)22x --+, 当3x =时,y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30°∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°,如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,3602AH sin AB =︒=, ∵AB =23∴AH =3, 所以点H 移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.6.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH 3﹣13+1.【解析】【分析】(1)在AC上截取AG=BC,连接FA,FG,FB,FC,证明△FAG≌△FBC,根据全等三角形的性质得到FG=FC,根据等腰三角形的性质得到EG=EC,即可证明.(2)在CA上截取CG=CB,连接FA,FB,FC,证明△FCG≌△FCB,根据全等三角形的性质得到FG=FB,得到FA=FG,根据等腰三角形的性质得到AE=GE,即可证明.(3)分点P在弦AB上方和点P在弦AB下方两种情况进行讨论.【详解】解:(1)如图2,在AC上截取AG=BC,连接FA,FG,FB,FC,∵点F是AFB的中点,FA=FB,在△FAG和△FBC中,,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩∴△FAG≌△FBC(SAS),∴FG=FC,∵FE⊥AC,∴EG=EC,∴AE=AG+EG=BC+CE;(2)结论AE=EC+CB不成立,新结论为:CE=BC+AE,理由:如图3,在CA上截取CG=CB,连接FA,FB,FC,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG =FB ,∴FA =FG ,∵FE ⊥AC ,∴AE =GE ,∴CE =CG+GE =BC+AE ;(3)在Rt △ABC 中,AB =2OA =4,∠BAC =30°,∴12232BC AB AC ===,, 当点P 在弦AB 上方时,如图4,在CA 上截取CG =CB ,连接PA ,PB ,PG ,∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,∠PCG =∠PCB ,在△PCG 和△PCB 中, ,CG CB PCG PCB PC PC =⎧⎪∠=∠⎨⎪=⎩∴△PCG ≌△PCB (SAS ),∴PG =PB ,∴PA =PG ,∵PH ⊥AC ,∴AH =GH , ∴AC=AH+GH+CG =2AH+BC ,∴2322AH =+,∴31AH =-, 当点P 在弦AB 下方时,如图5, 在AC 上截取AG =BC ,连接PA ,PB ,PC ,PG∵∠ACB =90°,∴AB 为⊙O 的直径,∴∠APB =90°,∵∠PAB =45°,∴∠PBA =45°=∠PAB ,∴PA =PB ,在△PAG 和△PBC 中,,AG BC PAG PBC PA PB =⎧⎪∠=∠⎨⎪=⎩∴△PAG ≌△PBC (SAS ),∴PG =PC ,∵PH ⊥AC ,∴CH =GH ,∴AC =AG+GH+CH =BC+2CH ,∴2322CH ,=+ ∴31CH =-,∴()233131AH AC CH =-=--=+, 即:当∠PAB =45°时,AH 的长为31- 或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.7.(1)菱形的周长为8;(2)t=65,∠MAC=105°;(3)当t=1﹣35或t=1+315时,圆M 与AC 相切.【解析】试题分析:(1)过点B 作BE ⊥AD ,垂足为E .由点A 和点B 的坐标可知:BE=3,AE=1,依据勾股定理可求得AB 的长,从而可求得菱形的周长;(2)记 M 与x 轴的切线为F ,AD 的中点为E .先求得EF 的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B 作BE ⊥AD ,垂足为E ,连接MF ,F 为 M 与AD 的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM 是等腰直角三角形,从而可得到∠MAF 的度数,故此可求得∠MAC 的度数;(3)如图4所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE 的长,然后依据3t+2t=5-AE 可求得t 的值;如图5所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=33,最后依据3t+2t=5+AE .列方程求解即可. 试题解析:(1)如图1所示:过点B 作BE AD ⊥,垂足为E ,∵()B 1,3-,()A 2,0,∴BE 3=,AE 1=,∴22AB AE BE 2=+=,∵四边形ABCD 为菱形,∴AB BC CD AD ===,∴菱形的周长248=⨯=.(2)如图2所示,⊙M 与x 轴的切线为F ,AD 中点为E ,∵()M 3,1-,∴()F 3,0-,∵AD 2=,且E 为AD 中点,∴()E 30,,EF 6=, ∴2t 3t 6+=,解得6t 5=. 平移的图形如图3所示:过点B 作BE AD ⊥,垂足为E ,连接MF ,F 为⊙M 与AD 切点,∵由(1)可知,AE 1=,BE 3=∴tan EAB 3∠=∴EAB 60∠=︒,∴FAB 120∠=︒,∵四边形ABCD 是菱形,∴11FAC FAB 1206022∠∠==⨯︒=︒, ∵AD 为M 切线,∴MF AD ⊥,∵F 为AD 的中点,∴AF MF 1==,∴AFM 是等腰直角三角形,∴MAF 45∠=︒,∴MAC MAF FAC 4560105∠∠∠=+=︒+︒=︒.(3)如图4所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒,∴DAC 60∠=︒.∵AC 、AD 是圆M 的切线∴MAE 30∠=︒,∵ME MN 1==.∴EA 3=, ∴3t 2t 53+=-, ∴3t 1=-. 如图5所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒,∴DAC 60∠=︒,∴NAE 120∠=︒,∵AC 、AD 是圆M 的切线,∴MAE 60∠=︒,∵ME MN 1==,∴3EA 3=, ∴33t 2t 5+=+, ∴3t 1=+.综上所述,当3t15=-或3t115=+时,圆M与AC相切.点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.8.(1)①﹣m+8;②PQ最小=OQ最小﹣1=3.8;(2)①t=时,⊙A与直线BC相切;②<t≤5或7≤t≤15时,⊙A与线段BC有两个公共点.【解析】试题分析:(1)①根据正切的概念求出BC=10,OC=8,运用待定系数法求出直线BC的解析式,根据函数图象上点的坐标特征解得即可;②作OQ⊥AB交⊙A于P,则此时PQ最小,根据三角形面积公式计算即可;(2)①根据切线的性质和相似三角形的性质计算即可;②结合图形、运用直线与圆的位置关系定理解答.解:(1)①∵点B的坐标为(6,0),tan∠OCB=,∴BC=10,OC=8,设直线BC的解析式为y=kx+b,,解得,∵点Q的横坐标为m,∴点Q的纵坐标为﹣m+8;②如图1,作OQ⊥AB交⊙A于P,则此时PQ最小,×AB×OQ=×BO×CO,解得,OQ=4.8,∴PQ最小=OQ最小﹣1=3.8;(2)①如图2,⊙A与直线BC相切于H,则AH⊥BC,又∠BOC=90°,∴△BHA∽△BOC,∴=,即=,解得,BA=,则OA=6﹣=, ∴t=时,⊙A 与直线BC 相切; ②由(2)①得,t=时,⊙A 与直线BC 相切, 当t=5时,⊙A 经过点B ,当t=7时,⊙A 经过点B ,当t=15时,⊙A 经过点C ,故<t≤5或7≤t≤15时,⊙A 与线段BC 有两个公共点.考点:圆的综合题.9.(1)10;(2)1056+米;(3)①100k a =-;②不存在,理由见解析【解析】【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值;(2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离;(3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可;②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(215610010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得.【详解】(1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6),可设2(10)6y m x =-+,将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在. ∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点, ∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件, 221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得1a =,2a =. 开口向下,0a <,∴1a ,2a 都可以,将1a ,2a 分别代入(2110010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键.10.(1)y=x2+2x﹣3,m=﹣3,n=5;(2)317或41;(3)存在;Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5),理由见解析【解析】【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【详解】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式,解得:a=1,b=2,∴抛物线解析式为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:317或41;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 11.(1)点D 的坐标为(32,12),抛物线的解析式为24 3?1?3y x x =-++;(2)①31n m =+;②2334S m m =-+,S 的最大值为93 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m =时,2n FB ==,23m =时,3n FD ==,代入n km b =+,即可求解;②求得NA 33m =-,过N 作NQ ⊥EA ,得到NQ=12NA=332m -,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB 213-=-=,∠ABO=60︒,∴点A 的坐标为(3,0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB 为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD 交OA 于H ,则CH ⊥OA ,∴DH=12OD=12,OH=2,CH=CD+DH=32, ∴点D 的坐标为12),点C 的坐标为32), 将A0) , C 的坐标为32)代入抛物线的解析式y = ax 2 + bx + 1,得:31033142a a ⎧+=⎪⎨+=⎪⎩,解得:43a b ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:13n m =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴213333224S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭, ∵30-<, 当333432m =-=⎛⎫⨯- ⎪⎝⎭时,在023m ≤≤范围内, ∴133********S ⎛⎫=⨯⨯-⨯= ⎪ ⎪⎝⎭最大. 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.12.(1)证明见解析(2)当AM 的长为(1﹣)时,四边形EPGQ 是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED ∽△BCE ,根据相似三角形的对应边成比例与勾股定理,即可求得OA 的长,即可得出结论;(3)连接GE 交PQ 于O′,易得O′P=O′Q ,O′G=O'E ,然后过点P 作OC 的平行线分别交BC 、GE 于点B′、A′,由△PCF ∽△PEG ,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ 2+OA 2的值.【详解】解:(1)证明:连接OB ,如图①,∵四边形OABC 是矩形,∴∠AOC=∠OAB=90°,在Rt △AOB 中,tan ∠AOB==, ∴∠AOB=30°,∴==; (2)如图②,∵▱EPGQ 是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。

(完整版)初三数学九上九下压轴题难题提高题培优题(含答案解析)

(完整版)初三数学九上九下压轴题难题提高题培优题(含答案解析)

初三数学九上压轴题难题提高题培优题一•解答题(共8小题)1 •如图,抛物线y=a«+bx+c (a^0)经过点A (-3, 0)、B (1, 0)、C (- 2, 1),交y 轴于点M .(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△ MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,2. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx (a>0)经过点A 和x轴正半轴上的点B, AO=OB=4 / AOB=120.(1)求这条抛物线的表达式;(2)联结OM,求/ AOM的大小;(3)如果点C在x轴上,且△ ABC与△ AOM相似,求点C的坐标.3. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A (2, 0), B (6, 0)两点,交y轴于点■■-二-.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作。

D与x轴相切D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△ PGA的面积被直线AC分为1: 2两部分?已知点 A (- 2, - 4), 0B=2 抛物线 y=af+bx+c (1) 求抛物线的函数表达式; (2) 若点M 是抛物线对称轴上一点,试求 AM+0M 的最小值; (3) 在此抛物线上,是否存在点 P ,使得以点P 与点0、A 、B 为顶点的四边形 是梯形?若存在,求点P 的坐标;若不存在,请说明理由.5. 已知抛物线y=-貳+bx+c 经过点A (0,1 ),B (4,3). (1) 求抛物线的函数解析式; (2) 求 tan / AB0 的值; (3) 过点B 作BC 丄x 轴,垂足为C ,在对称轴的左侧且平行于y 轴的直线交线 段AB 于点N,交抛物线于点M ,若四边形MNCB 为平行四边形,求点M 的坐标. 6. 如图1,已知抛物线的方程 G : y=-L (x+2) (x - m ) (m >0)与x 轴交于点 ID B 、C ,与y 轴交于点E ,且点B 在点C 的左侧. (1) 若抛物线G 过点M (2, 2),求实数m 的值; (2) 在(1)的条件下,求△ BCE 的面积;4.如图,在平面直角坐标系中, 经过点A 、0、B 三点.(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C i上是否存在点F,使得以点B、C、F为顶点的三角形与△ BCE相似?若存在,求m的值;若不存在,请说明理由.7•如图,已知抛物线y二x2-丄(b+1) x* (b是实数且b>2)与x轴的正半4 44轴分别交于点A、B (点A位于点B的左侧),与y轴的正半轴交于点C.(1)__________________ 点B的坐标为_________ ,点C的坐标为 (用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且厶PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△ QCO, △ QOA和厶QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q8•如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (1, 0),C (3, 0),D (3, 4).以A为顶点的抛物线y=af+bx+c过点C•动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P, Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE± AB交AC于点 E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF丄AD于F,交抛物线于点G,当t为何值时,△ ACG的面积最大?最大值为多少?(3)在动点P, Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界) 存在点H,使以C, Q, E,H为顶点的四边形为菱形?请直接写出t的值.第3页(共22页)第4页(共22页)第5页(共22页)初三数学九上压轴题难题提高题培优题参考答案与试题解析一•解答题(共8小题)1 •如图,抛物线y=a«+bx+c (a^0)经过点A (-3, 0)、B (1, 0)、C (- 2, 1),交y 轴于点M .(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△ MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,•••抛物线的表达式为y=- — y--■—-13(2)将x=0代入抛物线表达式,得y=1.「.点M的坐标为(0,1). 设直线MA的表达式为y=kx+b'则宵;+Slb=l•直线MA的表达式为y=-x+1.设点D的坐标为(和务『上叱十1),则点F的坐标为(x0, ys0+l).1 A9 1DF=pR°-yx0+l-(yM0+ l)一-一一当叶#时,DF 的最大值为务 此时一:-V ■!--,即点D 的坐标为 (3)存在点P ,使得以点P 、A 、N 为顶点的三角形与△ MAO 相似•设P (m , 1 2 2^.) 在Rt A MAO 中,AO=3MO,要使两个三角形相似,由题意可知,点 P 不可能在 第一象限. ①设点P 在第二象限时,•••点P 不可能在直线MN 上,二只能PN=3AN, 即 m 2+11m+24=0.解得 m=- 3 (舍去)或 m=- 8 .又 -3v m v 0,故此时满足条件的点不存在. ②当点P 在第三象限时,•••点P 不可能在直线MA 上,二只能PN=3AN, ,即 m 2+11m+24=0. 解得m=- 3或m=- 8 .此时点P 的坐标为(-8, - 15). 6=0. 解得m=-3 (舍去)或m=2.若 PN=3NA 则-务4X3(昭3),即 m 2- 7m - 30=0. 解得m=-3 (舍去)或m=10,此时点P 的坐标为(10,- 39). 综上所述,满足条件的点P 的坐标为(-8,- 15)、(2 ,-丄)、(10,- 39).-^T T- TT-:③当点P 即 m 2+m — 当m=2时, 一矍,-1-丄.此时点P 的坐标为(2, 1)*32. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax?+bx (a>0)经过点A 和x轴正半轴上的点B, AO=OB=4 / AOB=120.(1)求这条抛物线的表达式;(2)联结OM,求/ AOM的大小;(3)如果点C在x轴上,且△ ABC与△ AOM相似,求点C的坐标.【解答】解:(1)如图,过点A作AD丄y轴于点D,•/ AO=OB=4•-B (4, 0). vZ AOB=120,•••/ AOD=30,••• AD-*, OD「OA=2;.••• A (- 2, 2 「;).将 A (-2,斯),B (4, 0)代入y=af+bx,得:•••这条抛物线的表达式为y= . x2-:x;{:卅,解得(2)过点M作ME丄x轴于点2-) ,即OE=2••• tan / EOM 輕巫 OE 3 •••/ AOM=/ AO 涉/ EOM=150 . (3)过点A 作AH 丄x 轴于点H , ••• AH=2 二 HB=HGOB=6, ••• tan / ABH 王二;. HB 3 •••/ ABH=30, •••/ AOM=150 •••/ OAM v 30° •••/ OMA v 30° •••点C 不可能在点B 的左侧,只能在点B 的右侧. •••/ ABC=180-/ ABH=150, •••/ AOM=150 , • / AOM=/ ABC. • △ ABC 与△ AOM 相似,有如下两种可能: ①厶 BAC 与^△ OAM ,②△ BA^sA OMA ••• OD=2, ME 二., •••OM=:— 3 ••• AH=2 :■;, BH=6, ••• AB=4 \ ①当△ BAC 与s △ OAM 时, 由 •C (8, 0). ②当△ BAC 与s △ OMA 时, 由鼻丄^得,解得BC =12 D C A D A0 Cli l A B BC • C 2 (16, 0). 综上所述,如果点C 在x 轴上,且△ ABC 与厶AOM 相似, 导,解得BC=43. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A (2, 0), B (6, 0)两点,交y轴于点’I工 .(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作。

初三九年级上册数学压轴题(培优篇)(Word版 含解析)

初三九年级上册数学压轴题(培优篇)(Word版 含解析)

初三九年级上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 2.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.3.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.4.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.5.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.6.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,①求证: CA CF=;②若⊙O的半径为3,BF=2,求AC的长.7.如图,已知矩形ABCD中,BC=2cm,AB3cm,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.8.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.9.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围∠为锐角,且(3)在图3中,M为抛物线1C在第一象限内的一点,若MCBtan MCB∠>,直接写出点M横坐标M x的取值范围___________310.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....).时,求t的取值范围.(直接写出答案即可)............(.包括边界....x.轴上方的部分围成的图形中-为二次函数图像抛物线上两点,且抛物线的对称轴为直线11.已知点(4,0)、(2,3)x=.2(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)见详解;(2)5326【分析】(1)如图1中,作OH⊥BD于H.根据等腰三角形的性质以及垂径定理即可;(2)如图2中,作OH⊥BD于H,连接OB,求出AC,BD,根据S四边形ABCD=12•BD•AM+1 2•BD•CM=12•BD•AC即可求解;(3)①如图3中,连接OB,作OH⊥BD于H.利用等腰直角三角形的性质,完全平方公式等知识即可;②如图3中,连接OB,设DM=CM=x,想办法求出BC,DB,在Rt△BCM中,利用勾股定理构建方程即可.【详解】(1)证明:如图1中,作OH⊥BD于H.∵OE=OF,OH⊥EF,∴EH=HF,∵OH⊥BD,∴BH=HD,∴BE=DF;(2)解:如图2中,作OH⊥BD于H,连接OB.∵∠EOF=90°,OE=OF,OA=OC,∴∠OEF=∠OAC=45°,∴∠AME=90°,即AC⊥BD,连接OB.设OH=a,∴BE=2EH=2OH=2a,在Rt△BOH中,∵OH2+BH2=OB2,∴a2+(3a)2=(25)2,∴a=2或-2(舍弃),∴BD=BE+EF+DF=6a=62,在Rt△AOC中,AC=2AO=210,∴S四边形ABCD=12•BD•AM+12•BD•CM=12•BD•AC=12×210×62=125;(3)①如图3中,连接OB,作OH⊥BD于H.∵OE=OF,OA=OC,∴∠EOH=12∠EOF=12(∠EAC+∠ACO)=12×2∠OAC=∠OAC,∴AC∥OH,∴AC⊥BD,∵AD=BC,∴∠ABD=∠CAB=∠CDB=45°,∴2BM,2DM,CM=DM,∴AB•CD+BC222DM+BM2+CM2=(BM+DM)2=BD2;②如图3中,连接OB,设DM=CM=x,∵∠BOC=2∠BDC=90°,∴26,∵AB•CD+BC2=BD2,AB•CD=AO2=12,∴12+24=BD2,∴BD=6(负根已经舍弃),在Rt△BCM中,∵BC2=BM2+CM2,∴(6)2=(6-x)2+x2,∴3或3∴226.本题属于圆综合题,考查了垂径定理,等腰三角形的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.2.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.3.(1)作图见解析;(2)49 .【解析】试题分析:(1)作出∠B的角平分线BD,再过X作OX⊥AB,交BD于点O,则O点即为⊙O的圆心;(2)由于⊙P与△ABC哪两条边相切不能确定,故应分⊙P与Rt△ABC的边AB和BC相切;⊙P与Rt△ABC的边AB和AC相切时;⊙P与Rt△ABC的边BC和AC相切时三种情况进行讨论.试题解析:(1)如图所示:①以B为圆心,以任意长为半径画圆,分别交BC、AB于点G、H;②分别以G、H为圆心,以大于23GH为半径画圆,两圆相交于D,连接BD;③过X作OX⊥AB,交直线BD于点O,则点O即为⊙O的圆心.(2)①当⊙P与Rt△ABC的边AB和BC相切时,由角平分线的性质可知,动点P是∠ABC的平分线BM上的点,如图1,在∠ABC的平分线BM上任意确定点P1(不为∠ABC 的顶点)∵OX=BOsin∠ABM,P1Z=BPsin∠ABM,当BP1>BO时,P1Z>OX即P与B的距离越大,⊙P 的面积越大,这时,BM与AC的交点P是符合题意的、BP长度最大的点;如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上,∴以P为圆心、PC为半径作圆,则⊙P与CB相切于C,与边AB相切于E,即这时⊙P是符合题意的圆,时⊙P的面积就是S的最大值,∵AC=1,BC=2,∴AB=5,设PC=x,则PA=AC-PC=1-x在直角△APE中,PA2=PE2+AE2,∴(1-x)2=x2+(5-2)2,∴x=25-4;②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则(2-y)2=y2+5)2,∴51 ;③如图4,同理可得,当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF=z ,∵△APF ∽△PBE ,∴PF :BE=AF :PE ,∴, ∴z=49. 由①、②、③可知,49>51->∴z >y >x , ∴⊙P 的面积S 的最大值为π.考点:1. 切线的性质;2.角平分线的性质;3.勾股定理;4.作图—复杂作图.4.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+= ∵OD m ⊥,m l ⊥ ∴//OD l∵OB OQ =∴122AH BH AB x === ∴2CD x =∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF = ①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】 本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.5.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标. 【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4),∵∠CDB =∠CEB =90︒,∴B 、C 、D 、E 四点共圆,∵CD CD =,∠CBA =45︒,∴∠CED =45︒,∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K .∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE ,∴OE =4,∴AP +PQ ≥4,∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4),设直线AC 解析式为:y =kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K 字形全等三角形求点坐标解决问题,属于中考压轴题.6.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.7.(1)详见解析;(2)21y 2x =-,302AF ≤≤;(3)3. 【解析】【分析】(1)由∠A =∠B =90°,∠AFE =∠BEC ,得△AEF ∽△BCE ;(2)由(1)△AEF ∽BCE 得AF AEBE BC =,y x =,即212y x =-+,然后求函数最值;(3)连接FH ,取EF 的中点M ,证MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;连接AH ,证∠EFH =30°由A 、E 、H 、F 在同一圆上,得∠EAH =∠EFH =30°,线段AH 即为H 移动的路径,在直角三角形ABH 中,60AH sin AB =︒=,可进一步求AH. 【详解】解:(1)在矩形ABCD 中,∠A =∠B =90°,∴∠AEF +∠AFE =90°,∵EF ⊥CE ,∴∠AEF +∠BEC =90°,∴∠AFE =∠BEC ,∴△AEF ∽△BCE ;(2)由(1)△AEF ∽BEC 得AF AE BE BC =,2y x x =,∴212y x =-+,∵2132y x x =-+=213(3)22x --+, 当3x =时,y 有最大值为32, ∴302AF ≤≤; (3)如图1,连接FH ,取EF 的中点M ,在等边三角形EFG 中,∵点H 是EG 的中点,∴∠EHF =90°,∴ME =MF =MH ,在直角三角形AEF 中,MA =ME =MF ,∴MA =ME =MF =MH ,则A 、E 、H 、F 在同一圆上;如图2,连接AH ,∵△EFG 为等边三角形,H 为EG 中点,∴∠EFH =30°∵A 、E 、H 、F 在同一圆上∴∠EAH =∠EFH =30°,如图2所示的线段AH 即为H 移动的路径,在直角三角形ABH 中,360AH sin AB =︒=, ∵AB =23∴AH =3, 所以点H 移动的距离为3.【点睛】此题主要考查圆的综合问题,会证明三角形相似,会分析四点共圆,会运用二次函数分析最值,会分析最短轨迹并解直角三角形是得分的关键.8.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t == 【解析】【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论.【详解】(1)∵AC =4,BC =3,∴AC +BC =7.∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t .故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB .∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<); (3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH .∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ). ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边AC 相切,∴PC =PG .∵PC =t ﹣4,∴t ﹣445=(7﹣t ),∴t 163=秒. 综上所述:在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,t 的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.9.(1)()221y x =--;(2)1023n <<;(3)552M x << 【解析】【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围.【详解】解:()1对称轴为422a x a-=-= ()3,0B ∴()0,1C ∴()224321y x x x ∴=-+=-- ()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠=45,DCB ∠=,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠= 设()2,43P t t t -+ 13PD CD ∴= 3p y DP OC +==214333t t t ∴-++= 113t = 将P 代入2C 解析式中 103n ∴=又P 在第一象限内h AB ∴>1023n ∴<<(3) 552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示:过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+, MN CB ⊥,直线CB 解析式为y=-x+3,∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得:b=253t t -+,则直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得: N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, ∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭ = 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ =2215222t t ⎛⎫- ⎪⎝⎭; 由3MN CN=可得:2213221522t t t t --=3; 解得:52t =或0(舍去) ; ∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键.10.(1)y=−x 2+3;(2)①t⩽2 【解析】【分析】(1)根据已知条件求出AB 和CD 的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D (,3),则平移后坐标为D´(,3),F (t ,-t 2+3);则有DF 2=()2+(-t 2+3-3)2;FB 2=(-t 2+3)2,再根据FB ,即可求得t ;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB 的中点坐标为,0),CD 的中点坐标为(0,3),分别代入y=ax 2+b 得:3a b 0b 3+=⎧⎨=⎩,解得a 1b 3=-⎧⎨=⎩, ∴y=−x 2+3.(2)①D (3),则平移后坐标为D´(+t ,3),F (t ,-t 2+3);DF 2=()2+(-t 2+3-3)2;FB 2=(-t 2+3)2,则()2+(-t 2+3-3)2=7(-t 2+3)2解得:t 2=2或5,则或t=②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN ⊥x 轴,分别交抛物线、x 轴于点M 、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE 且MN ⩾C′N.∵F(t,3−t 2),∴EF=3−(3−t 2)=t 2,∴EE′=2EF=2t 2,由EE′⩽BE,得2t 2⩽3,解得t 6 ∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t 2由MN ⩾C′N,得32⩾3−2t 2,解得t 63或t ⩽63舍去).∴t 63t 6 【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..11.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1 【解析】【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM ∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式. ②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案.【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2 ∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x =设MA :1y kx =- 则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去)∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得:则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩ ∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称,∴a=﹣b ∴m a m b --=0+b 0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--, 则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根, 故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--,亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=, ()111122122m k m k m a m b m m k k m---∴===----, 即m a m b--为一定值1, ∴当点M 不在y 轴上时,m a m b --为一个定值1. 【点睛】本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题. 12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -=. 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=,AD DC =,90FAD ODC ∠=∠=︒,FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒, 90CPD ∴∠=︒, 90FAO FPO ∠=∠=︒, ∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD ∠==, 55OP a ∴=,255PD a =, 5DF a =,355PF a ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。

初三九年级上册数学 压轴解答题(提升篇)(Word版 含解析)

初三九年级上册数学 压轴解答题(提升篇)(Word版 含解析)

初三九年级上册数学 压轴解答题(提升篇)(Word 版 含解析)一、压轴题1.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.3.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB与弦CD交于点F;②如图3,弦AB与弦CD不相交:③如图4,点B与点C重合.4.如图,AB是⊙O的直径,AF是⊙O的弦,AE平分BAF∠,交⊙O于点E,过点E作直线ED AF⊥,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若10,6AB AF==,求AE的长.5.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.6.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.7.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.8.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 9.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)10.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.11.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.12.如图,扇形OMN的半径为1,圆心角为90°,点B是上一动点,BA⊥OM于点A,BC⊥ON于点C,点D、E、F、G分别是线段OA、AB、BC、CO的中点,GF与CE相交于点P,DE与AG相交于点Q.(1)当点B移动到使AB:OA=:3时,求的长;(2)当点B移动到使四边形EPGQ为矩形时,求AM的长.(3)连接PQ,试说明3PQ2+OA2是定值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP 1Q 1C 为菱形时OC==OP 1,由∠COP 1=90°,得到四边形OP 1Q 1C 为正方形,此时Q 1P 1=OP 1=OC=6,即Q:(6,6);② 当四边形OP 2CQ 2为菱形时,OP 2=CP 2 ,由C 坐标为(0,6),得到Q 2纵坐标为3,把y=3代入直线OQ 2解析式y=-x 中,得:x=-3,此时Q 2(-3,3);③当四边形0Q 3P 3C 为菱形时,OC=CP 3,则有OQ 3=OC=CP 3=P 3Q 3=6,设坐标为(x ,-x+6), ∵OC=CP 3∴x 2+x 2= CP 32= OC 2=62解得,2P 的坐标为2,2) 此时Q 322).综上,点Q 的坐标是(-3,3)或2,2)或(6,6). 【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.2.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥, 90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【解析】 【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得. 【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒ ∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形 ∴60COD ∠=︒ ∴30DAC ∠=︒ ∴30EBD ∠=︒ ∵90ADB ∠=︒ ∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点 ∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD =∴30A ∠=︒∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.4.(1)详见解析;(2)45【解析】【分析】(1)通过证明OE ∥AD 得出结论OE ⊥CD ,从而证明CD 是⊙0的切线;(2)在Rt △ADE 中,求出AD ,DE ,利用勾股定理即可解决问题.【详解】(1)证明:∵AE 平分∠DAC ,∴∠CAE =∠DAE .∵OA =OE ,∴∠OEA =∠OAE .∴∠DAE =∠AEO ,.∴AD ∥OE .∵AD ⊥CD ,∴OE ⊥CD .∴CD 是⊙O 的切线.(2)解:连接BF 交OE 于K .∵AB 是直径,∴∠AFB =90°,∵AB =10,AF =6,∴BF8,∵OE∥AD,∴∠OKB=∠AFB=90°,∴OE⊥BF,∴FK=BK=4,∵OA=OB,KF=KB,∴OK=12AF=3,∴EK=OE﹣OK=2,∵∠D=∠DFK=∠FKE=90°,∴四边形DFKE是矩形,∴DE=KF=4,DF=EK=2,∴AD=AF+DF=8,在Rt△ADE中,AE.【点睛】本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.5.(1)sin2α=9;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴AC=22AB BC-=22(3)x x-=22x,∵12•AC•BC=12•AB•CD,∴CD=223 x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC =429.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35 MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴22QN MN-=4k,∵1122NMQS MN MQ NQ MR∆==,∴3k•4k=5k•MR∴MR=12k 5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.6.(1)PAO的半径为3;(2)见解析;(3)⊙O的半径为2或【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=12AB=2,AH=AB•sin60°=∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=APsin60︒=3,∴⊙O,即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF=5,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=5;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ =DN =23, 设QE =x ,则PE =23﹣x ,在Rt △AEQ 中,∠QAE =∠BAD ﹣BAE =30°,∴AE =2QE =2x ,∵PE ∥DN ,∴△BPE ∽△BND ,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣53x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.7.(1)10;(2)1056+米;(3)①100k a =-;②不存在,理由见解析【解析】【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值;(2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离;(3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可;②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(215610010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得.【详解】 (1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6),可设2(10)6y m x =-+,将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在. ∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点, ∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件,221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得1a =,2a =. 开口向下,0a <,∴1a ,2a 都可以,将1a ,2a 分别代入(2110010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键.8.(1)y=−x 2+3;(2)①或 ⩽t 【解析】【分析】(1)根据已知条件求出AB 和CD 的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t⩽6 2.∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得32⩾3−2t2,解得t63或t⩽63舍去).∴t63t6【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键. . 9.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】【分析】(1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式; (2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩, 解得:132b c =⎧⎪⎨=⎪⎩, ∴抛物线的解析式为21322y x x =-++;(2)∵22131(1)2222y x x x =-++=--+, ∴点M 的坐标为(1,2)令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32,∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.10.(1)证明见解析;(2)①21(3)21029y x =【解析】【分析】 ()1由圆内接四边形性质知ABC CDE ∠∠=,由AB AC =知ABC ACB ∠∠=,从而得ADB ACB ABC CDE ∠∠∠∠===;()2①由BAD DCE ∠∠=,ADB CDE ∠∠=可证ADB ∽CDE.从而得AD DB CD DE =; ②连接AO 并延长交BD 于点M ,连接CM ,证MAF ≌DAF 得MF DF =,据此知BM CM CD 3===,MF DF 2==,求得CF ==定义可得答案;()3证ABD ∽AEB 得2AB AD AE.=⋅证ABD ∽CED 得BD CD AD DE.⋅=⋅从而得2ABC BCD 111S S AB AC sin BAC BD CD sin BDC x sin BAC 222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tan CDE 2∠∠==,可设BM 2a =,知AM 5a =,AB 29a =,由面积法可得BN a 29=,即20sin BAC 29∠=,据此得出答案. 【详解】解:()1四边形ABCD 是圆O 的内接四边形,ABC 180ADC CDE ∠∠∠∴=-=.AB AC =,ABC ACB ∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆,BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠,AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=.MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线.BM CM CD 3∴===,MF DF 2∴==,在Rt CDF 中,2222CF CD DF 325=--=,BF tan ACB 5CF 5∠∴===()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==,ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED , BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅. 21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==, 如图2,设BM 2a =,则AM 5a =,AB 29a =, 由面积法可得BN 29=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.11.(1)见解析;(2)EF =3251+;(3)存在 【解析】【分析】(1)先判断出∠ECB =∠EBC ,再判断出∠OCB =∠OBC ,即可得出结论;(2)先求出EF ,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论;(3)先利用面积关系得出53CO FO =,进而利用△OAF ∽△EFC 得出比例式,即可得出结论.【详解】 解:(1)如图1,连接BC ,∵AC BD = ,∴∠ECB =∠EBC ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠OCD =∠ECF =∠ECB ﹣∠OCB =∠EBC ﹣∠OBC =∠OBA ;(2)∵OA =OB ,∴∠OAF =∠OBA ,∴∠OAF =∠ECF ,①当∠AFO =90°时,∵OA tan ∠OBA =12,∴OC =OA OF =1,AB =4,∴EF =CF •t an ∠ECF =CF•tan ∠OBA ②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12,∵OA∴OF =OA •tan ∠OAF , ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴5EF CF OC OF OF AF AF +===,∴EF OF =32,即:EF =32; (3)存在,如图2,连接OE ,∵∠ECB=∠EBC,∴CE=EB,∵OE=OE,OB=OC,∴△OEC≌△OEB,∴S△OEC=S△OEB,∵S△CEF=4S△BOF,∴S△CEO+S△EOF=4(S△BOE﹣S△EOF),∴53CEOEFOSS∆∆=,∴53COFO=,∴FO=35CO=35,∵△OFA∽△EFC,∴53CE AD COEF FO FO===,∴BF=BE﹣EF=CE﹣EF=23EF,∴AF=AB﹣BF=4﹣23EF,∵△OAF∽△EFC,∴CF EFFA FO=,∴85523543EF=-,∴EF=3﹣35.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.12.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.。

九年级数学上册数学压轴题(培优篇)(Word版 含解析)

九年级数学上册数学压轴题(培优篇)(Word版 含解析)

九年级数学上册数学压轴题(培优篇)(Word版含解析)一、压轴题1.如图1,△ABC中,AB=AC=4,∠BAC=100,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.2.如图,在平面直角坐标系中,直线1l:162y x=-+分别与x轴、y轴交于点B、C,且与直线2l:12y x=交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且COD△的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内里否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.3.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.4.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.5.如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、⊥.FC,且EC EF∽;(1)求证:AEF BCEAC=,求AB的长;(2)若23△的外接圆圆心之间的距离?(3)在(2)的条件下,求出ABC的外接圆圆心与CEF6.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA=,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.7.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 8.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.9.如图,抛物线2()20y ax x c a =++<与x 轴交于点A 和点B (点A 在原点的左侧,点B在原点的右侧),与y 轴交于点C ,3OB OC ==. (1)求该抛物线的函数解析式.(2)如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当32COFCDFSS=::时,求点D 的坐标.(3)如图2,点E 的坐标为(03)2-,,点P 是抛物线上的点,连接EB PB PE ,,形成的PBE △中,是否存在点P ,使PBE ∠或PEB ∠等于2OBE ∠?若存在,请直接写出符合条件的点P 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.11.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.12.如图,在⊙O 中,弦AB 、CD 相交于点E ,AC =BD ,点D 在AB 上,连接CO ,并延长CO 交线段AB 于点F ,连接OA 、OB ,且OA =5,tan ∠OBA =12. (1)求证:∠OBA =∠OCD ;(2)当△AOF 是直角三角形时,求EF 的长;(3)是否存在点F ,使得S △CEF =4S △BOF ,若存在,请求EF 的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】 【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解. 【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ∴BE EF =,80BEF ∠= ∴180502BEFEBF BFE -∠∠=∠== ,即50BFD ∠=∵AB=AC=4,D 是BC 的中点 ∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠= ∴50CFD BAD ∠=∠= ∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心 ∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥ ∴9040ABC BAD ∠=-∠= ∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立 (3)由(1)和(2)知,//CF AB ∴点F 的运动路径在CF 上 如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置 ∴故当点E 与点A 重合时,AF 最小 此时AF 1=AB=AC=4,即AF 的最小值为4. 【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.2.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q 点坐标为:(-3,3)或)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S△COD=12∴12×6x=12x=4∴D(4,2),设直线CD的表达式为y=kx+b,把(10,6)与D(4,2)代入得624bk b=⎧⎨=+⎩解得16 kb=-⎧⎨=⎩直线CD的表达式为y=-x+6(3) 存在点2,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时OC==OP1,由∠COP1=90°,得到四边形OP1Q1C为正方形,此时Q1P1=OP1=OC=6,即Q:(6,6);②当四边形OP2CQ2为菱形时,OP2=CP2,由C坐标为(0,6),得到Q2纵坐标为3,把y=3代入直线OQ2解析式y=-x中,得:x=-3,此时Q2(-3,3);③当四边形0Q3P3C为菱形时,OC=CP3,则有OQ3=OC=CP3=P3Q3=6,设坐标为(x,-x+6),∵OC=CP3∴x2+x2= CP32= OC2=62解得,x=32,P的坐标为 (32,6-32)此时Q3 (32,-32).综上,点Q的坐标是(-3,3)或(32,-32)或(6,6).【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.3.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T(0,5).令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.4.(1)4;(2)52;(3)600(2+1).【解析】【分析】(1)如图①中,证明△EOB≌△FOC即可解决问题;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(2+1)BD,当BD最大时,AB+BC+BD的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=52.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC+∠ADC=180°,∴∠BCD+∠BAD=∠EAD+BAD=180°,∴B,A,E三点共线,∵DE=DB,∠EDB=90°,∴BE2BD,∴AB+BC=AB+AE=BE2BD,∴BC+BC+BD2+1)BD,∴当BD最大时,AB+BC+BD的值最大,∵A,B,C,D四点共圆,∴当BD为直径时,BD的值最大,∵∠ADC=90°,∴AC 是直径,∴BD =AC 时,AB +BC +BD 的值最大,最大值=600+1). 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.5.(1)详见解析;(2)3)12【解析】 【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度. 【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒, ∴90AEF AFE ∠+∠=︒, ∵EC EF ⊥, ∴90FEC ∠=︒, ∴90AEF BEC ∠+∠=︒, ∴AFE BEC =∠∠, ∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC , ∵E 、F 分别是AB 、AD 的中点, ∴22,2AB AE BE AD AF ===; ∵AEF BCE ∽, ∴AE AFBC BE=, ∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=,解得:AB = (3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处, 同理,△CEF 的外接圆的圆心在CF 的中点N 处, ∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴2AD AB =, ∴22122882MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解. 6.(1)①补图见解析;②证明见解析;(2)FB=21 【解析】 【分析】(1)①根据题意,补全图形即可;②由CD ⊥OA 可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC =,利用等量代换可得AD CE =,根据圆周角定理可得∠EOC=∠AOD ,由切线性质可得OC ⊥FC ,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC ; (2)连接BF ,作BG ⊥l 于G ,根据OB=12OA ,可得∠OCB=30°,利用勾股定理可求出BC 的长,根据垂径定理可得CD 的长,由(1)可知∠OFC=∠ODC ,可得FC=CD ,由BG ⊥l ,OC ⊥l 可得OC//BG ,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG 的长,利用勾股定理可求出BG 的长,即可求出FG 的长,利用勾股定理求出FB 的长即可. 【详解】(1)①延长OE ,交直线l 于F ,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43由(1)可知∠OFC=∠ODC,∴FC=CD=3∵BG⊥l,OC⊥l,∴OC//BG,∴∠CBG=∠OCD=30°,∴CG=12322BC CG-,∴FG=FC+CG=53,∴22FG BG+21【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.7.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫-⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标. 【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3),∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩,∴抛物线的函数表达式为y =x 2+2x -3. (2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1, ∴D (﹣1,0),x M =x N =﹣1, 设Q (t ,t 2+2t ﹣3)(﹣3<t <1), 设直线AQ 解析式为y =dx +e∴2023d e dt e t t +=⎧⎨+=+-⎩解得:33d t e t =+⎧⎨=--⎩, ∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6, ∴DM =0﹣(﹣2t ﹣6)=2t +6, 设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2, ∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1, ∴B (﹣3,0),∵A (1,0),C (0,﹣3),∴OA =1,OC =3,AC 221310+=AB =4, ∴Rt △AOC 中,sin ∠ACO =010A AC =,cos ∠ACO =310OC AC =, ∵AB =AH ,G 为BH 中点, ∴AG ⊥BH ,BG =GH ,∴∠BAG =∠HAG ,即∠PAB =2∠BAG , ∵∠PAB =2∠ACO , ∴∠BAG =∠ACO ,∴Rt △ABG 中,∠AGB =90°,sin ∠BAG =10BG AB =, ∴BG 10210AB =, ∴BH =2BG 410, ∵∠HBI +∠ABG =∠ABG +∠BAG =90°, ∴∠HBI =∠BAG =∠ACO , ∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =HI BH 10,cos ∠HBI =310BI BH =,∴HI=1010BH=43,BI=31010BH=125,∴x H=411355-+=-,y H=125-,即1112,55H⎛⎫--⎪⎝⎭,设直线AH解析式为y=kx+a,∴111255k ak a+=⎧⎪⎨-+=-⎪⎩,解得:3434ka⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AH:3344y x=-,∵2334423y xy x x⎧=-⎪⎨⎪=+-⎩解得:1xy=⎧⎨=⎩(即点A)或943916xy⎧=-⎪⎪⎨⎪=-⎪⎩,∴939,416P⎛⎫--⎪⎝⎭.②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称.∴1112,55H⎛'⎫-⎪⎝⎭,设直线AH'解析式为y k x a='+',∴111255k ak a+='''⎧-'⎪⎨+=⎪⎩,解得:3434ka⎧=-⎪⎪⎨''⎪=⎪⎩,∴直线AH':3344y x=-+,∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或1545716x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1557,416P ⎛⎫- ⎪⎝⎭. 综上所述,点P 的坐标为939,416⎛⎫-- ⎪⎝⎭或1557,416⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键.8.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 992m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y 得到,,, ∴M 、N 关于直线对称,,设,则,,(负根已经舍弃), ,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.9.(1)2y x 2x 3=-++;(2)点D 的坐标为(14),或(2)3,;(3)点P 的坐标为:(14),或17()24-,或13209()24--,或. 【解析】【分析】(1)由3OB OC ==及图像可得B 、C 两点坐标,然后利用待定系数法直接进行求解即可;(2)由题意易得35COF COD S S =,进而得到点D 、F 横坐标之间的关系为53D F x x =,设F 点横坐标为3t ,则D 点横坐标为5t ,则有直线BC 的解析式为3y x =-+,然后可直接求解;(3)分∠PBE 或∠PEB 等于2∠OBE 两种情况分别进行求解即可.【详解】解:(1)3OB OC ==,则:()()3003B C ,,,, 把B C 、坐标代入抛物线方程,解得抛物线方程为:2y x 2x 3=-++①;(2)∵32COF CDF S S =△△::, ∴35COF COD S S =,即:53D F x x =, 设F 点横坐标为3t ,则D 点横坐标为5t ,点F 在直线BC 上,而BC 所在的直线表达式为:3y x =-+,则33(3)F t t -,, 则直线OF 所在的直线表达式为:3313t t y x x t t--==, 则点55(5)D t t -,, 把D 点坐标代入抛物线解析式,解得:15t =或2 5, 则点D 的坐标为(14),或(2)3,; (3)①当2PBE OBE ∠=∠时,当BP 在x 轴上方时,如图2,设1BP 交y 轴于点E ', ∴12PBE OBE ∠=∠ , ∴E BO EBO ∠'=∠ ,又60E OB EBO BO BO ∠'=∠=︒=, ,∴()E BO EBO AAS '≌ ,∴32EO EO ==, ∴点3(20)E ',,直线1BP 过点BE '、,则其直线方程为:1322y x =-+②, 联立①②并解得:12x =- , 故点P 1的坐标为17()24-,;当BP 在x 轴下方时, 如图2,过点E 作//EF BE '交2BP 于点F ,则FEB EBE ∠=∠',∴222E BE OBE EBP OBE ∠'=∠∠=∠, ,∴FEB EBF ∠=∠ ,∴FE BF = ,直线EF 可以看成直线BE '平移而得,其k 值为12-, 则其直线表达式为:1322y x =-- ,设点13()22F m m --,,过点F 作FH y ⊥轴交于点H ,作BK HF ⊥于点K , 则点13()202H m --,,13()232K m --,, ∵EF BF =,则22FE BF =, 即:()2222331313()()22222m m m m +-++=-++, 解得:52m =, 则点511()24F -,, 则直线BF 表达式为:113322y x =-…③, 联立①③并解得:132x =-或3(舍去3), 则点213209()24P --,; ②当2PEB OBE ∠=∠时,当EP 在BE 上方时,如图3,点E '为图2所求,设BE '交3EP 于点F ,∵2EBE OBE ∠'=∠,∴3EBE P EB ∠'=∠ ,∴FE BF = ,由①知,直线BE '的表达式为:1322y x =-+, 设点13()22F n n -+,,13()232K n -+,, 由FE BF =,同理可得:12n =, 故点15()24F ,,则直线EF 的表达式为:11322y x =-④, 联立①④并解得:1n =或92- (舍去负值), ∴34(1)P , ; 当EP 在BE 下方时,同理可得:x =舍去负值),故点458(417P +-+,.故点P 的坐标为:(14),或17()24-,或13209()24--,或(54178+-+,. 【点睛】 本题主要考查二次函数的综合,关键是熟练掌握二次函数的性质与一次函数的性质,利用数形结合及分类讨论思想进行求解.10.(1)点D 的坐标为(2,12),抛物线的解析式为24 ?1?3y x =-+;(2)①1n =+;②234S m =+,S 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得m =2n FB ==,m =3n FD ==,代入n km b =+,即可求解;②求得NA 3m =,过N 作NQ ⊥EA ,得到NQ=12NA=32,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax 2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,=ABO=60︒,∴点A 的坐标为0),又∵四边形OBCD 是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD交OA于H,则CH⊥OA,∴DH=12OD=12,3CH=CD+DH=32,∴点D的坐标为312),点C的坐标为332),将A30) , C的坐标为(32,32)代入抛物线的解析式y = ax2 + bx + 1,得:3310333142a ba⎧+=⎪⎨+=⎪⎩,解得:433ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为243?1?3y x x=-+;(2)①在Rt△FEA中,∠FAE=30︒,3FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3,∵动点M、N同时作匀速直线运动,∴n关于m成一次函数,故设此一次函数解析式为:n km b=+,当点M运动到点O时,点N恰好与点B重合,∴3m=2n FB==,当点M运动到点A时,点N恰好与点D重合,∴23m=3n FD==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当3m ==⎝⎭0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】 本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.11.(1) 见解析;(2) 2,2 ;(3)0或2或2x <<【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(1)见解析;(2)EF =32或512;(3)存在 【解析】【分析】(1)先判断出∠ECB =∠EBC ,再判断出∠OCB =∠OBC ,即可得出结论;(2)先求出EF ,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论; (3)先利用面积关系得出53CO FO =,进而利用△OAF ∽△EFC 得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC ,∵AC BD = ,∴∠ECB =∠EBC ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠OCD =∠ECF =∠ECB ﹣∠OCB =∠EBC ﹣∠OBC =∠OBA ;(2)∵OA =OB ,∴∠OAF =∠OBA ,∴∠OAF =∠ECF ,①当∠AFO =90°时,∵OA tan ∠OBA =12,∴OC =OA OF =1,AB =4,∴EF =CF •tan ∠ECF =CF•tan ∠OBA ②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12,∵OA∴OF =OA •tan ∠OAF , ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴EF CF OC OF OF AF AF +===∴EF OF =32,即:EF =32; (3)存在,如图2,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S△OEC=S△OEB,∵S△CEF=4S△BOF,∴S△CEO+S△EOF=4(S△BOE﹣S△EOF),∴53CEOEFOSS∆∆=,∴53COFO=,∴FO=35CO=35,∵△OFA∽△EFC,∴53CE AD COEF FO FO===,∴BF=BE﹣EF=CE﹣EF=23EF,∴AF=AB﹣BF=4﹣23EF,∵△OAF∽△EFC,∴CF EFFA FO=,∴855235435EF=-,∴EF=3﹣355.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.。

初三数学九上九下压轴题难题提高题培优题有答案解析

初三数学九上九下压轴题难题提高题培优题有答案解析

初三数学九上压轴题难题提高题培优题一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF 长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO 相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B 三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.6.如图1,已知抛物线的方程C:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于1点E,且点B在点C的左侧.过点M(2,2),求实数m的值;(1)若抛物线C1(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?(4)在第四象限内,抛物线C1若存在,求m的值;若不存在,请说明理由.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B (点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A 为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P 作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.初三数学九上压轴题难题提高题培优题参考答案与试题解析一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF 长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO 相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:由题意可知.解得.∴抛物线的表达式为y=﹣.(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得.∴直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF==.当时,DF的最大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.又﹣3<m<0,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MA上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,则﹣3,即m2+m﹣6=0.解得m=﹣3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,﹣).若PN=3NA,则﹣,即m2﹣7m﹣30=0.解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【解答】解:(1)如图,过点A作AD⊥y轴于点D,∵AO=OB=4,∴B(4,0).∵∠AOB=120°,∴∠AOD=30°,∴AD=OA=2,OD=OA=2.∴A(﹣2,2).将A(﹣2,2),B(4,0)代入y=ax2+bx,得:,解得:,∴这条抛物线的表达式为y=x2﹣x;(2)过点M作ME⊥x轴于点E,∵y=x2﹣x=(x﹣2)2﹣,∴M(2,﹣),即OE=2,EM=.∴tan∠EOM==.∴∠EOM=30°.∴∠AOM=∠AOB+∠EOM=150°.(3)过点A作AH⊥x轴于点H,∵AH=2,HB=HO+OB=6,∴tan∠ABH==.∴∠ABH=30°,∵∠AOM=150°,∴∠OAM<30°,∴∠OMA<30°,∴点C不可能在点B的左侧,只能在点B的右侧.∴∠ABC=180°﹣∠ABH=150°,∵∠AOM=150°,∴∠AOM=∠ABC.∴△ABC与△AOM相似,有如下两种可能:①△BAC与∽△OAM,②△BAC与∽△OMA∵OD=2,ME=,∴OM=,∵AH=2,BH=6,∴AB=4.①当△BAC与∽△OAM时,由=得,解得BC=4.(8,0).∴C1②当△BAC与∽△OMA时,由=得,解得BC=12.(16,0).∴C2综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(8,0)或(16,0).3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),;∴,解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,∴cos∠MDF=;∴∠MDF=60°,∴∠EDF=120°;∴劣弧EF的长为:;(3)设直线AC的解析式为y=kx+b;∵直线AC经过点,∴,解得;∴直线AC的解析式为:;设点,PG交直线AC于N,则点N坐标为,∵S△PNA :S△GNA=PN:GN;∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN;即=;解得:m1=﹣3,m2=2(舍去);当m=﹣3时,=;∴此时点P的坐标为;②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;即=;解得:m1=﹣12,m2=2(舍去);当m=﹣12时,=;∴此时点P的坐标为;综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c经过点A、O、B 三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)由OB=2,可知B(2,0),将A(﹣2,﹣4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得解得:∴抛物线的函数表达式为.答:抛物线的函数表达式为.(2)由,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,M点即为所求.∴MO=MB,则MO+MA=MA+MB=AB作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=∴MO+MA的最小值为.答:MO+MA的最小值为.(3)①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x1=﹣4,x2=2(不合题意,舍去)当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,设直线AB的表达式为y=kx+m,则,解得,∴AB的表达式为y=x﹣2.∵AB∥OP,∴直线OP的表达式为y=x.由,得 x2=0,解得x=0,(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3),∴,解得,所以,抛物线的函数解析式为y=﹣x2+x+1;(2)如图,过点B作BC⊥x轴于C,过点A作AD⊥OB于D,∵A(0,1),B (4,3),∴OA=1,OC=4,BC=3,根据勾股定理,OB===5,∵∠OAD+∠AOD=90°,∠AOD+∠BOC=90°,∴∠OAD=∠BOC,又∵∠ADO=∠OCB=90°,∴△AOD∽△OBC,∴==,即==,解得OD=,AD=,∴BD=OB﹣OD=5﹣=,∴tan∠ABO===;(3)设直线AB的解析式为y=kx+b(k≠0,k、b是常数),则,解得,所以,直线AB的解析式为y=x+1,设点M(a,﹣a2+a+1),N(a,a+1),则MN=﹣a2+a+1﹣a﹣1=﹣a2+4a,∵四边形MNCB为平行四边形,∴MN=BC,∴﹣a2+4a=3,整理得,a2﹣4a+3=0,解得a1=1,a2=3,∵MN在抛物线对称轴的左侧,抛物线的对称轴为直线x=﹣=,∴a=1,∴﹣12+×1+1=,∴点M的坐标为(1,).6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【解答】解:(1)将x=2,y=2代入抛物线的解析式得:﹣×4×(2﹣m)=2,解得:m=4,经检验:m=4是分式方程的解.∴m的值为4.(2)y=0得:0=﹣(x+2)(x﹣m),解得x=﹣2或x=m,∴B(﹣2,0),C(m,0).由(1)得:m=4,∴C(4,0).将x=0代入得:y=﹣×2×(﹣m)=2,∴E(0,2).∴BC=6,OE=2.∴S△BCE=BC•OE=×6×2=6.(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x轴的交点为P.∵x=﹣,∴抛物线的对称轴是直线x=1.∴CP=3.∵点B与点C关于x=1对称,∴BH=CH.∴BH+EH=EH+HC.∴当H落在线段EC上时,BH+EH的值最小.∵HP∥OE,∴△PHC∽△EOC.∴,即.解得HP=.∴点H的坐标为(1,).(4)①如图2,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.∵BF∥EC,∴∠BCE=∠FBC.∴当,即BC2=CE•BF时,△BCE∽△FBC.设点F的坐标为(x,﹣(x+2)(x﹣m)),由,得.解得x=m+2.∴F′(m+2,0).∵∠BCE=∠FBC.∴,得,解得:.又∵BC2=CE•BF,∴,整理得:0=16.此方程无解.②如图3,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,∵OE=OB,∠EOB=90°,∴∠EBO=45°.∵∵∠CBF=45°,∴∠EBC=∠CBF,∴当,即BC2=BE•BF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得(x+2)(x﹣m)=x+2,解得x=2m.∴F′(2m,0).∴BF′=2m+2,∴BF=2m+2.由BC2=BE•BF,得(m+2)2=2×(2m+2).解得.∵m>0,∴m=2+2.综上所述,点m的值为2+2.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B (点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为(b,0),点C的坐标为(0,)(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.【解答】解:(1)令y=0,即y=x2﹣(b+1)x+=0,解得:x=1或b,∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,解得:y=,∴点C的坐标为(0,),故答案为:(b,0),(0,);(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.则S四边形PCOB =S△PCO+S△POB=••x+•b•y=2b,∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPD=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.由解得由△PEC≌△PDB得EC=DB,即﹣=b﹣,解得b=>2符合题意.∴P的坐标为(,);(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A>∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA•AB得:()2=b﹣1.解得:b=8±4.∵b>2,∴b=8+4.∴点Q的坐标是(1,2+).(II)当∠OQC=90°时,△OCQ∽△QOA,∴=,即OQ2=OC•AQ.又OQ2=OA•OB,∴OC•AQ=OA•OB.即•AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q的坐标是(1,4).∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB中的任意两个三角形均相似.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A 为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P 作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.【解答】解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.又∵点A到GE的距离为,C到GE的距离为2﹣,即S△ACG =S△AEG+S△CEG=•EG•+•EG(2﹣)=•2(t﹣)=﹣(t﹣2)2+1.当t=2时,S△ACG的最大值为1.(3)第一种情况如图1所示,点H在AC的上方,由四边形CQEH是菱形知CQ=CE=t,根据△APE∽△ABC,知=,即=,解得t=20﹣8;第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2﹣t,MQ=4﹣2t.则在直角三角形EMQ中,根据勾股定理知EM2+MQ2=EQ2,即(2﹣t)2+(4﹣2t)2=t2,解得,t1=,t2=4(不合题意,舍去).综上所述,t=20﹣8或t=.。

数学初三九年级上册 压轴解答题(提升篇)(Word版 含解析)

数学初三九年级上册 压轴解答题(提升篇)(Word版 含解析)

数学初三九年级上册 压轴解答题(提升篇)(Word 版 含解析)一、压轴题1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.2.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.3.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 4.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).5.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A 的水平距离为x 米,与地面的距离为y 米,运行时间为t 秒,经过多次测试,得到如下部分数据: t 秒 0 1.5 2.5 4 6.5 7.5 9 … x 米 0 4 8 10 12 16 20 … y 米24.565.8465.844.562…(2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足(256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.6.如图,函数y=-x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2-2x -3=0的两个实数根,且m <n .(1)求m ,n 的值以及函数的解析式;(2)设抛物线y=-x 2+bx +c 与x 轴的另一交点为点C ,顶点为点D ,连结BD 、BC 、CD ,求△BDC 面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值.7.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________8.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.9.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使DF=7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 10.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.11.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.12.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥, 90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒,BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=, ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-,ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【解析】 【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得. 【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒ ∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形 ∴60COD ∠=︒ ∴30DAC ∠=︒ ∴30EBD ∠=︒ ∵90ADB ∠=︒ ∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:连接OC 、OD ,如图:∵AD BD ⊥ ∴AB 是直径 ∴1OC OD CD === ∴OCD 是等边三角形 ∴60COD ∠=︒ ∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒ 证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD = ∴30A ∠=︒ ∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解. 【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.3.(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】 【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可; ②根据勾股定理列出算式,计算即可. 【详解】(1)在ABC ∆中,90ACB ∠=︒. ∴90B A ∠=︒-∠9028=︒-︒62=︒,∵BC BD =,∴1802BBCD BDC ︒-∠∠=∠=180622︒-︒=59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒ 31=︒.(2)①BD BC a ==, ∴AD AB BD =- AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴22a x -±=a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =,又∵AD EC =, ∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+, ∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.4.(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或()π;②【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH 即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=833,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB=22AC BC+=216x+,∴OA=2 162x +,∵AF=22EF AE+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,∴216x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=2164x+解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG 21﹣98,AF22AE EF+158,AH22AE EH+30,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴219281530 8-=∴CG =5﹣10,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.5.(1)10;(2)10+米;(3)①100k a =-;②不存在,理由见解析【解析】【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值;(2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离;(3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可; ②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(2110010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得.【详解】 (1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6),可设2(10)6y m x =-+,将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在. ∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点,∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件, 221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得1a =,2a =. 开口向下,0a <,∴1a ,2a 都可以,将1a ,2a 分别代入(2110010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键.6.(1)m =﹣1,n =3,y =﹣x 2+2x +3;(2)S=3;(3)①y 最大值=4;当x =3时,y 最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=, 11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值 223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.7.(1)()221y x =--;(2)1023n <<;(3)552M x <<【解析】【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围.【详解】解:()1对称轴为422a x a-=-= ()3,0B ∴()0,1C ∴代入()224321y x x x ∴=-+=-- ()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠=45,DCB ∠=,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠= 设()2,43P t t t -+ 13PD CD ∴= 3p y DP OC +==214333t t t ∴-++= 113t = 将P 代入2C 解析式中 103n ∴=又P 在第一象限内h AB ∴>2n ∴>1023n ∴<< (3) 552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示: 过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+, MN CB ⊥,直线CB 解析式为y=-x+3,∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得:b=253t t -+,则直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得: N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, ∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭ = 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ =2215222t t ⎛⎫- ⎪⎝⎭; 由3MN CN=可得: 2213221522t t t t --=3; 解得:52t =或0(舍去) ; ∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键.8.(1)1;(2)①4b =-;②26c ≤<;(3)D 一定在线段AB上,=CD 【解析】【分析】(1)根据题意顶点P (k ,h )可将二次函数化为顶点式:()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4,即可得出a 的值; (2)①根据抛物线x=0和x=4时函数值相等,可得到顶点P 的横坐标,根据韦达定理结合(1)即可得到b 的值,②根据(1)和(2)①即可得二次函数对称轴为x=2,利用点Q (0,2)关于对称轴的对称点R (4,2)可得QR=4,又QR 在直线y=2上,故令M 坐标(t ,2)(0≤t <2),代入二次函数即求得c 的取值范围;(3)由c=-b-1代入抛物线方程即可化简,将抛物线绕原点逆时针旋转αα,且tanα=2,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tanα=2,可得到直线l 的解析式,最后联立直线方程与抛物线方程运算求解.【详解】解:(1)根据题意可知1二次函数2y ax bx c =++(a≠0)的顶点为P (k ,h ),故二次函数顶点式为()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,且无论h 、k 为何值,AB 的长度都为4,∴a=1;故答案为:a=1.(2)①∵二次函数当0x =和4x =时的函数值相等 ∴222b b x a =-=-= ∴4b =-故答案为:4b =-. ②将点Q 向右平移4个单位得点()4,2R当2c =时,242y x x =-+令2y =,则2242x x =-+解得14x =,20x =此时()0,2M ,()4,2N ,4MN QR ==∵4QM QN +=∵QM NR =∴4QN NR QR +==∴N 在线段QR 上,同理M 在线段QR 上设(),2M m ,则02m ≤<,224m m c =-+ 2242(2)6c m m m =-++=--+∵10-<,对称轴为2m =,02m ≤<∴c 随着m 的增大而增大∴26c ≤<故答案为:26c ≤<.(3)∵1c b =--∴21y x bx b =+--将抛物线绕原点逆时针旋转α,且tan 2α=,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tan 2α=,∴l 的解析式为2y x =221y x y x bx b =⎧⎨=+--⎩∴2(2)10x b x b +---= ∴2224(2)448b ac b b b ∆=-=-++=+∴22b x -+±=∴12,22b D b ⎛-+-++ ⎝⎭ 22244124442444AB ac b b b b y k b a ---+-+=+=+==-++124224AB D b y y b b ⎛⎫-+-=-++-++= ⎪⎝⎭∵20b ≥∴12404410444D AB b y y -+-+-=≥==> ∴点1D 始终在直线AB 上方∵2C b -+-⎝⎭∴24224B C A b y y b b ⎛⎫-+-=-+--++= ⎪⎝⎭∴224841644AB C b b y y -++--++-==)22164-+=∵b -<<2028b ≤<,∴4≤<设n,4n ≤< ∴2(2)164AB C n y y --+-= ∵104-<,对称轴为2n =∴当224n ≤<时,AB C y y -随着n 的增大而减小 ∴当4n =时,0AB C y y -=∴当224n ≤<时,AB C y y > ∴区域S 的边界与l 的交点必有两个∵1D AB y y >∴区域S 的边界与l 的交点D 一定在线段AB 上∴D AB y y = ∴2(2)164D C C AB n y y y y --+-=-= ∴当22n =时,D C y y -有最大值122+此时1222D C x x +-= 由勾股定理得:()()2252102C CD D CD x x y y +=-+-=,故答案为:5102=CD . 【点睛】 本题考查二次函数一般式与顶点式、韦达定理的运用,以及根与系数的关系判断二次函数交点情况,正确理解相关知识点是解决本题的关键.9.(1)y=−x 2+3;(2)①2或5 63⩽t ⩽62【解析】【分析】(1)根据已知条件求出AB 和CD 的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D (3,3),则平移后坐标为D´(3,3),F (t ,-t 2+3);则有DF 2=(3)2+(-t 2+3-3)2;FB 2=(-t 2+3)2,再根据7FB ,即可求得t ;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB 的中点坐标为(−3,0),CD 的中点坐标为(0,3),分别代入y=ax 2+b 得:3a b 0b 3+=⎧⎨=⎩,解得a 1b 3=-⎧⎨=⎩, ∴y=−x 2+3.(2)①D (−3,3),则平移后坐标为D´(−3+t ,3),F (t ,-t 2+3);DF 2=(−3+t-t )2+(-t 2+3-3)2;FB 2=(-t 2+3)2 DF=7FB ,则(−3+t-t )2+(-t 2+3-3)2=7(-t 2+3)2解得:t 2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN ⊥x 轴,分别交抛物线、x 轴于点M 、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE 且MN ⩾C′N.∵F(t,3−t 2),∴EF=3−(3−t 2)=t 2,∴EE′=2EF=2t 2,由EE′⩽BE,得2t 2⩽3,解得t 6 ∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t 2由MN ⩾C′N,得32⩾3−2t 2,解得t 63或t ⩽63舍去).∴t 63t ⩽62 【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..10.(1)()90,3,4--;(2)48QH t =- ;(321或732或2532 【解析】【分析】(1)由于直线y =34tx -3过C 点,因此C 点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A 点的坐标代入抛物线的解析式中即可求出b 的值;(2)求QH 的长,需知道OQ ,OH 的长.根据CQ 所在直线的解析式即可求出Q 的坐标,也就得出了OQ 的长,然后求OH 的长.在(1)中可得出抛物线的解析式,那么可求出B 的坐标.在直角三角形BPH 中,可根据BP=5t 以及∠CBO 的正弦值(可在直角三角形COB 中求出),得出BH 的长,根据OB 的长即可求出OH 的长.然后OH ,OQ 的差的绝对值就是QH 的长;(3)本题要分①当H 在Q 、B 之间.②在H 在O ,Q 之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t 的值. 【详解】(1)由于直线y =34tx -3过C 点,C 点在y 轴上,则C 点的坐标为(0,-3), 将A 点坐标代入解析式中,得0=34-b -3,解得b =-94; 故答案为 ()0,3-,94-; (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0).∴OB =4,又∵OC =3,∴BC =5.由题意,得△BHP ∽△BOC ,∵OC ∶OB ∶BC =3∶4∶5,∴HP ∶HB ∶BP =3∶4∶5,∵PB =5t ,∴HB =4t ,HP =3t .∴OH =OB -HB =4-4t .由y =34tx -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t .①当H 在Q 、B 之间时,QH =OH -OQ=(4-4t )-4t =4-8t .②当H 在O 、Q 之间时,QH =OQ -OH=4t -(4-4t )=8t -4.综合①,②得QH =|4-8t |;(3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似.t 11,t 2=732,t 3=2532解析:①当H 在Q 、B 之间时,QH =4-8t , 若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得48334t t t -=, ∴t =732. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得34834t t t -=, 即t 2+2t -1=0.∴t 11,t 2=1-(舍去).②当H 在O 、Q 之间时,QH =8t -4.若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得84334t t t -=, ∴t =2532. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得38434t t t -=, 即t 2-2t +1=0.∴t 1=t 2=1(舍去).综上所述,存在t 的值,t 11,t 2=732,t 3=2532.故答案为(1)()90,3,4--;(2)48QH t =- ;(31或732或2532. 【点睛】 本题是二次函数的综合题,此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.(1)点B 的坐标为(﹣1,0),点A 的坐标为(3,0),点C 的坐标为(0,3);抛物线的对称轴为直线x =1;(2)⊙P ;(3)1<y <2;(4)3. 【解析】【分析】(1)分别代入y =0、x =0求出与之对应的x 、y 的值,进而可得出点A 、B 、C 的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP、BP,在Rt△BOC中利用勾股定理可求出BC的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC=90°,再利用等腰直角三角形的性质可求出BP的值即可;(3)设点D的坐标为(1,y),当∠BDC=90°时,利用勾股定理可求出y值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,BC∴CP=BP=2∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=ACO=45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F 为等腰直角三角形, ∴OF =22OC′=22(32﹣3)=3﹣322.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A 、B 、C 的坐标;(2)利用圆周角定理找出∠BPC =90°;(3)利用极限值法求出点D 纵坐标;(4)利用点到直线之间垂直线段最短确定点F 的位置.12.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=,在Rt △OPC 中,OC =5,PC =4,则OP =3, ∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上, ∴P (t ,0);当5<t <10时,如图2,点P 在AB 上, 过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P 与直线AB 相切,∵OC ∥AB ,∴∠AOC =∠OAG ,∴sin ∠AOC =sin ∠OA 45PG G AP==, t 45-t 5∴=,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.。

初三九年级上册数学 压轴解答题(提升篇)(Word版 含解析)(1)

初三九年级上册数学 压轴解答题(提升篇)(Word版 含解析)(1)

初三九年级上册数学 压轴解答题(提升篇)(Word 版 含解析)(1)一、压轴题1.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.2.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.3.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?4.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 5.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.6.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.7.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.8.如图,AB是⊙O的直径,AF是⊙O的弦,AE平分BAF∠,交⊙O于点E,过点E作直线ED AF⊥,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若10,6AB AF==,求AE的长.9.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.10.平面直角坐标系xOy中,矩形OABC的顶点A,C的坐标分别为(2,0),(0,3),点D 是经过点B,C的抛物线2y x bx c=-++的顶点.(1)求抛物线的解析式;(2)点E是(1)中抛物线对称轴上一动点,求当△EAB的周长最小时点E的坐标;(3)平移抛物线,使抛物线的顶点始终在直线CD上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m的值或取值范围.11.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△F E′C′,当△FE′C′落在x.轴与..抛物线在....).时,求t的取值范围.(直接写出答案即可)............(.包括边界....x.轴上方的部分围成的图形中12.如图,在平面直角坐标系中,直线l分别交x轴、y轴于点A,B,∠BAO = 30°.抛物线y = ax2 + bx + 1(a < 0)经过点A,B,过抛物线上一点C(点C在直线l上方)作CD∥BO交直线l于点D,四边形OBCD是菱形.动点M在x轴上从点E(3,0)向终点A匀速运动,同时,动点N在直线l上从某一点G向终点D匀速运动,它们同时到达终点.(1)求点D的坐标和抛物线的函数表达式.(2)当点M运动到点O时,点N恰好与点B重合.①过点E作x轴的垂线交直线l于点F,当点N在线段FD上时,设EM = m,FN = n,求n 关于m的函数表达式.②求△NEM面积S关于m的函数表达式以及S的最大值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】 【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值; (2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标. 【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b , ∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b,解得:b=3; (2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3, ∴13=42ODM OAED S S ∆=四边形 设M 的横坐标是a ,则13322a ⨯=,解得:1a =, 将1x a ==代入233y x =-+中,得: 27333y =-⨯+=则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32, 把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42, 点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3, 设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=, 解得:3613m =或m=0(舍去),则点M 坐标为3615(,)1313, 又MN ∥OD ,MN=OD=3,∴点N 的坐标为3654(,)1313, 综上,满足条件的点N 坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算. 2.(1)12;(2)53;(3)202. 【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==,222255352OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠, E 为OA 上的点,F 为OB 上的点 PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=, 45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.3.(1)见解析;(2)DB DF =【解析】【分析】(1)①直接利用三角形的外角性质,即可得到;②过D 作DG BC 交AB 于点G ,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC =,DGB FCD ∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF ,根据题意,可证得BCF BDF A ∠=∠=∠,则B 、C 、D 、F 四点共圆,即可证明结论成立.【详解】解:(1)①∵BDC A ABD ∠=∠+∠,即BDF FDC A ABD ∠+∠=∠+∠,∵BDF A ∠=∠,∴FDC ADB ∠=∠;②过D 作DG BC 交AB 于点G ,∴ADG ACB∠=∠,AGD ABC∠=∠,又AB AC=,∴AABC CB=∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,AABC CB=∠∠,∵ECF ACB∠=∠,∴ABC ECF∠=∠,∵BCA CA BCF E F=∠+∠∠+∠,∴A BCF∠=∠,∴BDF A BCF∠=∠=∠,∴B、C、D、F四点共圆,∴180DCB DFB∠+∠=︒,DBF ECF∠=∠,∴ACB DFB∠=∠,∵BC EC ACA F B=∠=∠∠,∴DBF DFB∠=∠,∴DB DF=.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.4.(1)2+;(2)610t ≤≤-或1016-≤≤-3)325m ≤-或0m ≥ 【解析】【分析】 (1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l的最大距离为TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可.【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB , ∴Rt POM 为等腰直角三角形,且OP=2,∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-,∴A(-2,0),B(0,-2),∴OA=OB=2,又∵OQ 平分∠AOB ,∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离,∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒,∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则OQ=2, ∴22PQ OP OQ =+=+,即()1,22min D H l =+;(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH +∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤,又∵3FT t =,∴6310t ≤≤,解得63103t ≤≤103165-≤≤-;(3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫ ⎪⎝+-+⎭+, ∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---, ∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩, ∴182b a =-+, 又∵点(),D a b 恒在直线3l 上,∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交,∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +,∴(),28m m F ---,把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E运动到直线3l上时,把点E代入182y x=-+得:18282m m-+=+,解得:0m=,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即0m≥,综上所述,325m≤-或0m≥.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.5.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18;②t=4或t=-1;(2)如图,过M点作轴的垂线与过N点垂直于轴的直线交于点Q,则当点P位于矩形OMQN内部或边界时,矩形OMQN是点M,N,P的最佳外延矩形,且面积最小.∵S矩形OMQN=OM·ON=6×8=48,∴点M,N,P的最佳外延矩形面积的最小值为48.抛物线与轴交于点T (0,5). 令,有, 解得:x=-1(舍去),或x=5. 令y=8,有,解得x=1,或x=3.∴,或. (3). 考点:新定义的理解、二次函数的应用、圆的性质.6.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS )∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE ⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE ,取AB 的中点M ,连接MC ,ME∵△ABC 和△ABE 都是直角三角形∴12MC ME AB AM BM ====, ∴点A ,B ,C ,E 四点在同一个圆M 上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.7.(1)BQ=8.2cm ;(2)5cm ;(3)S △BOC =39625. 【解析】【分析】(1)根据ABC APQ ∆~∆得AC AB AQ AP=,从而得到AQ 的长即可求出BQ 的长; (2)由点Q 与点A 重合和点Q 与点B 重合时,可以确定点O 的位置,再根据点Q 位于AB 上除端点外的任意一点时,由点O 是PQ 的中点,点F 是PB 的中点可知OF 是PBQ ∆的中位线,从而得到点O 的运动轨迹是APB ∆的 中位线,即线段EF ,即可求得答案;(3)连接AO ,过点O 作ON AC ⊥ ,先证明APQ ABC ∆~∆得到AQ AP PQ AC AB BC == ,所以求得,AQ PQ 的值,且OP OQ =,再证明PON PAQ ∆~∆得到ON PO AQ PA =,求得ON 的值,再根据BOC ABC AOB AOC S S S S ∆∆∆∆=--即可求得答案;【详解】解:(1)如图1所示,∵90,6,8C AC cm BC cm ∠===∴10AB cm =又∵点P 为AC 的中点,∴3AP cm =∵ABC APQ ∆~∆∴AC AB AQ AP = ,即6103AQ = 解之得: 1.8AQ =则8.2BQ AB AQ cm =-=(2)如图2,当点Q 与点A 重合时,点O 位于点E 的位置,当点Q 与点B 重合时,点O 位于点F 的位置,则EF 是△APB 的中位线,∴EF ∥AB ,且EF =12AB =5,152EF AB == 而当点Q 位于AB 上除端点外的任意一点时,∵点O 是PQ 中点,点F 是PB 的中点,∴OF 是△PBQ 的中位线,∴OF ∥BQ ,∴点O 的运动轨迹是线段EF ,则点O 的运动路径长是5cm ;故答案为5cm .(3)如图3,连接AO ,过点O 作ON AC ⊥于点N ,∵⊙O 与AB 相切,∴PQ AB ⊥ ,即90AQP ∠= ,∵,90PAQ BAC ACB AQP ∠=∠∠=∠=∴APQ ABC ∆~∆ ∴AQ AP PQ AC AB BC == ,即36108AQ PQ == 解之得: 912,55AQ PQ == 则65OP OQ == ∵ON AC ⊥∴90PNO PQA ∠=∠=又∵OPN APQ ∠=∠∴PON PAQ ∆~∆, ∴ON PO AQ PA = ,即65935ON = , 解之得:1825ON = 则BOC ABC AOB AOC S S S S ∆∆∆∆=--111•••222BC AC AB OQ AC ON =-- 11611868106225225=⨯⨯-⨯⨯-⨯⨯ 39625= 【点睛】本题主要考查了相似三角形和圆的综合问题,掌握圆的切线判定、三角形中位线定理、相似三角形的判定和性质、割补法求面积等知识点是解题关键.8.(1)详见解析;(2)【解析】【分析】(1)通过证明OE ∥AD 得出结论OE ⊥CD ,从而证明CD 是⊙0的切线;(2)在Rt △ADE 中,求出AD ,DE ,利用勾股定理即可解决问题.【详解】(1)证明:∵AE 平分∠DAC ,∴∠CAE =∠DAE .∵OA =OE ,∴∠OEA =∠OAE .∴∠DAE =∠AEO ,.∴AD ∥OE .∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(2)解:连接BF交OE于K.∵AB是直径,∴∠AFB=90°,∵AB=10,AF=6,∴BF22106-8,∵OE∥AD,∴∠OKB=∠AFB=90°,∴OE⊥BF,∴FK=BK=4,∵OA=OB,KF=KB,∴OK=12AF=3,∴EK=OE﹣OK=2,∵∠D=∠DFK=∠FKE=90°,∴四边形DFKE是矩形,∴DE=KF=4,DF=EK=2,∴AD=AF+DF=8,在Rt△ADE中,AE22AD DE+2284+45.【点睛】本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.9.(1)sin2α=429;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠B AC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴AC=22AB BC-=22(3)x x-=22x,∵12•AC•BC=12•AB•CD,∴CD=223 x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=429.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35 MNNQ=,∴设MN=3k ,则NQ=5k ,易得OM=12NQ=52k ,∴=4k , ∵1122NMQ S MN MQ NQ MR ∆== ,∴3k•4k=5k•MR ∴MR=12k 5 ,在Rt △MRO 中,sin2β=sin∠MON=122455252k MR k OM ==.考点:圆的综合题.10.(1)2y x 2x 3=-++;(2)3(1,)2;(3)14m <≤或78m =【解析】【分析】(1)根据题意可得出点B 的坐标,将点B 、C 的坐标分别代入二次函数解析式,求出b 、c 的值即可.(2)在对称轴上取一点E ,连接EC 、EB 、EA ,要使得EAB 的周长最小,即要使EB+EA 的值最小,即要使EA+EC 的值最小,当点C 、E 、A 三点共线时,EA+EC 最小,求出直线AC 的解析式,最后求出直线AC 与对称轴的交点坐标即可.(3)求出直线CD 以及射线BD 的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B 时,将点B 的坐标代入二次函数解析式,求出m 的值,写出m 的范围即可;②当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得关于x 的一元二次方程,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,即0∆=,列式求出m 的值即可.【详解】 (1)矩形OABC , ∴OC=AB ,A(2,0),C(0,3),∴OA=2,OC=3,∴B(2,3),将点B ,C 的坐标分别代入二次函数解析式,4233b c c -++=⎧⎨=⎩,∴23b c =⎧⎨=⎩, ∴抛物线解析式为:2y x 2x 3=-++.(2)如图,在对称轴上取一点E ,连接EC 、EB 、EA ,当点C 、E 、A 三点共线时,EA+EC 最小,即EAB 的周长最小,设直线解析式为:y =kx +b ,将点A 、C 的坐标代入可得:203k b b +=⎧⎨=⎩, 解得:323k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:3=32y x -+. 2y x 2x 3=-++=2(1)4x -+-,∴D(1,4),令x =1,y =332-+=32. ∴E(1,32).(3)设直线CD 解析式为:y =kx +b ,C(0,3),D(1,4),∴43k b b +=⎧⎨=⎩,解得13k b =⎧⎨=⎩, ∴直线CD 解析式为:y =x +3,同理求出射线BD 的解析式为:y =-x +5(x ≤2),设平移后的顶点坐标为(m ,m +3),则抛物线解析式为:y =-(x -m )2+m +3,①如图,当抛物线经过点B 时,-(2-m )2+m +3=3,解得m =1或4,∴当1<m ≤4时, 平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得:-(x -m )2+m +3=-x +5,即x 2-(2m +1)x +m 2-m +2=0,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,∴22[(21)]4(2)0m m m ∆=-+⨯-+=-,解得78m =. 综上所述,14m <≤或78m =时,平移后的抛物线与射线BD 只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.11.(1)y=−x2+3;(2)①2563t⩽6 2【解析】【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(3,3),则平移后坐标为D´(3,3),F(t,-t2+3);则有DF2=(3)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(33),则平移后坐标为D´(3+t,3),F(t,-t2+3);DF2=(3)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t6∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得32⩾3−2t2,解得t63或t⩽63舍去).∴t63t⩽6 2【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..12.(1)点D的坐标为312),抛物线的解析式为243?1?3y x x=-++;(2)①31n=+;②2334S m=+,S93【解析】【分析】(1)由抛物线的解析式为y = ax2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A、D、C的坐标,再利用待定系数法即可求解;(2)①在Rt△FEA中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得3m=时,2n FB==,23m=时,3n FD==,代入n km b=+,即可求解;②求得NA33m=-,过N 作NQ⊥EA,得到NQ=12NA=332m-,利用面积公式得到S关于m的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB213-=-=,∠ABO=60︒,∴点A的坐标为(3,0),又∵四边形OBCD是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD交OA于H,则CH⊥OA,∴DH=12OD=12,3CH=CD+DH=32,∴点D的坐标为312),点C的坐标为332),将A30) , C的坐标为332)代入抛物线的解析式y = ax2 + bx + 1,得:3310 333142a ba⎧+=⎪⎨+=⎪⎩,解得:433ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为24 ?1?3y x =-+; (2)①在Rt △FEA 中,∠FAE=30︒,FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3, ∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:31k b ⎧=⎪⎨⎪=⎩,∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 33n m =-, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133224S m m ⎛⎫==+ ⎪ ⎪⎝⎭,∵0<,当32m ==⎝⎭时,在0m ≤≤范围内,∴1322S ⎛=-= ⎝⎭最大 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.。

初三九年级数学上册数学压轴题(培优篇)(Word版 含解析)

初三九年级数学上册数学压轴题(培优篇)(Word版 含解析)

初三九年级数学上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.3.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x的代数式表示BQ、DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,当AP为何值时,矩形DEGF是正方形.4.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.5.如图,在矩形ABCD中,E、F分别是AB、AD的中点,连接AC、EC、EF、 .FC,且EC EF∽;(1)求证:AEF BCE(2)若23AC=,求AB的长;(3)在(2)的条件下,求出ABC的外接圆圆心与CEF△的外接圆圆心之间的距离?6.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.7.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.8.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.9.如图,B是O的半径OA上的一点(不与端点重合),过点B作OA的垂线交O于点C,D,连接OD,E是O上一点,CE CA,过点C作O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.10.如图,函数y=-x2+bx+c的图象经过点A(m,0),B(0,n)两点,m,n分别是方程x2-2x-3=0的两个实数根,且m<n.(1)求m,n的值以及函数的解析式;(2)设抛物线y=-x2+bx+c与x轴的另一交点为点C,顶点为点D,连结BD、BC、CD,求△BDC面积;(3)对于(1)中所求的函数y=-x 2+bx +c , ①当0≤x ≤3时,求函数y 的最大值和最小值;②设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p-q =3,求t 的值. 11.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式;(2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE =45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=,AC=∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE 平分∠BDC , ∴∠BDE =∠CDE =45°,∴∠HBC =∠CDE =45°=∠BDE =∠BCH , ∴CH =BH ,∠BHC =90°, ∵BC =10,∴BH =CH =2,OH =OB =OC =5, 设点H (x ,y ), ∵点H 在第四象限, ∴x <0,y >0,∴x 2+y 2=25,(x ﹣3)2+(y ﹣4)2=50, ∴x =4,y =3, ∴点H (4,﹣3),∴∠BDC 的角平分线DE 过定点H (4,3). 【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)22+;(2)63103t ≤≤-或103165-≤≤-3)325m ≤-或0m ≥ 【解析】 【分析】 (1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l 的最大距离为3TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可. 【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2, ∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-, ∴A(-2,0),B(0,-2), ∴OA=OB=2, 又∵OQ 平分∠AOB , ∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离, ∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒, ∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则,∴2PQ OP OQ =+=+()1,2min D H l =(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH + ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤ 由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =, ∴6310t ≤≤,解得63103t ≤≤103165-≤≤-; (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩,∴182b a =-+,又∵点(),D a b 恒在直线3l 上, ∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交, ∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +, ∴(),28m m F ---,把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点,∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E 运动到直线3l 上时, 把点E 代入182y x =-+得:18282m m -+=+,解得:0m =, ∵当点E 沿直线向下运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向上运动,即0m ≥,综上所述,325m ≤-或0m ≥. 【点睛】 本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.3.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+=∵OD m ⊥,m l ⊥∴//OD l∵OB OQ =∴122AH BH AB x === ∴2CD x =∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】 本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.4.(1)4;(2)2;(3)6002+1).【解析】【分析】(1)如图①中,证明△EOB ≌△FOC 即可解决问题;(2)如图②中,连接BD ,取AC 的中点O ,连接OB ,OD .利用四点共圆,证明∠DBQ =∠DAC =45°,再根据垂线段最短即可解决问题.(3)如图③中,将△BDC 绕点D 顺时针旋转90°得到△EDA ,首先证明AB +BC +BD =2+1)BD ,当BD 最大时,AB +BC +BD 的值最大.【详解】解:(1)如图①中,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠EOF=90°,∴∠EOF=∠BOC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴S△EOB=S△OFC,∴S四边形OEBF=S△OBC=14•S正方形ABCD=4,故答案为:4;(2)如图②中,连接BD,取AC的中点O,连接OB,OD.∵∠ABD=∠ADC=90°,AO=OC,∴OA=OC=OB=OD,∴A,B,C,D四点共圆,∴∠DBC=∠DAC,∵DA=DC,∠ADC=90°,∴∠DAC=∠DCA=45°,∴∠DBQ=45°,根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=22BQ=2.(3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,∵∠ABC +∠ADC =180°,∴∠BCD +∠BAD =∠EAD +BAD =180°,∴B ,A ,E 三点共线,∵DE =DB ,∠EDB =90°,∴BE 2BD ,∴AB +BC =AB +AE =BE 2BD ,∴BC +BC +BD 2+1)BD ,∴当BD 最大时,AB +BC +BD 的值最大,∵A ,B ,C ,D 四点共圆,∴当BD 为直径时,BD 的值最大,∵∠ADC =90°,∴AC 是直径,∴BD =AC 时,AB +BC +BD 的值最大,最大值=6002+1).【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.5.(1)详见解析;(2)23)12【解析】【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度.【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒,∴90AEF AFE ∠+∠=︒,∵EC EF ⊥,∴90FEC ∠=︒,∴90AEF BEC ∠+∠=︒,∴AFE BEC =∠∠,∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC ,∵E 、F 分别是AB 、AD 的中点,∴22,2AB AE BE AD AF ===;∵AEF BCE ∽, ∴AE AF BC BE=, ∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =;(3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处,同理,△CEF 的外接圆的圆心在CF 的中点N 处,∴线段MN 为△ACF 的中位线,∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴22AD AB =, ∴221222MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解.6.(1)OA =6,AB =10;(2)3011;(3)0<t≤1813或3011<t≤5. 【解析】【分析】(1)在Rt △AOB 中,tan B =34,OB =8,即可求解; (2)利用△ACD ∽△ABO 、AD +OQ =OA ,即可求解;(3)分QC 与圆P 相切、QC ⊥OA 两种情况,求解即可.【详解】解:(1)在Rt △AOB 中,tan B =34,OB =8, ∴34OA OB = ,∴OA =6,则AB =10; (2)OP =AP ﹣t ,AC =2t ,∵AC 是圆直径,∴∠CDA =90°,∴CD ∥OB ,∴△ACD ∽△ABO ,∴AC AD AB AO = ,即: 2,106t AD = ∴AD =65t , 当Q 与D 重合时,AD +OQ =OA , ∴66,5t t += 30.11t ∴= (3)当QC 与圆P 相切时,∠QAC =90°,∵OQ =AP =t ,∴AQ =6﹣t ,AC =2t ,∵∠A =∠A ,∠QCA =∠ABO ,∴△AQC ∽△ABO ,∴,AQ AC AB AO = 即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t =∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.7.(1)sin2α=42 9;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O 于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN 中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴22AB BC-22(3)x x-2x,∵12•AC•BC=12•AB•CD,∴CD=23 x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=29.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35 MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴22QN MN-=4k,∵1122NMQS MN MQ NQ MR∆==,∴3k•4k=5k•MR∴MR=12k 5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.8.(1)PA13O 392)见解析;(3)⊙O的半径为2或4757【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP ,在Rt △ABH 中,∠ABH =60°,∴∠BAH =30°,∴BH =12AB =2,AH =AB •sin60°= ∴HP =BP ﹣BH =1,∴在Rt △AHP 中,AP∵AB 是直径,∴∠APM =90°,在Rt △AMP 中,∠M =∠ABP =60°,∴AM =AP sin 60︒=3,∴⊙O ,即PA ⊙O (2)当∠APB =2∠PBE 时,∵∠PBE =∠PAE ,∴∠APB =2∠PAE ,在平行四边形ABCD 中,AD ∥BC ,∴∠APB =∠PAD ,∴∠PAD =2∠PAE ,∴∠PAE =∠DAE ,∴AE 平分∠PAD ;(3)①如图3﹣1,当AE ⊥BD 时,∠AEB =90°,∴AB 是⊙O 的直径,∴r =12AB =2; ②如图3﹣2,当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,∵AD ∥BC ,∴AF ⊥BC ,△BFE ∽△DAE , ∴BF AD =EF AE, 在Rt △ABF 中,∠ABF =60°, ∴AF =AB •sin60°=BF =12AB =2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP 10,∴BP=10x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣3x)2+(x)2,解得,x1=(舍),x2,∴AE=∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)①补图见解析;②证明见解析;(2)FB=221.【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43,由(1)可知∠OFC=∠ODC ,∴FC=CD=43,∵BG ⊥l ,OC ⊥l ,∴OC//BG ,∴∠CBG=∠OCD=30°,∴CG=12BC=3,BG=22BC CG -=3, ∴FG=FC+CG=53,∴BF=22FG BG +=221.【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.10.(1)m =﹣1,n =3,y =﹣x 2+2x +3;(2)S=3;(3)①y 最大值=4;当x =3时,y 最小值=0;②t =﹣1或t =2【解析】【分析】(1)首先解方程求得A 、B 两点的坐标,然后利用待定系数法确定二次函数的解析式即可;(2)根据解方程直接写出点C 的坐标,然后确定顶点D 的坐标,根据两点的距离公式可得BDC ∆三边的长,根据勾股定理的逆定理可得90DBC ∠=︒,据此求出 △BDC 面积; (3)①确定抛物线的对称轴是1x =,根据增减性可知:1x =时,y 有最大值,当3x =时, y 有最小值;②分5种情况:1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧;2、当11t +=时;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧;4、当1t =时,5、函数y 在1t x t +内的抛物线完全在对称轴的右侧;分别根据增减性可解答.【详解】解:(1)m ,n 分别是方程2230x x --=的两个实数根,且 m n <,用因式分解法解方程:(1)(3)0x x +-=,11x ∴=-,23x =,1m ∴=-,3n =,(1,0)A ∴-,(0,3)B ,把(1,0)-,(0,3)代入得, 103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴函数解析式为2y x 2x 3=-++.(2)令2230y x x =-++=,即2230x x --=,解得11x =-,23x =,∴抛物线2y x 2x 3=-++与x 轴的交点为 (1,0)A -,(3,0)C ,1OA ∴=,3OC =,∴对称轴为1312x -+==,顶点(1,123)D -++,即 (1,4)D ,∴BC = BD ==DC ==222CD DB CB =+,BCD ∴∆是直角三角形,且90DBC ∠=︒,∴112322S BCD BD BC ==⨯⨯=; (3)∵抛物线y =﹣x 2+2x +3的对称轴为x =1,顶点为D (1,4),①在0≤x ≤3范围内,当x =1时,y 最大值=4;当x =3时,y 最小值=0;②1、当函数y 在1t x t +内的抛物线完全在对称轴的左侧,当x t =时取得最小值 223q t t =-++,最大值2(1)2(1)3p t t =-++++,令22(1)2(1)3(23)3p q t t t t -=-++++--++=,即 213t -+=,解得1t =-.2、当11t +=时,此时4p =,3q =,不合题意,舍去;3、当函数y 在1t x t +内的抛物线分别在对称轴的两侧,此时4p =,令24(23)3p q t t -=--++=,即 2220t t --=解得:11t =),21t = );或者24[(1)2(1)3]3p q t t -=--++++=,即 t =4、当1t =时,此时4p =,3q =,不合题意,舍去;5、当函数y 在1t x t +内的抛物线完全在对称轴的右侧,当x t =时取得最大值 223p t t =-++,最小值2(1)2(1)3q t t =-++++,令2223[(1)2(1)3]3p q t t t t -=-++--++++=,解得 2t =.综上,1t =-或2t =.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有利用待定系数法求抛物线的解析式,抛物线的顶点公式,直角三角形的性质和判定,勾股定理的逆定理,最值问题等知识,注意运用分类讨论的思想解决问题.11.(1)35,5784y x=+;(22r≤.【解析】【分析】(1)①由矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6,即点C坐标为(-3,-2)或(6,-2),设AC表达式为y=kx+b,代入即可求出结果;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙P的半径最小,当点E的纵坐标为1时,⊙P的半径最大,即可得出结果.【详解】(1)①∵A(﹣2,3),B(5,0),C(2,﹣2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35;②∵点A,B,C的最优覆盖矩形的面积为40,∴由定义可知,t=﹣3或6,即点C坐标为(﹣3,﹣2)或(6,﹣2),设AC表达式为y=kx+b,∴3223k bk b=-+⎧⎨-=-+⎩或3226k bk b=-+⎧⎨-=+⎩∴513kb=⎧⎨=⎩或5874kb⎧=-⎪⎪⎨⎪=⎪⎩∴y=5x+13或5784y x=-+;(2)①OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,如图1所示:∵点D (1,1),∴OD 所在的直线表达式为y =x , ∴点E 的坐标为(2,2),∴OE =222+2=22,∴⊙P 的半径最小r =2,②当DE ∥x 轴时,即:点E 的纵坐标为1,如图2所示:∵点D (1,1).E (m ,n )是函数y =4x (x >0)的图象上一点 ∴1=4x ,解得x =4, ∴OE ═224+117, ∴⊙P 的半径最大r =172, 172r ≤. 【点睛】 本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -= 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=, AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。

数学初三九年级上册 压轴解答题(培优篇)(Word版 含解析)

数学初三九年级上册 压轴解答题(培优篇)(Word版 含解析)

数学初三九年级上册压轴解答题(培优篇)(Word版含解析)一、压轴题1.如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(3,4),一次函数23y x b=-+的图像与边OC、AB分别交于点D、E,并且满足OD BE=,M是线段DE上的一个动点(1)求b的值;(2)连接OM,若ODM△的面积与四边形OAEM的面积之比为1:3,求点M的坐标;(3)设N是x轴上方平面内的一点,以O、D、M、N为顶点的四边形是菱形,求点N的坐标.2.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B3为半径画⊙B,若直线3与⊙B的“最美三3B的横坐标Bx的取值范围.3.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?4.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 5.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x的代数式表示BQ、DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,当AP为何值时,矩形DEGF是正方形.6.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.在长方形ABCD中,AB=5cm,BC=6cm,点P从点A开始沿边AB向终点B以1/cm s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2/cm s的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.8.如图,在Rt△AOB中,∠AOB=90°,tan B=34,OB=8.(1)求OA、AB的长;(2)点Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD,QC.①当t为何值时,点Q与点D重合?②若⊙P与线段QC只有一个公共点,求t的取值范围.9.已知,如图Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,点P为AC的中点,Q从点A 运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.10.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB=3时,求PA的长以及⊙O的半径;(2)如图2,当∠APB=2∠PBE时,求证:AE平分∠PAD;(3)当AE与△ABD的某一条边垂直时,求所有满足条件的⊙O的半径.11.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B的坐标;(2)如图1,抛物线与y轴交于点C,连接AC,过A作AD⊥x轴于点D,E是线段AC上的动点(点E不与A,C两点重合);(i)若直线BE将四边形ACOD分成面积比为1:3的两部分,求点E的坐标;(ii)如图2,连接DE,作矩形DEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.12.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA5tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)b=3;(2)点M 坐标为7(1,)3;(3)93(,)42-或3654(,)1313【解析】 【分析】(1)首先在一次函数的解析式中令x=0,即可求得D 的坐标,则OD=b ,则E 的坐标即可利用b 表示出来,然后代入一次函数解析式即可得到关于b 的方程,求得b 的值; (2)首先求得四边形OAED 的面积,则△ODM 的面积即可求得,设出M 的横坐标,根据三角形的面积公式即可求得M 的横坐标,进而求得M 的坐标;(3)分两种情况进行讨论,①四边形OMDN 是菱形时,M 是OD 的中垂线与DE 的交点,M 关于OD 的对称点就是N ;②四边形OMND 是菱形,OM=OD ,M 在直线DE 上,设出M 的坐标,根据OM=OD 即可求得M 的坐标,则根据OD ∥MN,且OD=MN 即可求得N 的坐标. 【详解】(1)在23y x b =-+中,令x=0,解得y=b , 则D 的坐标是(0,b),OD=b , ∵OD=BE ,∴BE=b ,则点E 坐标为(3,4-b ),将点E 代入23y x b =-+中,得:4-b=2+b, 解得:b=3; (2)如图,∵OAED S 四边形=11()(31)3622OD AE OA +=⨯+⨯=, ∵三角形ODM 的面积与四边形OAEM 的面积之比为1:3, ∴13=42ODM OAED S S ∆=四边形设M 的横坐标是a ,则13322a ⨯=, 解得:1a =, 将1x a ==代入233y x =-+中,得: 27333y =-⨯+=则点M 坐标为7(1,)3;(3)依题意,有两种情况:①当四边形OMDN 是菱形时,如图(1),M 的纵坐标是32, 把32y =代入233y x =-+中,得: 23332x -+=,解得:94x =, ∴点M 坐标为93(,)42, 点N 坐标为93(,)42-;②当四边形OMND 是菱形时,如图(2),OM =OD =3, 设M 的坐标2(,3)3m m -+, 由OM=OD 得:222(3)93m m +-+=,解得:3613m=或m=0(舍去),则点M坐标为3615 (,) 1313,又MN∥OD,MN=OD=3,∴点N的坐标为3654 (,) 1313,综上,满足条件的点N坐标为93(,)42-或3654(,)1313.【点睛】本题考查一次函数与几何图形的综合,涉及待定系数法、图形的面积计算、菱形的性质、方程等知识,解答的关键是认真审题,找出相关知识的联系点,运用待定系数法、数形结合法、分类讨论法等解题方法确定解题思路,进而推理、探究、发现和计算.2.(1)②;(2)±1;(3)23<B x<33或733-<B x<23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM 是⊙O 的切线, ∴∠PMO=90°,当⊙O 的半径OM 是定值时,22PM OP OM =-, ∵1=2PMOSPM OM ••, ∴要使PMO △面积最小,则PM 最小,即OP 最小即可,当OP ⊥l 时,OP 最小,符合最美三角形定义.故在图1三个三角形中,因为AO ⊥x 轴,故△AOP 为⊙A 与x 轴的最美三角形. 故选:②.(2)①当k <0时,按题意要求作图并在此基础作FM ⊥x 轴,如下所示:按题意可得:△AEF 是直线y=kx 与⊙A 的最美三角形,故△AEF 为直角三角形且AF ⊥OF . 则由已知可得:111=1222AEFSAE EF EF ••=⨯⨯=,故EF=1. 在△AEF 中,根据勾股定理得:22AF AE ==∵A(0,2),即OA=2,∴在直角△AFO 中,22=2OF OA AF AF -==, ∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1), 将F 点代入y=kx 可得:1k =-. ②当k >0时,同理可得k=1. 故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D ,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OCODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形, ∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°, 在直角△BDN 中,sin BNBDN BD∠=, 故23=sin sin 60?BN BN BD BN BDN =∠.∵⊙B 3, ∴3BM =.当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=3222BMNSMN BM MN MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33, 则23<B x <33. ②当⊙B 在直线CD 左侧时,同理可得:73B x<23- 故综上:23<B x 3733-<B x <23- 【点睛】本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.3.(1)见解析;(2)DB DF = 【解析】 【分析】(1)①直接利用三角形的外角性质,即可得到;②过D作DG BC交AB于点G,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC=,DGB FCD∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF,根据题意,可证得BCF BDF A∠=∠=∠,则B、C、D、F四点共圆,即可证明结论成立.【详解】解:(1)①∵BDC A ABD∠=∠+∠,即BDF FDC A ABD∠+∠=∠+∠,∵BDF A∠=∠,∴FDC ADB∠=∠;②过D作DG BC交AB于点G,∴ADG ACB∠=∠,AGD ABC∠=∠,又AB AC=,∴AABC CB=∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF,由(1)可知,A ABC CB =∠∠,∵ECF ACB ∠=∠,∴ABC ECF ∠=∠,∵BC A C A BCF E F =∠+∠∠+∠,∴A BCF ∠=∠,∴BDF A BCF ∠=∠=∠,∴B 、C 、D 、F 四点共圆,∴180DCB DFB ∠+∠=︒,DBF ECF ∠=∠,∴ACB DFB ∠=∠,∵BC EC AC A F B =∠=∠∠,∴DBF DFB ∠=∠,∴DB DF =.【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.4.(1)见详解;(2)125;(3)①见详解,②32-6【解析】【分析】(1)如图1中,作OH ⊥BD 于H .根据等腰三角形的性质以及垂径定理即可;(2)如图2中,作OH ⊥BD 于H ,连接OB ,求出AC ,BD ,根据S 四边形ABCD =12•BD•AM+ 12•BD•CM=12•BD•AC 即可求解; (3)①如图3中,连接OB ,作OH ⊥BD 于H .利用等腰直角三角形的性质,完全平方公式等知识即可;②如图3中,连接OB ,设DM=CM=x ,想办法求出BC ,DB ,在Rt △BCM 中,利用勾股定理构建方程即可.【详解】(1)证明:如图1中,作OH ⊥BD 于H .∵OE=OF,OH⊥EF,∴EH=HF,∵OH⊥BD,∴BH=HD,∴BE=DF;(2)解:如图2中,作OH⊥BD于H,连接OB.∵∠EOF=90°,OE=OF,OA=OC,∴∠OEF=∠OAC=45°,∴∠AME=90°,即AC⊥BD,连接OB.设OH=a,∵BE=EF,∴BE=2EH=2OH=2a,在Rt△BOH中,∵OH2+BH2=OB2,∴a2+(3a)2=(25)2,∴a=2或-2(舍弃),∴BD=BE+EF+DF=6a=62,在Rt△AOC中,AC=2AO=210,∴S四边形ABCD=12•BD•AM+12•BD•CM=12•BD•AC=12×210×62=125;(3)①如图3中,连接OB,作OH⊥BD于H.∵OE=OF,OA=OC,∴∠EOH=12∠EOF=12(∠EAC+∠ACO)=12×2∠OAC=∠OAC,∴AC ∥OH ,∴AC ⊥BD ,∵AD=BC ,∴∠ABD=∠CAB=∠CDB=45°,∴BM ,DM ,CM=DM ,∴AB•CD+BC 2DM+BM 2+CM 2=(BM+DM )2=BD 2;②如图3中,连接OB ,设DM=CM=x ,∵∠BOC=2∠BDC=90°,∴,∵AB•CD+BC 2=BD 2,AB•CD=AO 2=12,∴12+24=BD 2,∴BD=6(负根已经舍弃),在Rt △BCM 中,∵BC 2=BM 2+CM 2,∴()2=(6-x )2+x 2,∴或∴.【点睛】本题属于圆综合题,考查了垂径定理,等腰三角形的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.5.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+= ∵OD m ⊥,m l ⊥∴//OD l∵OB OQ =∴122AH BH AB x === ∴2CD x =∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】 本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.6.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标. 【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4),∵∠CDB =∠CEB =90︒,∴B 、C 、D 、E 四点共圆,∵CD CD =,∠CBA =45︒,∴∠CED =45︒,∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K .∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE ,∴OE =4,∴AP +PQ ≥4,∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4),设直线AC 解析式为:y =kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K 字形全等三角形求点坐标解决问题,属于中考压轴题.7.(1)BQ ,2tcm ,PB ,()5t cm -;(2)当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由见解析.【解析】【分析】(1)根据点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,可以求得BQ ,PB .(2)用含t 的代数式分别表示PB 和BQ 的值,运用勾股定理求得PQ 为22(5)(2)t t -+=25据此求出t 值.(3)根据题干信息使得五边形APQCD 的面积等于226cm 的t 值存在,利用长方形ABCD 的面积减去PBQ △的面积即可,有PBQ △的面积为4,由此求得t 值.【详解】解:(1)点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,故BQ 为2tcm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,AB =5cm ,故PB 为()5t cm -.(2)由题意得:22(5)(2)t t -+=25,解得:1t =0,2t =2;当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由如下:长方形ABCD 的面积是:56⨯=()230cm ,使得五边形APQCD 的面积等于226cm ,则PBQ △的面积为3026-=()24cm ,()15242t t -⨯⨯=, 解得:1t =4(不合题意舍去),2t =1.即当t =1秒时,使得五边形APQCD 的面积等于226cm .【点睛】本题结合长方形考查动点问题,其本质运用代数式求值,利用含t 的代数式表示各自线段的直接,根据题干数量关系即可确立等量关系式,从而求出t 值.8.(1)OA =6,AB =10;(2)3011;(3)0<t≤1813或3011<t≤5. 【解析】【分析】 (1)在Rt △AOB 中,tan B =34,OB =8,即可求解; (2)利用△ACD ∽△ABO 、AD +OQ =OA ,即可求解; (3)分QC 与圆P 相切、QC ⊥OA 两种情况,求解即可.【详解】解:(1)在Rt △AOB 中,tan B =34,OB =8, ∴34OA OB = ,∴OA =6,则AB =10; (2)OP =AP ﹣t ,AC =2t ,∵AC 是圆直径,∴∠CDA =90°,∴CD ∥OB ,∴△ACD ∽△ABO ,∴AC AD AB AO = ,即: 2,106t AD = ∴AD =65t , 当Q 与D 重合时,AD +OQ =OA , ∴66,5t t += 30.11t ∴= (3)当QC 与圆P 相切时,∠QAC =90°,∵OQ =AP =t ,∴AQ =6﹣t ,AC =2t ,∵∠A =∠A ,∠QCA =∠ABO ,∴△AQC ∽△ABO ,∴,AQ AC AB AO=即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t =∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.9.(1)BQ=8.2cm ;(2)5cm ;(3)S △BOC =39625. 【解析】【分析】(1)根据ABC APQ ∆~∆得AC AB AQ AP=,从而得到AQ 的长即可求出BQ 的长; (2)由点Q 与点A 重合和点Q 与点B 重合时,可以确定点O 的位置,再根据点Q 位于AB 上除端点外的任意一点时,由点O 是PQ 的中点,点F 是PB 的中点可知OF 是PBQ ∆的中位线,从而得到点O 的运动轨迹是APB ∆的 中位线,即线段EF ,即可求得答案;(3)连接AO ,过点O 作ON AC ⊥ ,先证明APQ ABC ∆~∆得到AQ AP PQ AC AB BC == ,所以求得,AQ PQ 的值,且OP OQ =,再证明PON PAQ ∆~∆得到ON PO AQ PA=,求得ON 的值,再根据BOC ABC AOB AOC S S S S ∆∆∆∆=--即可求得答案;【详解】解:(1)如图1所示,∵90,6,8C AC cm BC cm ∠===∴10AB cm =又∵点P 为AC 的中点,∴3AP cm =∵ABC APQ ∆~∆∴AC AB AQ AP = ,即6103AQ = 解之得: 1.8AQ =则8.2BQ AB AQ cm =-=(2)如图2,当点Q 与点A 重合时,点O 位于点E 的位置,当点Q 与点B 重合时,点O 位于点F 的位置,则EF 是△APB 的中位线,∴EF ∥AB ,且EF =12AB =5,152EF AB == 而当点Q 位于AB 上除端点外的任意一点时,∵点O 是PQ 中点,点F 是PB 的中点,∴OF 是△PBQ 的中位线,∴OF ∥BQ ,∴点O 的运动轨迹是线段EF ,则点O 的运动路径长是5cm ;故答案为5cm . (3)如图3,连接AO ,过点O 作ON AC ⊥于点N ,∵⊙O 与AB 相切,∴PQ AB ⊥ ,即90AQP ∠= ,∵,90PAQ BAC ACB AQP ∠=∠∠=∠=∴APQ ABC ∆~∆∴AQ AP PQ AC AB BC == ,即36108AQ PQ ==解之得: 912,55AQ PQ == 则65OP OQ == ∵ON AC ⊥∴90PNO PQA ∠=∠=又∵OPN APQ ∠=∠∴PON PAQ ∆~∆, ∴ON PO AQ PA = ,即65935ON = , 解之得:1825ON = 则BOC ABC AOB AOC S S S S ∆∆∆∆=--111•••222BC AC AB OQ AC ON =-- 11611868106225225=⨯⨯-⨯⨯-⨯⨯ 39625= 【点睛】本题主要考查了相似三角形和圆的综合问题,掌握圆的切线判定、三角形中位线定理、相似三角形的判定和性质、割补法求面积等知识点是解题关键.10.(1)PAO的半径为3;(2)见解析;(3)⊙O 的半径为2或【解析】【分析】(1)过点A 作BP 的垂线,作直径AM ,先在Rt △ABH 中求出BH ,AH 的长,再在Rt △AHP 中用勾股定理求出AP 的长,在Rt △AMP 中通过锐角三角函数求出直径AM 的长,即求出半径的值;(2)证∠APB =∠PAD =2∠PAE ,即可推出结论;(3)分三种情况:当AE ⊥BD 时,AB 是⊙O 的直径,可直接求出半径;当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,通过证△BFE ∽△DAE ,求出BE 的长,再证△OBE 是等边三角形,即得到半径的值;当AE ⊥AB 时,过点D 作BC 的垂线,通过证△BPE ∽△BND ,求出PE ,AE 的长,再利用勾股定理求出直径BE 的长,即可得到半径的值.【详解】(1)如图1,过点A 作BP 的垂线,垂足为H ,作直径AM ,连接MP ,在Rt △ABH 中,∠ABH =60°,∴∠BAH =30°,∴BH =12AB =2,AH =AB •sin60°= ∴HP =BP ﹣BH =1,∴在Rt △AHP 中,AP∵AB 是直径,∴∠APM =90°,在Rt △AMP 中,∠M =∠ABP =60°,∴AM =AP sin 60︒=3,∴⊙O ,即PA ⊙O (2)当∠APB =2∠PBE 时,∵∠PBE =∠PAE ,∴∠APB =2∠PAE ,在平行四边形ABCD 中,AD ∥BC ,∴∠APB =∠PAD ,∴∠PAD =2∠PAE ,∴∠PAE =∠DAE ,∴AE 平分∠PAD ;(3)①如图3﹣1,当AE ⊥BD 时,∠AEB =90°,∴AB 是⊙O 的直径,∴r =12AB =2; ②如图3﹣2,当AE ⊥AD 时,连接OB ,OE ,延长AE 交BC 于F ,∵AD ∥BC ,∴AF ⊥BC ,△BFE ∽△DAE , ∴BF AD =EF AE, 在Rt △ABF 中,∠ABF =60°, ∴AF =AB •sin60°=BF =12AB =2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP 10,∴BP=10x,在Rt△ABE与Rt△BPE中,AB2+AE2=BP2+PE2,∴16+4x2=(10﹣3x)2+(x)2,解得,x1=(舍),x2,∴AE=∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.11.(1)y=﹣14x2+x+3,顶点B的坐标为(2,4);(2)(i)点E的坐标为(85,3)或(125,3);(ii)存在;当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.12.(1)见解析;(2)EF=3251+;(3)存在【解析】【分析】(1)先判断出∠ECB=∠EBC,再判断出∠OCB=∠OBC,即可得出结论;(2)先求出EF,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论;(3)先利用面积关系得出53COFO=,进而利用△OAF∽△EFC得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC,∵AC BD=,∴∠ECB=∠EBC,∵OB=OC,∴∠OCB=∠OBC,∴∠OCD=∠ECF=∠ECB﹣∠OCB=∠EBC﹣∠OBC=∠OBA;(2)∵OA=OB,∴∠OAF=∠OBA,∴∠OAF=∠ECF,①当∠AFO=90°时,∵OAtan ∠OBA =12, ∴OC =OAOF =1,AB =4,∴EF =CF •tan ∠ECF =CF•tan ∠OBA②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12, ∵OA∴OF =OA •tan ∠OAF, ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴EF CF OC OF OF AF AF +=== ∴EFOF =32, 即:EF =32或12; (3)存在,如图2,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴53CEO EFO S S ∆∆=, ∴53CO FO =, ∴FO =35CO, ∵△OFA ∽△EFC ,∴53 CE AD COEF FOFO===,∴BF=BE﹣EF=CE﹣EF=23EF,∴AF=AB﹣BF=4﹣23EF,∵△OAF∽△EFC,∴CF EFFA FO=,∴85523543EF=-,∴EF=3﹣35.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.。

初三数学九上九下压轴题难题提高题培优题(含规范标准答案解析)

初三数学九上九下压轴题难题提高题培优题(含规范标准答案解析)

初三数学九上压轴题难题提高题培优题一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.初三数学九上压轴题难题提高题培优题参考答案与试题解析一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:由题意可知.解得.∴抛物线的表达式为y=﹣.(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得.∴直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF==.当时,DF的最大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.又﹣3<m<0,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MA上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,则﹣3,即m2+m﹣6=0.解得m=﹣3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,﹣).若PN=3NA,则﹣,即m2﹣7m﹣30=0.解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【解答】解:(1)如图,过点A作AD⊥y轴于点D,∵AO=OB=4,∴B(4,0).∵∠AOB=120°,∴∠AOD=30°,∴AD=OA=2,OD=OA=2.∴A(﹣2,2).将A(﹣2,2),B(4,0)代入y=ax2+bx,得:,解得:,∴这条抛物线的表达式为y=x2﹣x;(2)过点M作ME⊥x轴于点E,∵y=x2﹣x=(x﹣2)2﹣,∴M(2,﹣),即OE=2,EM=.∴tan∠EOM==.∴∠EOM=30°.∴∠AOM=∠AOB+∠EOM=150°.(3)过点A作AH⊥x轴于点H,∵AH=2,HB=HO+OB=6,∴tan∠ABH==.∴∠ABH=30°,∵∠AOM=150°,∴∠OAM<30°,∴∠OMA<30°,∴点C不可能在点B的左侧,只能在点B的右侧.∴∠ABC=180°﹣∠ABH=150°,∵∠AOM=150°,∴∠AOM=∠ABC.∴△ABC与△AOM相似,有如下两种可能:①△BAC与∽△OAM,②△BAC与∽△OMA∵OD=2,ME=,∴OM=,∵AH=2,BH=6,∴AB=4.①当△BAC与∽△OAM时,由=得,解得BC=4.∴C1(8,0).②当△BAC与∽△OMA时,由=得,解得BC=12.∴C2(16,0).综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(8,0)或(16,0).3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),;∴,解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,∴cos∠MDF=;∴∠MDF=60°,∴∠EDF=120°;∴劣弧EF的长为:;(3)设直线AC的解析式为y=kx+b;∵直线AC经过点,∴,解得;∴直线AC的解析式为:;设点,PG交直线AC于N,则点N坐标为,∵S△PNA :S△GNA=PN:GN;∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN;即=;解得:m1=﹣3,m2=2(舍去);当m=﹣3时,=;∴此时点P的坐标为;②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;即=;解得:m1=﹣12,m2=2(舍去);当m=﹣12时,=;∴此时点P的坐标为;综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)由OB=2,可知B(2,0),将A(﹣2,﹣4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得解得:∴抛物线的函数表达式为.答:抛物线的函数表达式为.(2)由,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,M点即为所求.∴MO=MB,则MO+MA=MA+MB=AB作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=∴MO+MA的最小值为.答:MO+MA的最小值为.(3)①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x1=﹣4,x2=2(不合题意,舍去)当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,设直线AB的表达式为y=kx+m,则,解得,∴AB的表达式为y=x﹣2.∵AB∥OP,∴直线OP的表达式为y=x.由,得x2=0,解得x=0,(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3),∴,解得,所以,抛物线的函数解析式为y=﹣x2+x+1;(2)如图,过点B作BC⊥x轴于C,过点A作AD⊥OB于D,∵A(0,1),B (4,3),∴OA=1,OC=4,BC=3,根据勾股定理,OB===5,∵∠OAD+∠AOD=90°,∠AOD+∠BOC=90°,∴∠OAD=∠BOC,又∵∠ADO=∠OCB=90°,∴△AOD∽△OBC,∴==,即==,解得OD=,AD=,∴BD=OB﹣OD=5﹣=,∴tan∠ABO===;(3)设直线AB的解析式为y=kx+b(k≠0,k、b是常数),则,解得,所以,直线AB的解析式为y=x+1,设点M(a,﹣a2+a+1),N(a,a+1),则MN=﹣a2+a+1﹣a﹣1=﹣a2+4a,∵四边形MNCB为平行四边形,∴MN=BC,∴﹣a2+4a=3,整理得,a2﹣4a+3=0,解得a1=1,a2=3,∵MN在抛物线对称轴的左侧,抛物线的对称轴为直线x=﹣=,∴a=1,∴﹣12+×1+1=,∴点M的坐标为(1,).6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【解答】解:(1)将x=2,y=2代入抛物线的解析式得:﹣×4×(2﹣m)=2,解得:m=4,经检验:m=4是分式方程的解.∴m的值为4.(2)y=0得:0=﹣(x+2)(x﹣m),解得x=﹣2或x=m,∴B(﹣2,0),C(m,0).由(1)得:m=4,∴C(4,0).将x=0代入得:y=﹣×2×(﹣m)=2,∴E(0,2).∴BC=6,OE=2.∴S=BC•OE=×6×2=6.△BCE(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x 轴的交点为P.∵x=﹣,∴抛物线的对称轴是直线x=1.∴CP=3.∵点B与点C关于x=1对称,∴BH=CH.∴BH+EH=EH+HC.∴当H落在线段EC上时,BH+EH的值最小.∵HP∥OE,∴△PHC∽△EOC.∴,即.解得HP=.∴点H的坐标为(1,).(4)①如图2,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.∵BF∥EC,∴∠BCE=∠FBC.∴当,即BC2=CE•BF时,△BCE∽△FBC.设点F的坐标为(x,﹣(x+2)(x﹣m)),由,得.解得x=m+2.∴F′(m+2,0).∵∠BCE=∠FBC.∴,得,解得:.又∵BC2=CE•BF,∴,整理得:0=16.此方程无解.②如图3,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,∵OE=OB,∠EOB=90°,∴∠EBO=45°.∵∵∠CBF=45°,∴∠EBC=∠CBF,∴当,即BC2=BE•BF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得(x+2)(x﹣m)=x+2,解得x=2m.∴F′(2m,0).∴B F′=2m+2,∴BF=2m+2.由BC2=BE•BF,得(m+2)2=2×(2m+2).解得.∵m>0,∴m=2+2.综上所述,点m的值为2+2.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B 的坐标为 (b ,0) ,点C 的坐标为 (0,) (用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO ,△QOA 和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.【解答】解:(1)令y=0,即y=x 2﹣(b +1)x +=0,解得:x=1或b ,∵b 是实数且b >2,点A 位于点B 的左侧,∴点B 的坐标为(b ,0),令x=0, 解得:y=, ∴点C 的坐标为(0,),故答案为:(b ,0),(0,);(2)存在,假设存在这样的点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形.设点P 的坐标为(x ,y ),连接OP .则S 四边形PCOB =S △PCO +S △POB =••x +•b•y=2b ,∴x +4y=16.过P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD 是矩形.∴∠EPD=90°.∴∠EPC=∠DPB .∴△PEC ≌△PDB ,∴PE=PD ,即x=y .由解得由△PEC≌△PDB得EC=DB,即﹣=b﹣,解得b=>2符合题意.∴P的坐标为(,);(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A>∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA•AB得:()2=b﹣1.解得:b=8±4.∵b>2,∴b=8+4.∴点Q的坐标是(1,2+).(II)当∠OQC=90°时,△OCQ∽△QOA,∴=,即OQ2=OC•AQ.又OQ2=OA•OB,∴OC•AQ=OA•OB.即•AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q的坐标是(1,4).∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB 中的任意两个三角形均相似.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.【解答】解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A (1,4),C (3,0),∴可求直线AC 的解析式为y=﹣2x +6.∵点P (1,4﹣t ). ∴将y=4﹣t 代入y=﹣2x +6中,解得点E 的横坐标为x=1+.∴点G 的横坐标为1+,代入抛物线的解析式中,可求点G 的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t )=t ﹣. 又∵点A 到GE 的距离为,C 到GE 的距离为2﹣,即S △ACG =S △AEG +S △CEG =•EG•+•EG (2﹣) =•2(t ﹣)=﹣(t ﹣2)2+1. 当t=2时,S △ACG 的最大值为1.(3)第一种情况如图1所示,点H 在AC 的上方,由四边形CQEH 是菱形知CQ=CE=t ,根据△APE ∽△ABC ,知=,即=,解得t=20﹣8;第二种情况如图2所示,点H 在AC 的下方,由四边形CQHE 是菱形知CQ=QE=EH=HC=t ,PE=t ,EM=2﹣t ,MQ=4﹣2t .则在直角三角形EMQ 中,根据勾股定理知EM 2+MQ 2=EQ 2,即(2﹣t )2+(4﹣2t )2=t 2,解得,t 1=,t 2=4(不合题意,舍去).综上所述,t=20﹣8或t=.。

初三九年级数学上册 压轴解答题(提升篇)(Word版 含解析)

初三九年级数学上册 压轴解答题(提升篇)(Word版 含解析)

初三九年级数学上册 压轴解答题(提升篇)(Word 版 含解析)一、压轴题1.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.3.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.4.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).5.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.6.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.7.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想. 8.如图,在平面直角坐标系中,直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,以AB 为斜边作等腰直角△ABC ,使点C 落在第一象限,过点C 作CD ⊥AB 于点D ,作CE ⊥x 轴于点E ,连接ED 并延长交y 轴于点F .(1)如图(1),点P 为线段EF 上一点,点Q 为x 轴上一点,求AP +PQ 的最小值. (2)将直线l 进行平移,记平移后的直线为l 1,若直线l 1与直线AC 相交于点M ,与y 轴相交于点N ,是否存在这样的点M 、点N ,使得△CMN 为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.9.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.10.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)11.如图,在平面直角坐标系中,直线l 分别交x 轴、y 轴于点A ,B ,∠BAO = 30°.抛物线y = ax 2 + bx + 1(a < 0)经过点A ,B ,过抛物线上一点C (点C 在直线l 上方)作CD ∥BO 交直线l 于点D ,四边形OBCD 是菱形.动点M 在x 轴上从点E ( -3,0)向终点A 匀速运动,同时,动点N 在直线l 上从某一点G 向终点D 匀速运动,它们同时到达终点.(1)求点D 的坐标和抛物线的函数表达式. (2)当点M 运动到点O 时,点N 恰好与点B 重合.①过点E 作x 轴的垂线交直线l 于点F ,当点N 在线段FD 上时,设EM = m ,FN = n ,求n 关于m 的函数表达式.②求△NEM 面积S 关于m 的函数表达式以及S 的最大值.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)A(6,3),B(12,0),C(0,6);(2)y=-x+6;(3)满足条件的Q点坐标为:(-3,3)或22)或(6,6).【解析】【分析】(1)根据坐标轴上点的坐标特点,可求出B,C两点坐标.两个函数解析式联立形成二元一次方程组,可以确定A点坐标.(2)根据坐标特点和已知条件,采用待定系数法,即可作答.(3)在(2)的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、2为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP1Q1C为菱形时,由∠COP1=90°,得到四边形OP1Q1C为正方形;②当四边形OP2CQ2为菱形时;③当四边形OQ3P3C为菱形时;分别求出Q坐标即可.【详解】解:(1)由题意得16212y xy x⎧=-+⎪⎪⎨⎪=⎪⎩解得63 xy=⎧⎨=⎩∴A(6,3)在y=-162x+中,当y=0时,x=12,∴B(12,0)当x=0时,y=6,∴C(0,6).(2)∵点D在线段OA上,∴设D(x,12x) (0≤x≤6)∵S △COD =12∴12×6x=12 x=4∴D(4,2),设直线CD 的表达式为y=kx+b , 把(10,6)与D(4,2)代入得624bk b =⎧⎨=+⎩解得16k b =-⎧⎨=⎩直线CD 的表达式为y=-x+6(3) 存在点2,使以O 、C 、P 、Q 为顶点的四边形是菱形,如图所示,分三种情况考虑:①当四边形OP 1Q 1C 为菱形时OC==OP 1,由∠COP 1=90°,得到四边形OP 1Q 1C 为正方形,此时Q 1P 1=OP 1=OC=6,即Q:(6,6);② 当四边形OP 2CQ 2为菱形时,OP 2=CP 2 ,由C 坐标为(0,6),得到Q 2纵坐标为3,把y=3代入直线OQ 2解析式y=-x 中,得:x=-3,此时Q 2(-3,3);③当四边形0Q 3P 3C 为菱形时,OC=CP 3,则有OQ 3=OC=CP 3=P 3Q 3=6,设坐标为(x ,-x+6), ∵OC=CP 3∴x 2+x 2= CP 32= OC 2=62解得,2P 的坐标为2,2) 此时Q 322).综上,点Q 的坐标是(-3,3)或2,2)或(6,6). 【点睛】本题是一次函数、勾股定理、特殊的平行四边形的综合应用,是一道压轴题,在考试中第一问必须作答,二三问可以根据自己的情况进行取舍.2.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥, 90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM∴∠=∠,BAC DCA∠=∠,在AOM和COD△中,AMD CDMAM CDBAC DCA∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOM COD ASA∴≅△△,OA OC∴=,ADO CDOS S∆∆∴=,AFO CFOS S∆∆=,ADO AFO CDO CFOS S S S∆∆∆∆∴-=-,ADF CDFS S∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①2,②最大值为4414710【解析】【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE =BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=2,再将AD+BD=14,CD=2代入22AD BD⎛⎫⋅+⎪⎪⎝⎭,化简得出﹣(AD﹣212)2+4414,进而求出AD,最后用勾股定理求出AB即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=72,故答案为72;②∵AD+BD=14,∴CD=72,∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,2AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=710.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质. 4.(1)证明见解析;(2)213;(3)23a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明; (2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==∵BF ⊥EC ,∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M , 由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG , ∴△EBF ∽△EGA ,∴123=11532a BF BE AG EG a a ==+, ∵33AG BG ==, ∴233525BF a a =⨯=, ∴△OFB 的面积=21313225330BF BM a a a ⋅=⨯⨯=. 【点睛】 本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.5.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+= ∵OD m ⊥,m l ⊥∴//OD l∵OB OQ =∴122AH BH AB x === ∴2CD x =∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒ ∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.6.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【解析】【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得.【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥∴AB 是直径∴1OC OD CD ===∴OCD 是等边三角形∴60COD ∠=︒∴30DBE ∠=︒∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OD 、OC 、AC ,如图:∵1OD OC CD ===∴OCD 为等边三角形∴60COD ∠=︒∴30DAC ∠=︒∴30EBD ∠=︒∵90ADB ∠=︒∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OC 、OD ,如图:∵AD BD ⊥∴AB 是直径∴1OC OD CD ===∴OCD 是等边三角形∴60COD ∠=︒∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点 ∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD =∴30A ∠=︒∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.7.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS )∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE ⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME ∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM ====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.8.(1)AP+PQ的最小值为4;(2)存在,M点坐标为(﹣12,﹣4)或(12,8).【解析】【分析】(1)由直线解析式易求AB两点坐标,利用等腰直角△ABC构造K字形全等易得OE=CE=4,C点坐标为(4,4)DB=∠CEB=90︒,可知B、C、D、E四点共圆,由等腰直角△ABC 可知∠CBD=45︒,同弧所对圆周角相等可知∠CED=45︒,所以∠OEF=45︒,CE、OE是关于EF对称,作PH⊥CE于H,作PG⊥OE于Q,AK⊥EC于K.把AP+PQ的最小值问题转化为垂线段最短解决问题.(2)由直线l与直线AC成45︒可知∠AMN=45︒,由直线AC解析式可设M点坐标为(x,122x+),N在y轴上,可设N(0,y)构造K字形全等即可求出M点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC ,∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒,∴∠ACK =∠CBE在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△AKC ≌△CEB (AAS )∴AK =CE ,CK =BE ,∵四边形AOEK 是矩形,∴AO =EK =BE ,由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4),∵∠CDB =∠CEB =90︒,∴B 、C 、D 、E 四点共圆,∵CD CD =,∠CBA =45︒,∴∠CED =45︒,∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K .∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE ,∴OE =4,∴AP +PQ ≥4,∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4),设直线AC 解析式为:y =kx+b 把(0,2),(4,4)代入得244b k b =⎧⎨=+⎩解得122k b ⎧=⎪⎨⎪=⎩∴直线AC 解析式为:y =122x +, 设M 点坐标为(x ,122x +),N 坐标为(0,y ).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K字形全等三角形求点坐标解决问题,属于中考压轴题.9.(1)①补图见解析;②证明见解析;(2)FB=221.【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC=,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD , ∵FC 是⊙O 的切线, ∴OC ⊥FC ,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF ,作BG ⊥l 于G ,∵B 是OA 的中点,⊙O 半径为4,∴OB=12OA=12OC=2, ∵OA ⊥CD , ∴∠OCD=30°,BC=22OC OB -=2242-=23,∴CD=2BC=43,由(1)可知∠OFC=∠ODC ,∴FC=CD=43,∵BG ⊥l ,OC ⊥l ,∴OC//BG ,∴∠CBG=∠OCD=30°,∴CG=12BC=3,BG=22BC CG -=3, ∴FG=FC+CG=53,∴BF=22FG BG +=221.【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.10.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】【分析】(1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式;(2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案.【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩, 解得:132b c =⎧⎪⎨=⎪⎩, ∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+, ∴点M 的坐标为(1,2)令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =,∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =, ∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32,∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.11.(1)点D 的坐标为(2,12),抛物线的解析式为24 ?1?3y x =-+;(2)①1n =+;②234S m =+,S 【解析】【分析】(1)由抛物线的解析式为y = ax 2 + bx + 1,得到OB=1,根据菱形的性质结合含30度的直角三角形的性质点A 、D 、C 的坐标,再利用待定系数法即可求解;(2)①在Rt △FEA 中,FB=12FA=2,FD=FB+BD=3,根据题意设此一次函数解析式为:n km b =+,求得m =2n FB ==,m =3n FD ==,代入n km b =+,即可求解;②求得NA 3m =,过N 作NQ ⊥EA ,得到NQ=12NA=32,利用面积公式得到S 关于m 的函数表达式,再利用二次函数的性质即可求解.【详解】(1)∵抛物线的解析式为y = ax2 + bx + 1,∴OB=1,∵∠BAO=30︒,∠BOA=90︒,∴AB=2OB=2,OA=2222AB OB213-=-=,∠ABO=60︒,∴点A的坐标为(3,0),又∵四边形OBCD是菱形,且∠ABO=60︒,∴OD=CD=OB=1,∴△DOB为等边三角形,∴∠BOD=60︒,∠DOA=30︒,BD=BO=OD=DA=1,延长CD交OA于H,则CH⊥OA,∴DH=12OD=12,3CH=CD+DH=32,∴点D的坐标为312),点C的坐标为332),将A30) , C的坐标为332)代入抛物线的解析式y = ax2 + bx + 1,得:3310333142a ba⎧+=⎪⎨+=⎪⎩,解得:433ab⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为243?1?3y x x=-+;(2)①在Rt△FEA中,∠FAE=30︒,3FA=2AB=4,∴FB=12FA=2,FD=FB+BD=3,∵动点M 、N 同时作匀速直线运动,∴n 关于m 成一次函数,故设此一次函数解析式为:n km b =+,当点M 运动到点O 时,点N 恰好与点B 重合,∴m =2n FB ==,当点M 运动到点A 时,点N 恰好与点D 重合,∴m =3n FD ==,代入n km b =+,得:23b b⎧=+⎪⎨=+⎪⎩,解得:1k b ⎧=⎪⎨⎪=⎩∴此一次函数解析式为:1n =+; ②NA=FA-FN=4- 3n =, 过N 作NQ ⊥EA ,则NQ=12NA=32,∴2133226124S m m m m ⎛⎫=-=-+ ⎪ ⎪⎝⎭,∵012-<,当3m ==⎝⎭0m ≤≤范围内,∴132226216S ⎛⎫=⨯-⨯= ⎪ ⎪⎝⎭最大. 【点睛】本题主要考查了二次函数的综合应用,涉及待定系数法、菱形的性质、等边三角形的判定和性质、二次函数的性质、函数图象的交点等.本题涉及知识点较多,综合性较强,难度较大.12.(1)12;(2)tan EAD ∠=13;(3)DE CD = 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=255x ,求出PF=355x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=, AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。

初三数学九上九下压轴题难题提高题培优题(附答案解析)

初三数学九上九下压轴题难题提高题培优题(附答案解析)

初三数学九上压轴题难题提高题培优题一•解答题(共8小题)1. 如图,抛物线y=ax2+bx+c (a^0)经过点A ( - 3, 0)、B (1 , 0)、C(-2, 1),交y轴于点M .(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N ,使得以点P、A、N为顶点的三角形与△ MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.3//盒02. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx (a>0)经过点A 和x轴正半轴上的点B, AO=OB=4,/ AOB=120 ° .(1)求这条抛物线的表达式;(2)联结OM ,求/AOM的大小;(3)如果点C在x轴上,且厶ABC与厶AOM相似,求点C的坐标.(1) 求此抛物线的解析式;(2) 若此抛物线的对称轴与直线y=2x 交于点D ,作O D 与x 轴相切D 交y 轴于点E 、F 两点,求劣弧EF 的长; ,PG 垂直于x 轴,垂足为点G ,试 y=ax 2+bx+c 经过点 A 、0、B 三点. (1) 求抛物线的函数表达式;(2) 若点M 是抛物线对称轴上一点,试求AM+0M 的最小值;(3) 在此抛物线上,是否存在点P ,使得以点P 与点0、A 、B 为顶点的四边形 是梯形?若存在,求点P 的坐标;若不存在,请说明理由.y=ax 2+bx+c 交 x 轴于 A (2,A ( - 2,- 4 ),0B=2,抛物线0), B (6, 0)两点,交y 轴于点■ •.(3) P 为此抛物线在第二象限图象上的一点AC 分为1: 2两部分?5. 已知抛物线y= -x2+bx+c 经过点A (0, 1) , B (4, 3).(1)求抛物线的函数解析式;(2)求tan /ABO 的值;(3)过点B作BC丄x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N ,交抛物线于点M ,若四边形MNCB为平行四边形,求点M的坐标.6. 如图1,已知抛物线的方程C仁y=-丄(x+2 ) (x- m) (m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M (2, 2),求实数m的值;(2)在(1)的条件下,求厶BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△ BCE相似?若存在,求m的值;若不存在,请说明理由.7. 如图,已知抛物线y二丄x2-〒(b+1 )x+片(b是实数且b>2)与x轴的正半轴分别交于点A、B (点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为____ ,点C的坐标为________ (用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且A PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△ QCO,△ QOA和厶QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求ABCD的三个顶点B (1,0),C (3, 0),D (3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE 丄AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF丄AD于F,交抛物线于点G,当t为何值时,△ ACG的面积最大?最大值为多少?(3)在动点P, Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界) 存在点H,使以C, Q, E, H为顶点的四边形为菱形?请直接写出t的值.初三数学九上压轴题难题提高题培优题参考答案与试题解析一•解答题(共8小题)1. 如图,抛物线y=ax2+bx+c (a^0)经过点A ( - 3, 0)、B (1 , 0)、C(-2, 1),交y轴于点M .(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N ,使得以点P、A、N为顶点的三角形与△ MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.厂^9a-3b+c=0解答】解:由题意可知“ a+b+ c=04a-2b+c=lL••抛物线的表达式为y=-丄匸’二■(2)将x=0代入抛物线表达式,得y=1 .•点M的坐标为(0, 1)设直线MA的表达式为y=kx+b ,则-3k+b=0解得代二1••直线MA 的表达式为y=此时 占吒,弓砒十1寻,即点D 的坐标为((3)存在点P ,使得以点P 、A 、N 为顶点的三角形与△ MAO 相似.设P (m , 12 2.)亍亍T+1).在Rt A MAO 中,AO=3MO ,要使两个三角形相似,由题意可知,点P 不可能 在第一象限.① 设点P 在第二象限时,••点 P 不可能在直线MN 上,二只能PN=3AN , 二—闻殳二3 (时3),即 m 2+11m+24=0 .解得 m= - 3 (舍去)或 m=-8. 又-3 v m v 0,故此时满足条件的点不存在.② 当点P 在第三象限时,••点 P 不可能在直线MA 上,二只能PN=3AN ,——i-7 ,即 m 2+11m+24=0解得m= - 3或m= - 8.此时点P 的坐标为(-8, - 15). ③当点P 在第四象限时,若AN=3PN 时,则-3 《7*1) =m+3 ,即m 2+m -6=0 .)1.知-J,则点F 的坐标为解得m= - 3 (舍去)或m=2 .•此时点P的坐标为(2,--)解得m= - 3 (舍去)或m=10 ,此时点P的坐标为(10, - 39).综上所述,满足条件的点P的坐标为(-8, - 15)、(2, --)>(10,-2. 如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx (a>0)经过点A和x轴正半轴上的点B, AO=OB=4,/ AOB=120 ° .(1)求这条抛物线的表达式;(2)联结OM ,求/AOM的大小;(3)如果点C在x轴上,且厶ABC与厶AOM相似,求点C的坐标.当m=2时, 知吋1二即m2- 7m -30=0 .39)解答】解:(1)如图,过点A 作AD 丄y 轴于点D , •.A0=0B=4 , •B (4, 0)•vZ AOB=120 ° ,•••/ AOD=30 ° , ••AD=^0A=2 , 0D=^0A=2 . ••A (-2, 2 、;). B (4, 0)代入 y=ax 2+bx ,得:• Zk0M= Z A0B+ Z E0M=150(3) 过点A 作AH ±x 轴于点H,2硒EM=〔.将 A ( - 2, 2」;),••这条抛物线的表达式为y 仝}x 2 (2)过点M 作ME ±x 轴于点E ,• Z E0M=30••AH=2 _ HB=H0+0B=6 ,•••tan ZABH=—=.HB 3•/ ABH=30 ° ,vZ AOM=150 ° ,•zOAM v 30 ° ,•ZOMA v 30 ° ,••点C不可能在点B的左侧,只能在点B的右侧••Z ABC=18& Z ABH=150 ° ,vZ AOM=150 ° ,•z AOM= Z ABC.• △ABC与厶AOM相似,有如下两种可能:①厶BAC 与s A OAM,②△ BAC 与s△OMA••OD=2 , ME= ,3•••OM=—3••AH=2 一; , BH=6 ,••AB=4 二①当△ BAC与s△OAM时, 由厘=丄得,解得BC=4 .A D D U•••C I (8 , 0).②当△ BAC与s△OMA时,•••C2 (16 , 0)综上所述,如果点C在x轴上,且厶ABC与厶AOM相似, 则点C的坐标为(8, 0)或(16, 0).3. 如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A (2,0), B(6,0)两点,交y轴于点■■-上-.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作O D与x轴相切D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△ PGA的面积被直线AC分为1: 2两部分?解答】解:(1 抛物线y=ax2+bx+c经过点A (2 , 0), B (6 , 0),••直线AC 的解析式为:丿;「二:;••抛物线的解析式为(2)易知抛物线的对称轴是x=4 ,把x=4代入y=2x ,得y=8 ,••点D 的坐标为(4, 8);VGD 与x 轴相切,:O D 的半径为8;连接DE 、DF ,作DM 丄y 轴,垂足为点M ;在 Rt A MFD 中,FD=8 , MD=4 ,••cos ZMDF 二丄;•••/ MDF=60 ° ,• / EDF=120 ° ;••劣弧EF 的长为:、L -—;loU J(3)设直线AC 的解析式为y=kx+b ;••直线 AC 经过点 I'"-'-/;i 1 '::, 『2k+b=0''r :, 36a-F6b+c=0c=2V3l-\ ■;设点卜「 r 匚, 'H "N , PG交直线AC于N ,0 J则点N坐标为■': _ ,PNA:S A GNA=PN : GN ;•••①若PN : GN=1 : 2,贝U PG: GN=3 : 2, PG—GN ;2即甞卄2听語叶zV5);解得:mi= - 3, m2=2 (舍去);当m= - 3时,’.」:..I .. =—:;••此时点P的坐标为(-乱晋寸引;②若PN: GN=2 : 1 ,贝U PG: GN=3 : 1, PG=3GN ;解得:mi= - 12, m2=2 (舍去);当m= - 12时,’「」:二I .:\ = ^■';••此时点P的坐标为(卫,4273);综上所述,当点P坐标为〔-3.号运)或HZ毀弟)时,△ PGA的面积被直线AC分成1 : 2两部分.,已知点A ( - 2 , - 4), OB=2 ,抛物线4 .如图,在平面直角坐标系中y=ax2+bx+c 经过点A、0、B 三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+0M的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点0、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.解答】解:(1)由0B=2,可知B (2,0),将A ( - 2,- 4 ) ,B ( 2,0 ) ,0 ( 0,0 )三点坐标代入抛物线y=ax2+bx+c ,-Q=4a-2b+c彳得0^4a+2b+c解得:-二二■ ;「•,1••抛物线的函数表达式为尸令家卄.答:抛物线的函数表达式为■子+葢.2(2) 由尸今/十沪丄D诒,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段0B的垂直平分线,连接AB交直线x=1于点M,M点即为所求.••MI0=MB,则M0+MA=MA+MB=AB作 AC lx 轴,垂足为 C ,贝 U AC=4 , BC=4 ,:AB=「.••MO+MA 的最小值为■- . ?.答:MO+MA 的最小值为(3) ①若OB//AP ,此时点A 与点P 关于直线x=1对称,由 A ( - 2, - 4),得 P (4, - 4),则得梯形 OAPB .②若 OA //BP ,设直线OA 的表达式为y=kx ,由A ( - 2, - 4)得,y=2x .设直线BP 的表达式为y=2x+m ,由B (2, 0)得,0=4+m ,即m= - 4,••直线BP 的表达式为y=2x - 4③ 若 AB//OP ,VAB //OP ,••直线OP 的表达式为y=x .,得 x 2=0 ,解得 x=0 ,(不合题意,舍去),此时点P 不存在.综上所述,存在两点P (4, - 4 )或P ( - 4, - 12) 使得以点P 与点O 、A 、B 为顶点的四边形是梯形.,解得 x i = - 4 , X 2=2 (不合题意,舍去)当 x= - 4 时,y= - 12,•点 P (-4, - 12),贝U 得梯形 OAPB .设直线AB 的表达式为y=kx+m 4=-2kH-ni解得 k=lITH -2 ,—AB 的表达式为y=x - 2.答:在此抛物线上,存在点P ,使得以点P 与点0、A 、B 为顶点的四边形是梯 形,点P 的坐标是(4,- 4)或(-4, - 12) 小J Pp/:X 二1I4'C:x=l\ / :v \;\5. 已知抛物线y= -x 2+bx+c 经过点A (0, 1) ,B (4, 3) (1)求抛物线的函数解析式;(2) 求 tan ZABO 的值;(3) 过点B作BC丄x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N ,交抛物线于点M ,若四边形MNCB为平行四边形,求点M的坐解答】解:(1 抛物线y= -x2+bx+c经过点A (0, 1), B (4, 3), ;c=i\-16-F4b+c=3,所以,抛物线的函数解析式为y= - x2+「x+1 ;(2)如图,过点B作BC丄x轴于C,过点A作AD丄0B于D , ••A (0, 1), B (4,3),•••0A=1 , 0C=4 , BC=3 ,根据勾股定理,OB=』0c£+£c?=d*+护=5 ,V/OAD+ / AOD=9O ° , AOD+ / BOC=90 ° , •••zOAD= ZBOC ,又••VDO= / OCB=90 ° ,•••△AOD sMBC,0A0D AD0B BC0C,■U丄I亠"一-T,解得0D二亠,5所以,直线AB的解析式为y=“x+1 , 设点M (a, 则MN=-a2+_a+1讣a- 1= - a2+4a,••四边形MNCB为平行四边形,••MN=BC,•'•—a2+4a=3,整理得,a2—4a+3=0,解得a i=1,a2=3,••MIN在抛物线对称轴的左侧,抛物线的对称轴为直线•'a=1,•■-— 12+一灯+1=一32255.■-BD=OB —OD=5—(3)设直线AB的解析式为y=kx+b (k#0, k、b是常数),••仙如0=_=7则XLb=l—a2+—a+1),N(a,a+1)=2,6. 如图1,已知抛物线的方程C 仁y=-丄(x+2 ) (x -m ) (m >0)与x 轴交 于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1) 若抛物线C i 过点M (2, 2),求实数m 的值;(2) 在(1)的条件下,求厶BCE 的面积;(3) 在(1)的条件下,在抛物线的对称轴上找一点 H ,使得BH+EH 最小,求 出点H 的坐标;(4) 在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三 角形与A BCE 相似?若存在,求m 的值;若不存在,请说明理由.解答】解:(1)将x=2,y=2代入抛物线的解析式得:-二X 4 x(2 - m ) R\解得:m=4, 经检验:m=4是分式方程的解.••m的值为4.(2) y=0 得:0=-丄(x+2) (x - m),解得x= - 2 或x=m ,•B (-2, 0), C (m , 0).由(1)得:m=4 ,•C (4, 0).将x=0 代入得:y=-丄X2X(- m) =2 ,m•£ (0, 2).•••BC=6, OE=2 .BCE=丄BC?OE」X6 X2=6 .(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x••抛物线的对称轴是直线x=1 .•••CP=3.••点B与点C关于x=1对称,••BH=CH .••BH+EH=EH+HC ..•当H 落在线段EC 上时,BH+EH 的值最小.VHP //0E , •••APHCsAEOC .••聖旦即聖丄 CP \3~ 4••点H 的坐标为(1,(4) ①如图2,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ' xL 轴于F ' /•zBCE=ZFBC..•当 —-—,即 BC ?=CE?BF 时,△ BCE^AFBC.CB BF 5 ,设点F 的坐标为(x ,-丄(x+2 ) ( x - m )),由 ,得 m Dr LU 丄(i+2)(1-m)TTi 二x+2 m .解得x=m+2 .••• F'm+2 , 0).VzBCE=ZFBC.又 VBC 2=CE?BF ,解得HP =3CO BF 解得:-L VID••BF//EC,••••••/ CBF=45 ° ,•••左BC=/CBF ,.•当 ,即 BC 2=BE?BF 时,△ BCE^ABFC. BC Br在 Rt A BFF 中,由 FF ' =BF 得,(x+2 )(x - m ) =x+2 ,解得 x=2m .• F'2m , 0).•••BF ' =2+2 ,•••BF=2 m+2 '::.由 BC 2=BE?BF ,得(m+2 ) 2=2打马X(2. ■:m+2 /).解得:=一 :■:.'•m > 0,•••m=2+2综上所述,点m 的值为2+2」:.半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .•••_. "--1 _,,整理得:0=16 .此方程无解.F ,过点F 作FF '亘轴于F7.如图,已知抛物线y=(b 是实数且b >2)与x 轴的正m O:丄 EBO=451 42 (b+1 ) x+等(1)点B 的坐标为 (b , 0),点C 的坐标为 (0, b ) (用含b 的代 ------------------- --------------------------------- 4 ------数式表示);(2) 请你探索在第一象限内是否存在点 P ,使得四边形PCOB 的面积等于2b , 且A PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标; 如果不存在,请说明理由;(3) 请你进一步探索在第一象限内是否存在点 Q ,使得△ QCO ,△ QOA 和厶 QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求••b 是实数且b >2,点A 位于点B 的左侧, ••点B 的坐标为(b ,0), 令 x=0, 解得:y=^,••点C 的坐标为(o ,—),故答案为:(b , 0),( 0,号);=0, 4解得:x=1或b ,X +(2)存在,假设存在这样的点P ,使得四边形PCOB 的面积等于2b ,且厶PBC 是以点P 为 直角顶点的等腰直角三角形•设点P 的坐标为(x , y ),连接OP .S 四边形 PCOB =S △ PCO +S △ POB = .•x+4y=16 .过P 作PD 丄x 轴,PE 丄y 轴,垂足分别为D 、E,•••zPEO=/EOD= / ODP=90 ° .•••四边形PEOD 是矩形.•••/ EPD=90 ° .•••zEPC=/DPB .(3)假设存在这样的点 Q ,使得△ QCO ,△ QOA 和厶QAB 中的任意两个三角形均相似.VzQAB= Z AOQ+ Z AQO ,•••/QAB >ZAOQ ,/QAB >ZAQO .••要使△ QOA 与厶QAB 相似,只能ZQAO= / BAQ=90 °卽QA 丄x 轴. 16 16T' •••P 的坐标为( );二?b?y=2b ,•••APECm PDB,APE=PD , 即 x=y .盖—y x-F4y=ir. 解得 16----------- 516由厶PECmPDB 得 EC=DB , 16 516解得b= 128> 2符合题意.••b > 2,••AB> OA,•••/Q0A >ZABQ .••只能Z AOQ= Z AQB .此时/ OQB=90 ° ,由QA ±x轴知QA //y轴.--zCOQ= /OQA .••要使厶QOA与厶OQC相似,只能ZQCO= 90或/ OQC=90 ° .(I)当/ OCQ=9 0 时,△ CQO^A QOA .由AQ2=OA?AB 得: 解得:b=8 ±4「;.••b > 2,••b=8+4:;.••点Q的坐标是(1, 2+ .;).(II)当/ OQC=90时,△OCQ s^QOA,.•匹垒L,即OQ2=OC?AQ.CO Q0又OQ2=OA?OB ,• OC?AQ=OA?OB.即L?AQ=1 A).4解得:AQ=4 ,此时b=17 > 2符合题意,••点Q的坐标是(1, 4).••综上可知,存在点Q (1 , 2+「;)或Q (1 , 4),使得△ QCO,△ QOA和厶QAB中的任意两个三角形均相似8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B (1 , 0), C (3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D 运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE 丄AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF丄AD于F,交抛物线于点G,当t为何值时,△ ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界) 存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.解答】解:(1) A (1 , 4).由题意知,可设抛物线解析式为y=a (x - 1) 2+4••抛物线过点C (3, 0),••0=a ( 3 - 1)2+4 , 解得,a= - 1,y= - (x - 1) 2+4 ,即 y= - X 2+2X +3. (2) V A (1, 4), C (3, 0),••可求直线AC 的解析式为y= - 2x+6 .••点 P (1 , 4 - t ).••将y=4 - t 代入y= - 2x+6中,解得点E 的横坐标为x=1 +三.^11••点G 的横坐标为1+—,代入抛物线的解析式中,可求点G 的纵坐标为当t=2时,S A ACG 的最大值为1 .••抛物线的解析式为 •••GE= (4 - (4 - t ) =t -字又••点A 到GE 的距离为 ,C 到GE 的距离为2-即 S A ACG =S △ AEG +S △ CEG =—- ? 1 11 2=订?2 (t -「)=- (t - 2) 2+1 .A F 口? ?EG (2 卡)(3)第一种情况如图1所示,点H 在AC 的上方,由四边形CQEH 是菱形知 CQ=CE=t ,根据△ APE S M BC ,知第二种情况如图 2所示,点H 在AC 的下方,由四边形 CQHE 是菱形知 则在直角三角形 EMQ 中,根据勾股定理知 EM 2+MQ 2=EQ 2,即(2 -丄t ) 2+ (4-2t ) 2=t 2,解得,甘=二,t2=4 (不合题意,舍去)丄O担二坦即丄二AB AC' 4 2V5 ,解得 t=20 - 8. n ;CQ=QE=EH=HC=t , PE —t , EM=2 -— t , MQ=4 - 2t .。

九年级上册数学 压轴解答题(培优篇)(Word版 含解析)

九年级上册数学 压轴解答题(培优篇)(Word版 含解析)

九年级上册数学 压轴解答题(培优篇)(Word 版 含解析)一、压轴题1.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.2.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x(1)用关于x的代数式表示BQ、DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,当AP为何值时,矩形DEGF是正方形.3.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.4.在长方形ABCD中,AB=5cm,BC=6cm,点P从点A开始沿边AB向终点B以1/cm s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2/cm s的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?(3)是否存在t的值,使得五边形APQCD的面积等于226cm?若存在,请求出此时t的值;若不存在,请说明理由.5.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.6.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.7.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =330=______.(直接写出答案).8.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于直线AP 的对称点为E ,连接AE ,连接DE 并延长交射线AP 于点F ,连接BF(1)若BAP α∠=,直接写出ADF ∠的大小(用含α的式子表示). (2)求证:BF DF ⊥.(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.9.如图1,在平面直角坐标系中,抛物线y =ax 2+bx ﹣3与直线y =x +3交于点A (m ,0)和点B (2,n ),与y 轴交于点C .(1)求m ,n 的值及抛物线的解析式;(2)在图1中,把△AOC 平移,始终保持点A 的对应点P 在抛物线上,点C ,O 的对应点分别为M ,N ,连接OP ,若点M 恰好在直线y =x +3上,求线段OP 的长度; (3)如图2,在抛物线上是否存在点Q (不与点C 重合),使△QAB 和△ABC 的面积相等?若存在,直接写出点Q 的坐标;若不存在,请说明理由.10.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.11.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①18;②t=4或t=-1;(2)48;,或;(3)【解析】试题分析:(1)根据给出的新定义进行求解;(2)过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN 内部或边界时,矩形OMQN 是点M ,N ,P 的最佳外延矩形,且面积最小;根据当y=0是y=8时求出x 的值得到取值范围;(3)根据最佳外延矩形求出半径的取值范围.试题解析:(1)①18; ②t=4或t=-1; (2)如图,过M 点作轴的垂线与过N 点垂直于轴的直线交于点Q ,则当点P 位于矩形OMQN 内部或边界时,矩形OMQN 是点M ,N ,P 的最佳外延矩形,且面积最小.∵S 矩形OMQN =OM·ON =6×8=48, ∴点M ,N ,P 的最佳外延矩形面积的最小值为48. 抛物线与轴交于点T (0,5). 令,有,解得:x=-1(舍去),或x=5.令y=8,有,解得x=1,或x=3.∴,或.(3).考点:新定义的理解、二次函数的应用、圆的性质.2.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】 【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP . 【详解】解:(1)∵:3:4AQ AB =,3AQ x = ∴4AB x =∴在Rt ABQ △中,225BQ AQ AB x =+=∵OD m ⊥,m l ⊥ ∴//OD l ∵OB OQ = ∴122AH BH AB x === ∴2CD x = ∴332FD CD x == (2)∵点P 关于点A 的对称点为Q ∴3AP AQ x == ∵4PC = ∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒ ∴//OM AB ∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x ==∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形 ∴13x =,25x =-(不合题意,舍去) ∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9. (3)若矩形DEGF 是正方形,则DE DF = ①点P 在A 点的右侧时,如图:∴243x x += ∴4x = ∴312AP x == ②点P 在A 点的左侧时 I.当点C 在Q 右侧时 i.当 407x <<时,如图:∵47DE x =-,3DF x = ∴473x x -= ∴25x =∴635AP x x == ii.当4273x ≤<时,如图:∵74DE x =-,3DF x = ∴743x x -=∴1x =(不合题意,舍去) II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x = ∴743x x -= ∴1x = ∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.3.(1)AP +PQ 的最小值为4;(2)存在,M 点坐标为(﹣12,﹣4)或(12,8). 【解析】 【分析】(1)由直线解析式易求AB 两点坐标,利用等腰直角△ABC 构造K 字形全等易得OE =CE =4,C 点坐标为(4,4)DB =∠CEB =90︒,可知B 、C 、D 、E 四点共圆,由等腰直角△ABC可知∠CBD =45︒,同弧所对圆周角相等可知∠CED =45︒,所以∠OEF =45︒,CE 、OE 是关于EF 对称,作PH ⊥CE 于H ,作PG ⊥OE 于Q ,AK ⊥EC 于K .把AP +PQ 的最小值问题转化为垂线段最短解决问题.(2)由直线l 与直线AC 成45︒可知∠AMN =45︒,由直线AC 解析式可设M 点坐标为(x ,122x +),N 在y 轴上,可设N (0,y )构造K 字形全等即可求出M 点坐标.【详解】解:(1)过A 点作AK ⊥CE ,在等腰直角△ABC 中,∠ACB =90︒,AC =BC , ∵CE ⊥x 轴,∴∠ACK +∠ECB =90︒,∠ECB +∠CBE =90︒, ∴∠ACK =∠CBE 在△AKC 和△CEB 中,AKC CEB ACK CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, △AKC ≌△CEB (AAS ) ∴AK =CE ,CK =BE , ∵四边形AOEK 是矩形, ∴AO =EK =BE , 由直线l :y =﹣13x +2与x 轴交于点B ,与y 轴交于点A ,可知A 点坐标为(0,2),B (6,0)∴E 点坐标为(4,0),C 点坐标为(4,4), ∵∠CDB =∠CEB =90︒, ∴B 、C 、D 、E 四点共圆, ∵CD CD =,∠CBA =45︒, ∴∠CED =45︒, ∴FE 平分∠CEO ,过P 点作PH ⊥CE 于H ,作PG ⊥OE 于G ,过A 点作AK ⊥EC 于K . ∴PH =PQ ,∵PA +PQ =PA +PH ≥AK =OE , ∴OE =4, ∴AP +PQ ≥4, ∴AP +PQ 的最小值为4.(2)∵A 点坐标为(0,2),C 点坐标为(4,4), 设直线AC 解析式为:y =kx+b把(0,2),(4,4)代入得244bk b=⎧⎨=+⎩解得122 kb⎧=⎪⎨⎪=⎩∴直线AC解析式为:y=122x+,设M点坐标为(x,122x+),N坐标为(0,y).∵MN∥AB,∠CAB=45︒,∴∠CMN=45︒,△CMN为等腰直角三角形有两种情况:Ⅰ.如解图2﹣1,∠MNC=90︒,MN=CN.同(1)理过N点构造利用等腰直角△MNC构造K字形全等,同(1)理得:SN=CR,MS =NR.∴41242x yx y-=-⎧⎪⎨+-=⎪⎩,解得:128xy=-⎧⎨=-⎩,∴M点坐标为(﹣12,﹣4)Ⅱ.如解图2﹣2,∠MNC=90︒,MN=CN.过C点构造利用等腰直角△MNC构造K字形全等,同(1)得:MS=CF,CS=FN.∴4412442x yx-=-⎧⎪⎨+-=⎪⎩,解得:1212xy=⎧⎨=⎩,∴M点坐标为(12,8)综上所述:使得△CMN为等腰直角三角形得M点坐标为(﹣12,﹣4)或(12,8).【点睛】本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是中用转化的思想思考问题,学会添加常用辅助线,在平面直角坐标系中构造K 字形全等三角形求点坐标解决问题,属于中考压轴题.4.(1)BQ ,2tcm ,PB ,()5t cm -;(2)当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由见解析.【解析】【分析】(1)根据点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,可以求得BQ ,PB .(2)用含t 的代数式分别表示PB 和BQ 的值,运用勾股定理求得PQ 为22(5)(2)t t -+=25据此求出t 值.(3)根据题干信息使得五边形APQCD 的面积等于226cm 的t 值存在,利用长方形ABCD 的面积减去PBQ △的面积即可,有PBQ △的面积为4,由此求得t 值.【详解】解:(1)点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,故BQ 为2tcm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,AB =5cm ,故PB 为()5t cm -.(2)由题意得:22(5)(2)t t -+=25,解得:1t =0,2t =2;当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由如下:长方形ABCD 的面积是:56⨯=()230cm ,使得五边形APQCD 的面积等于226cm ,则PBQ △的面积为3026-=()24cm ,()15242t t -⨯⨯=, 解得:1t =4(不合题意舍去),2t =1.即当t =1秒时,使得五边形APQCD 的面积等于226cm .【点睛】本题结合长方形考查动点问题,其本质运用代数式求值,利用含t 的代数式表示各自线段的直接,根据题干数量关系即可确立等量关系式,从而求出t 值.5.(1)OA =6,AB =10;(2)3011;(3)0<t≤1813或3011<t≤5. 【解析】【分析】 (1)在Rt △AOB 中,tan B =34,OB =8,即可求解; (2)利用△ACD ∽△ABO 、AD +OQ =OA ,即可求解; (3)分QC 与圆P 相切、QC ⊥OA 两种情况,求解即可.【详解】解:(1)在Rt △AOB 中,tan B =34,OB =8, ∴34OA OB = ,∴OA =6,则AB =10; (2)OP =AP ﹣t ,AC =2t ,∵AC 是圆直径,∴∠CDA =90°,∴CD ∥OB ,∴△ACD ∽△ABO ,∴AC AD AB AO = ,即: 2,106t AD = ∴AD =65t , 当Q 与D 重合时,AD +OQ =OA , ∴66,5t t += 30.11t ∴= (3)当QC 与圆P 相切时,∠QAC =90°,∵OQ =AP =t ,∴AQ =6﹣t ,AC =2t ,∵∠A =∠A ,∠QCA =∠ABO ,∴△AQC ∽△ABO ,∴,AQ AC AB AO=即:62106t t -= ,18.13t ∴= ∴当18013t <≤时,圆P 与QC 只有一个交点, 当QC ⊥OA 时,D 、Q 重合,由(1)知: 30.11t =∴30511t <≤时,圆P 与线段QC 只有一个交点, 故:当圆P 与线段只有一个交点,t 的取值范围为:18013t <≤或30511t <≤. 【点睛】本题为圆的综合题,涉及到圆与直线的关系、三角形相似等知识点,(3)是本题的难点,要注意分析QC 和圆及线段的位置关系分类求解.6.(1)()C 8,43;(2)t=18s ;(3)t 1513=±.【解析】【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .求出OH 的长即可解决问题.(3)设M (﹣5+t ,33),EF 12=AB =8,由∠EMF =90°,可得EM 2+MF 2=EF 2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH ⊥AB 于H .∵A (20,0),AB =16,∴OA =20,OB =4.在Rt △ABC 中,∵∠ACB =90°,AB =16,∠CAB =30°,∴BC 12=AB =8,CH =BC •sin60°3BH =BC •cos60°=4,∴OH =8,∴C (8,3(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .∵MN=MH3MN⊥BC,MH⊥BA,∴∠MBH=∠MBN=30°,∴BH3==9,∴点M的运动路径的长为5+4+9=18,∴当点M在∠ABC的内部且⊙M与直线BC相切时,t的值为18s.(3)∵C(8,3B(4,0),A(20,0).∵CE=EB,CF=FA,∴E(6,3),F(14,3),设M(﹣5+t,3),EF12=AB=8.∵∠EMF=90°,∴EM2+MF2=EF2,∴(6+5﹣t)2+32+(14+5﹣t)2+32=82,整理得:t2﹣30t+212=0,解得:t=1513【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.7.(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17)π;②21【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC=解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB83,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB=22AC BC+=216x+,∴OA=2 16x +,∵AF=22EF AE+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,∴216x+=2221182x⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭,解得x=4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=2164x+解得x2=17﹣2(负根已经舍弃),∴AB2=16+4x2=17+8,∴⊙O的面积=π•14•AB2=(17+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭21,∵EF=18x2=98,∴FG=212﹣98,AF22AE EF+158,AH22AE EH+302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴219281530 8-=∴CG 270﹣33010,30=21.故答案为21【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.8.(1)45°+α;(2)证明见解析;(3)AF=2BF+CF.【解析】【分析】(1)过点A作AG⊥DF于G,由轴对称性质和正方形的性质可得AE=AD,∠BAP=∠EAF,根据等腰三角形“三线合一”的性质可得∠EAG=∠DAG,即可得∠FAG=12∠BAD=45°,∠DAG+∠BAP=45°,根据直角三角形两锐角互余的性质即可得答案;(2)由(1)可得∠FAG=12∠BAD=45°,由AG⊥PD可得∠APG=45°,根据轴对称的性质可得∠BPA=∠APG=45°,可得∠BFD=90°,即可证明BF⊥DF;(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,由∠BFD=∠BCD=90°可得B、F、C、D四点共圆,根据圆周角定理可得∠FBC=∠FDC,∠DFC=∠DBC=45°,根据平行线的性质可得∠FDC=∠DCH,根据角的和差关系可得∠ABF=∠BCH,由轴对称性质可得BF=EF,可得△BEF是等腰直角三角形,即可得∠BEF=45°,BE=2BF,即可证明∠BEF=∠DFC,可得BH//FC,即可证明四边形EFCH是平行四边形,可得EH=FC,EF=CH,利用等量代换可得CH=BF,利用SAS可证明△ABF≌△BCH,可得AF=BH,即可得AF、BF、CF的数量关系.【详解】(1)过点A作AG⊥DF于G,∵点B关于直线AF的对称点为E,四边形ABCD是正方形,∴AE=AB,AB=AD=DC=BC,∠BAF=∠EAF,∴AE=AD,∵AG⊥FD,∴∠EAG=∠DAG,∴∠BAF+∠DAG=∠EAF+∠EAG,∵∠BAF+∠DAG+∠EAF+∠EAG=∠BAD=90°,∴∠BAF+∠DAG=∠GAF=45°,∴∠DAG=45°-α,∴∠ADF=90°-∠DAG=45°+α.(2)由(1)得∠GAF=45°,∵AG⊥FD,∴∠AFG=45°,∵点E、B关于直线AF对称,∴∠AFB=∠AFE=45°,∴∠BFG=90°,∴BF⊥DF.(3)连接BD、BE,过点C作CH//FD,交BE延长线于H,∵∠BFD=∠BCD=90°,∴B、F、C、D四点共圆,∴∠FDC=∠FBC,∠DFC=∠DBC=45°,∵CH//FD,∴∠DCH=∠FDC,∴∠FBC=∠DCH,∵∠ABC=∠BCD=90°,∴∠ABC+∠FBC=∠BCD+∠DCH,即∠ABF=∠BCH,∵点E、B关于直线AF对称,∴BF=EF,∵∠BFE=90°,∴△BEF是等腰直角三角形,∴∠BEF=45°,BE=2BF,∴∠BEF=∠DFC,∴FC//BH,∴四边形EFCH是平行四边形,∴EH=FC,CH=BF,在△ABF和△BCH中,AB BCABF BCH BF CH=⎧⎪∠=∠⎨⎪=⎩,∴AF=BH=BE+EH=2BF+CF.【点睛】本题考查正方形的性质、等腰三角形的性质、轴对称的性质、圆周角定理、四点共圆的判定及全等三角形的判定与性质,正确得出B、F、C、D四点共圆并熟练掌握圆周角定理及轴对称的性质是解题关键.9.(1)y=x2+2x﹣3,m=﹣3,n=5;(2)317或41;(3)存在;Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5),理由见解析【解析】【分析】(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式即可求解;(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),M(t+3,t2+2t﹣6),根据点M在直线y=x+3上,即可求解;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)按照△QAB和△Q′AB和△ABC的面积相同即可求解.【详解】解:(1)把点A(m,0)和点B(2,n)代入直线y=x+3,解得:m=﹣3,n=5,∴A(﹣3,0)、B(2,5),把A、B坐标代入抛物线解析式,解得:a=1,b=2,∴抛物线解析式为:y=x2+2x﹣3…①,则C(0,﹣3);(2)由平移得:PN=OA=3,NM=OC=3,设:平移后点P(t,t2+2t﹣3),则N(t+3,t2+2t﹣3),∴M(t+3,t2+2t﹣6),∵点M在直线y=x+3上,∴t2+2t﹣6=t+3+3,解得:t=3或﹣4,∴P点坐标为(3,12)或(﹣4,5),则线段OP的长度为:317或41;(3)存在.设:直线AB交y轴于D(0,3),点C关于点D的对称点为C′(0,9)过点C和C′分别做AB的平行线,交抛物线于点Q、Q′,则:△QAB和△Q′AB和△ABC的面积相同,直线QC和Q′C的方程分别为:y=x﹣3和y=x+9…②,将①、②联立,解得:x=﹣1或x=3或x=﹣4,∴Q点坐标为(﹣1,﹣4)或(3,12)或(﹣4,5).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.(1)1;(2)①4b =-;②26c ≤<;(3)D 一定在线段AB 上,=CD 【解析】【分析】(1)根据题意顶点P (k ,h )可将二次函数化为顶点式:()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4,即可得出a 的值; (2)①根据抛物线x=0和x=4时函数值相等,可得到顶点P 的横坐标,根据韦达定理结合(1)即可得到b 的值,②根据(1)和(2)①即可得二次函数对称轴为x=2,利用点Q (0,2)关于对称轴的对称点R (4,2)可得QR=4,又QR 在直线y=2上,故令M 坐标(t ,2)(0≤t <2),代入二次函数即求得c 的取值范围;(3)由c=-b-1代入抛物线方程即可化简,将抛物线绕原点逆时针旋转αα,且tanα=2,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tanα=2,可得到直线l 的解析式,最后联立直线方程与抛物线方程运算求解.【详解】解:(1)根据题意可知1二次函数2y ax bx c =++(a≠0)的顶点为P (k ,h ),故二次函数顶点式为()2y a x k h =-+,又4y k =+与抛物线交于点A 、B ,且无论h 、k 为何值,AB 的长度都为4,∴a=1;故答案为:a=1.(2)①∵二次函数当0x =和4x =时的函数值相等 ∴222b b x a =-=-= ∴4b =-故答案为:4b =-.②将点Q 向右平移4个单位得点()4,2R当2c =时,242y x x =-+令2y =,则2242x x =-+解得14x =,20x =此时()0,2M ,()4,2N ,4MN QR ==∵4QM QN +=∵QM NR =∴4QN NR QR +==∴N 在线段QR 上,同理M 在线段QR 上设(),2M m ,则02m ≤<,224m m c =-+2242(2)6c m m m =-++=--+∵10-<,对称轴为2m =,02m ≤<∴c 随着m 的增大而增大∴26c ≤<故答案为:26c ≤<.(3)∵1c b =--∴21y x bx b =+--将抛物线绕原点逆时针旋转α,且tan 2α=,转化为将y 轴绕原点顺时针旋转α得到直线l ,且tan 2α=,∴l 的解析式为2y x =221y x y x bx b =⎧⎨=+--⎩∴2(2)10x b x b +---= ∴2224(2)448b ac b b b ∆=-=-++=+∴22b x -+±=∴12,22b D b ⎛-+-++ ⎝⎭ 22244124442444AB ac b b b b y k b a ---+-+=+=+==-++124224AB D b y y b b ⎛⎫-+-=-++-++= ⎪⎝⎭∵20b ≥∴14104D AB y y -=≥==> ∴点1D 始终在直线AB 上方∵222b C b ⎛-+--+- ⎝⎭∴24224B C A b y y b b ⎛⎫-+-=-+--++= ⎪⎝⎭∴224841644AB C b b y y -++--++-==)22164-+=∵2727b -<<,即2028b ≤<, ∴22284b ≤+< 设28n b =+,224n ≤<∴2(2)164AB C n y y --+-= ∵104-<,对称轴为2n = ∴当224n ≤<时,AB C y y -随着n 的增大而减小∴当4n =时,0AB C y y -=∴当224n ≤<时,AB C y y >∴区域S 的边界与l 的交点必有两个∵1D AB y y >∴区域S 的边界与l 的交点D 一定在线段AB 上∴D AB y y =∴2(2)164D C C AB n y y y y --+-=-= ∴当22n =时,D C y y -有最大值122+此时1222D C x x +-= 由勾股定理得:()()2252102C CD D CD x x y y +=-+-=,故答案为:5102=CD . 【点睛】 本题考查二次函数一般式与顶点式、韦达定理的运用,以及根与系数的关系判断二次函数交点情况,正确理解相关知识点是解决本题的关键.11.(1)12;(2)tan EAD ∠=13;(3)51DE CD -= 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=255x ,求出PF=355x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=, AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.12.(1)详见解析;(2)详见解析;【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=, PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学九上压轴题难题提高题培优题一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)若存在,求点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形若存在,求点P的坐标;若不存在,请说明理由.5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点6.如图1,已知抛物线的方程C1B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C过点M(2,2),求实数m的值;1(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;上是否存在点F,使得以点B、C、F为顶点的三(4)在第四象限内,抛物线C1角形与△BCE相似若存在,求m的值;若不存在,请说明理由.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大最大值为多少(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形请直接写出t的值.初三数学九上压轴题难题提高题培优题参考答案与试题解析一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)若存在,求点P的坐标;若不存在,请说明理由.【解答】解:由题意可知.解得.∴抛物线的表达式为y=﹣.(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得.∴直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF==.当时,DF的最大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.又﹣3<m<0,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MA上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,则﹣3,即m2+m﹣6=0.解得m=﹣3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,﹣).若PN=3NA,则﹣,即m2﹣7m﹣30=0.解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【解答】解:(1)如图,过点A作AD⊥y轴于点D,∵AO=OB=4,∴B(4,0).∵∠AOB=120°,∴∠AOD=30°,∴AD=OA=2,OD=OA=2.∴A(﹣2,2).将A(﹣2,2),B(4,0)代入y=ax2+bx,得:,解得:,∴这条抛物线的表达式为y=x2﹣x;(2)过点M作ME⊥x轴于点E,∵y=x2﹣x=(x﹣2)2﹣,∴M(2,﹣),即OE=2,EM=.∴tan∠EOM==.∴∠EOM=30°.∴∠AOM=∠AOB+∠EOM=150°.(3)过点A作AH⊥x轴于点H,∵AH=2,HB=HO+OB=6,∴tan∠ABH==.∴∠ABH=30°,∵∠AOM=150°,∴∠OAM<30°,∴∠OMA<30°,∴点C不可能在点B的左侧,只能在点B的右侧.∴∠ABC=180°﹣∠ABH=150°,∵∠AOM=150°,∴∠AOM=∠ABC.∴△ABC与△AOM相似,有如下两种可能:①△BAC与∽△OAM,②△BAC与∽△OMA∵OD=2,ME=,∴OM=,∵AH=2,BH=6,∴AB=4.①当△BAC与∽△OAM时,由=得,解得BC=4.(8,0).∴C1②当△BAC与∽△OMA时,由=得,解得BC=12.(16,0).∴C2综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(8,0)或(16,0).3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),;∴,解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,∴cos∠MDF=;∴∠MDF=60°,∴∠EDF=120°;∴劣弧EF的长为:;(3)设直线AC的解析式为y=kx+b;∵直线AC经过点,∴,解得;∴直线AC的解析式为:;设点,PG交直线AC于N,则点N坐标为,∵S△PNA :S△GNA=PN:GN;∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN;即=;解得:m1=﹣3,m2=2(舍去);当m=﹣3时,=;∴此时点P的坐标为;②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;即=;解得:m1=﹣12,m2=2(舍去);当m=﹣12时,=;∴此时点P的坐标为;综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)由OB=2,可知B(2,0),将A(﹣2,﹣4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得解得:∴抛物线的函数表达式为.答:抛物线的函数表达式为.(2)由,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,M点即为所求.∴MO=MB,则MO+MA=MA+MB=AB作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=∴MO+MA的最小值为.答:MO+MA的最小值为.(3)①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x1=﹣4,x2=2(不合题意,舍去)当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,设直线AB的表达式为y=kx+m,则,解得,∴AB的表达式为y=x﹣2.∵AB∥OP,∴直线OP的表达式为y=x.由,得 x2=0,解得x=0,(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3),∴,解得,所以,抛物线的函数解析式为y=﹣x2+x+1;(2)如图,过点B作BC⊥x轴于C,过点A作AD⊥OB于D,∵A(0,1),B (4,3),∴OA=1,OC=4,BC=3,根据勾股定理,OB===5,∵∠OAD+∠AOD=90°,∠AOD+∠BOC=90°,∴∠OAD=∠BOC,又∵∠ADO=∠OCB=90°,∴△AOD∽△OBC,∴==,即==,解得OD=,AD=,∴BD=OB﹣OD=5﹣=,∴tan∠ABO===;(3)设直线AB的解析式为y=kx+b(k≠0,k、b是常数),则,解得,所以,直线AB的解析式为y=x+1,设点M(a,﹣a2+a+1),N(a,a+1),则MN=﹣a2+a+1﹣a﹣1=﹣a2+4a,∵四边形MNCB为平行四边形,∴MN=BC,∴﹣a2+4a=3,整理得,a2﹣4a+3=0,解得a1=1,a2=3,∵MN在抛物线对称轴的左侧,抛物线的对称轴为直线x=﹣=,∴a=1,∴﹣12+×1+1=,∴点M的坐标为(1,).6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似若存在,求m的值;若不存在,请说明理由.【解答】解:(1)将x=2,y=2代入抛物线的解析式得:﹣×4×(2﹣m)=2,解得:m=4,经检验:m=4是分式方程的解.∴m的值为4.(2)y=0得:0=﹣(x+2)(x﹣m),解得x=﹣2或x=m,∴B(﹣2,0),C(m,0).由(1)得:m=4,∴C(4,0).将x=0代入得:y=﹣×2×(﹣m)=2,∴E(0,2).∴BC=6,OE=2.∴S=BC•OE=×6×2=6.△BCE(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x 轴的交点为P.∵x=﹣,∴抛物线的对称轴是直线x=1.∴CP=3.∵点B与点C关于x=1对称,∴BH=CH.∴BH+EH=EH+HC.∴当H落在线段EC上时,BH+EH的值最小.∵HP∥OE,∴△PHC∽△EOC.∴,即.解得HP=.∴点H的坐标为(1,).(4)①如图2,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.∵BF∥EC,∴∠BCE=∠FBC.∴当,即BC2=CE•BF时,△BCE∽△FBC.设点F的坐标为(x,﹣(x+2)(x﹣m)),由,得.解得x=m+2.∴F′(m+2,0).∵∠BCE=∠FBC.∴,得,解得:.又∵BC2=CE•BF,∴,整理得:0=16.此方程无解.②如图3,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,∵OE=OB,∠EOB=90°,∴∠EBO=45°.∵∵∠CBF=45°,∴∠EBC=∠CBF,∴当,即BC2=BE•BF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得(x+2)(x﹣m)=x+2,解得x=2m.∴F′(2m,0).∴BF′=2m+2,∴BF=2m+2.由BC2=BE•BF,得(m+2)2=2×(2m+2).解得.∵m>0,∴m=2+2.综上所述,点m的值为2+2.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为(b,0),点C的坐标为(0,)(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)如果存在,求出点Q 的坐标;如果不存在,请说明理由.【解答】解:(1)令y=0,即y=x2﹣(b+1)x+=0,解得:x=1或b,∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,解得:y=,∴点C的坐标为(0,),故答案为:(b,0),(0,);(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.则S四边形PCOB =S△PCO+S△POB=••x+•b•y=2b,∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPD=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.由解得由△PEC≌△PDB得EC=DB,即﹣=b﹣,解得b=>2符合题意.∴P的坐标为(,);(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A>∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA•AB得:()2=b﹣1.解得:b=8±4.∵b>2,∴b=8+4.∴点Q的坐标是(1,2+).(II)当∠OQC=90°时,△OCQ∽△QOA,∴=,即OQ2=OC•AQ.又OQ2=OA•OB,∴OC•AQ=OA•OB.即•AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q的坐标是(1,4).∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB中的任意两个三角形均相似.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大最大值为多少(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形请直接写出t的值.【解答】解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.又∵点A到GE的距离为,C到GE的距离为2﹣,即S△ACG =S△AEG+S△CEG=•EG•+•EG(2﹣)=•2(t﹣)=﹣(t﹣2)2+1.当t=2时,S△ACG的最大值为1.(3)第一种情况如图1所示,点H在AC的上方,由四边形CQEH是菱形知CQ=CE=t,根据△APE∽△ABC,知=,即=,解得t=20﹣8;第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2﹣t,MQ=4﹣2t.则在直角三角形EMQ中,根据勾股定理知EM2+MQ2=EQ2,即(2﹣t)2+(4﹣2t)2=t2,解得,t1=,t2=4(不合题意,舍去).综上所述,t=20﹣8或t=.。

相关文档
最新文档