数学归纳法与不等式

合集下载

数学归纳法证明不等式

数学归纳法证明不等式

例4、已知x> 1,且x0,nN,n2. 求证:(1+x)n>1+nx.
证明: (1)当n=2时,左=(1+x)2=1+2x+x2
∵ x0,∴ 1+2x+x2>1+2x=右
∴n=1时不等式成立 (2)假设n=k时,不等式成立,即 (1+x)k>1+kx 当n=k+1时,因为x> 1 ,所以1+x>0,于是 左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2; 右边=1+(k+1)x. 因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x. 这就是说,原不等式当n=k+1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立.
1 1 1 1 2° 假设 n=k 时命题成立,即 1+ 2+ 2+„+ 2<2- 2 3 k k 1 1 1 1 当 n=k+1 时,1+22+32+„+k2+ 2< (k+1) 1 1 1 1 1 1 1 2- + <2- + =2- + - k (k+1)2 k k(k+1) k k k+1 1 =2- 命题成立. k+1 由 1° 、2° 知原不等式在 n≥2 时均成立.
2.数学归纳法适用范围,主要用于研究与正整数有关 的数学问题。 3. 数学归纳法的关键与难点: 在 “归纳递推 ” 中 , “证明当 n =k+1 时 命题也成立 ”, 必须利用归纳假设 :“当 n= k (k ≥n 0, k ∈ N *时命题成立 ” 否则便不是 , 数学归纳法。

高中数学的解析如何利用数学归纳法解决数学问题

高中数学的解析如何利用数学归纳法解决数学问题

高中数学的解析如何利用数学归纳法解决数学问题数学归纳法是一种常用的数学推理方法,特别适用于解决涉及自然数的问题。

它的基本思想是通过证明某个命题在第一个自然数上成立,并假设该命题在第k个自然数上成立,再利用这一假设证明该命题在第k+1个自然数上也成立。

本文将着重讨论高中数学中一些典型问题,介绍如何使用数学归纳法解决这些问题。

一、等差数列的性质证明等差数列是高中数学中一个重要的概念,其性质证明常常可以使用数学归纳法。

我们以等差数列的前n项和公式为例进行说明。

首先,我们需要证明等差数列前n项和公式在第一个自然数上成立。

当n=1时,等差数列的前n项和显然等于它的第一个项,命题成立。

其次,我们假设等差数列前k项和公式在第k个自然数上成立,即Sn = (2a1 + (k-1)d)k/2 (式1)我们需要证明等差数列前(k+1)项和公式在第(k+1)个自然数上也成立。

通过对等差数列前k+1项求和可以得到:S(k+1) = a1 + a2 + ... + ak + a(k+1)S(k+1) = [(k+1)(a1 + a(k+1))/2] + kd (式2)将式1代入式2中,整理后可得:S(k+1) = [(k+1)(2a1 + (k+1-1)d)/2] + kdS(k+1) = [(k+1)(2a1 + kd)/2] + kdS(k+1) = [(k+1)(2a1 + kd) + 2kd]/2S(k+1) = (2a1 + (k+1)d)(k+1)/2由此可见,假设在第k个自然数上等差数列前k项和公式成立,可以推出在第(k+1)个自然数上该公式也成立。

因此,根据数学归纳法的推理步骤,我们可以得出等差数列前n项和公式对于任意正整数n都成立的结论。

二、数学归纳法解决不等式问题数学归纳法不仅可以用于证明等式的性质,还可以用于解决不等式问题。

我们以证明平方不等式n^2 ≥ n(n ≥ 1)为例。

首先,我们需要证明当n=1时平方不等式成立,即1^2 ≥ 1,命题成立。

数学归纳法、用数学归纳法证明不等式举例 课件

数学归纳法、用数学归纳法证明不等式举例 课件

命题方向1 ⇨数学归纳法证明等式
典例试做 1
1),其中 n∈N+.
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-
● [分析] 用数学归纳法证明一个与正整数有关的命题,关键是第二步,要注意当n=k+1时, 等式两边的式子与n=k时等式两边的式子的联系.
● [解析] (1)当n=1时,左边=1+1=2,右边=21·1=2,等式成立. ● (2)假设当n=k时等式成立,即 ● (k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),
● 则当n=k+1时, ● (k+2)(k+3)…(k+1+k)(k+1+k+1)=(k+2)·(k+3)…+(k+k)(2k+1)(2k+2) ● =(k+1)(k+2)…(k+k)·2(2k+1) ● =2k·1·3·…·(2k-1)·2(2k+1) ● =2k+1·1·3…·(2k-1)(2k+1), ● 即当n=k+1时,等式也成立. ● 由(1)(2)可知,对一切n∈N+,等式成立.
n 都成立,求正整数 a 的最大值,并证明你的结论.
[分析] 用数学归纳法证明. 从n=k到n=k+1时,为利用假设需要增加因

1 k+1
,对于除含有n=k的因式外的其余的项需运用不等式的性质证明其大于
零即可.
[解析] 取n=1,1+1 1+1+1 2+3×11+1=2264,令2264>2a4⇒a<26,而a∈N+,
=(k+1 1+k+1 2+…+3k+1 1)+(3k+1 2+3k+1 3+3k+1 4-k+1 1)>2254+[3k+1 2+ 3k+1 4-3k+2 1].
∵3k+1 2+3k+1 4=9k26+k1+8k1+ 8>3k+2 1, ∴3k+1 2+3k+1 4-3k+2 1>0, ∴k+11+1+k+11+2+…+3k+11+1>2254,

数学归纳法课件

数学归纳法课件
关系式的正确分析是应用数学归纳法成功证明问题的保障.
3.在第二步的证明过程中一定要用上归纳假设,否则这样的证明
就不再是数学归纳法.
变式训练2 用数学归纳法证明:1+3×2+5×22+…+(2n-1)×2n1=2n(2n-3)+3(n∈N ).
+
证明:(1)当n=1时,左边=1,右边=2(2-3)+3=1,左边=右边,命题成
=
1
1 +1
1- 2
2
1
1-2
=1-
1 +1
,
2
1
1 1
正解(1)当 n=1 时,左边= ,右边=12
2
=
1
,命题成立.
2
(2)假设当 n=k(k≥1)时命题成立,
1
1
即 + 2
2 2

+
1
1
2
2
3 +…+ =1-
1
1
n=k+1 时, + 2
2 2
1
1
1
=1-

2
+
+
1
,
2
1
1
2
2
3 +…+
反思感悟用数学归纳法证明整除问题时,首先从要证的式子中拼
凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除.其
中的关键是“凑项”,可采用增项、减项、拆项和因式分解等方法分
析出因子,从而利用归纳假设使问题得到解决.
变式训练1 用数学归纳法证明:an+1+(a+1)2n-1能被a2+a+1整除,

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 知识归纳 课件(人教A选修4-5)
考情分析
通过分析近三年的高考试题可以看出,不但考查用数
学归纳法去证明现成的结论,还考查用数学归纳法证明新 发现的结论的正确性.数学归纳法的应用主要出现在数列
解答题中,一般是先根据递推公式写出数列的前几项,通
过观察项与项数的关系,猜想出数列的通项公式,再用数 学归纳法进行证明,初步形成“观察—归纳—猜想—证明”
2.(2012· 湖北高考)(1)已知函数 f(x)=rx-xr+(1-r)(x>0), 其中 r 为有理数,且 0<r<1.求 f(x)的最小值; (2)试用(1)的结果证明如下命题: 设 a1≥0,a2≥0,b1,b2 为正有理数.若 b1+b2=1,则 a1b1·2b2≤a1b1+a2b2; a (3)请将(2)中的命题推广到一般形式, 并用数学归纳法证 明你所推广的命题. 注:当 α 为正有理数时,有求导公式(xα)′=αxα-1.
b1 b2 2 bk
bk 1
a
… a k a k 1 ≤a1b1+a2b2+…+akbk+ak+1bk+1,
故当 n=k+1 时,③成立. 由(1)(2)可知,对一切正整数 n,所推广的命题成立. 说明:(3)中如果推广形式中指出③式对 n≥2 成立,则后续证明 中不需讨论 n=1 的情况.
不完全归纳的作用在于发现规律,探求结论,但结论
a1b1+a2b2+…+akbk bk ak· = , 1-bk+1 1-bk+1
从而 a 1
b1
a
b2 2
…… a k
bk
a1b1+a2b2+…+akbk 1-b bk 1 a k 1 ≤( ) k+1a k 1 . 1-bk+1
bk 1
又因(1-bk+1)+bk+1=1,由②得 a1b1+a2b2+…+akbk 1-b a1b1+a2b2+…+akbk bk 1 ( ) k+1a k 1 ≤ · 1-bk+1 1-bk+1 (1-bk+1)+ak+1bk+1=a1b1+a2b2+…+akbk+ak+1·k+1, b 从而 a 1

数学归纳法证明不等式

数学归纳法证明不等式

数学归纳法证明不等式数学归纳法是一种证明数学命题的重要方法,它基于数学归纳的思想,通过证明一个命题在一些特定条件下成立,并且在此条件下该命题的下一步也具有同样的性质,从而证明该命题对于一切满足该条件的情况都成立。

在这里,我们将使用数学归纳法来证明一个不等式。

不等式是数学中常见的一种关系式,它描述了两个数或者更多数之间大小关系的性质。

在这里,我们将使用数学归纳法来证明一个形如:$2^n>n^2$的不等式,其中$n$是一个正整数。

首先,我们需要证明当$n=1$时,不等式$2^n>n^2$成立。

当$n=1$时,不等式变为$2^1>1^2$,显然成立。

其次,我们需要证明对于任意一个正整数$k$,如果当$n=k$时不等式$2^k>k^2$成立,那么当$n=k+1$时,不等式$2^{k+1}>(k+1)^2$也成立。

也就是说,我们需要证明如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

根据我们的假设,我们知道$2^k>k^2$。

将不等式两边都乘以2,我们得到$2^{k+1}>2k^2$。

由于$k$是一个正整数,所以$k^2>k$。

将这个不等式代入前面的结果中,我们得到$2^{k+1}>2k^2>k^2+k^2>k^2+k>(k+1)^2$。

也就是说,如果$2^k>k^2$,那么$2^{k+1}>(k+1)^2$。

通过对$n=1$和$n=k+1$的情况都进行证明,我们完成了对于任意正整数$n$的证明。

根据数学归纳法的原理,这意味着不等式$2^n>n^2$对于一切$n$都成立。

综上所述,我们使用数学归纳法成功地证明了不等式$2^n>n^2$,其中$n$是一个正整数。

初中数学知识点:不等式证明的六大方法

初中数学知识点:不等式证明的六大方法

马行软地易失蹄,人贪安逸易失志。

对待生命要认真,对待生活要活泼。

以下是为您推荐初中数学知识点:不等式证明的六大方法。

1、比较法:包括比差和比商两种方法。

2、综合法
证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。

3、分析法
证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。

4、放缩法
证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

5、数学归纳法
用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

6、反证法
证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的
条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧

数学归纳法证明不等式的两个技巧数学归纳法是一种数学证明方法,常用于证明自然数的性质。

它的基本思想是:首先证明当n为一些特定的自然数时,不等式成立;然后假设当n为一些自然数时,不等式也成立;最后利用这个假设证明当n为n+1时,不等式仍然成立。

下面将介绍两种常用的数学归纳法证明不等式的技巧。

技巧一:基础情况的证明在使用数学归纳法证明不等式时,首先需要证明基础情况,即当n为一些特定的自然数时,不等式是否成立。

例如,我们想要证明对于任意的正整数n,都有1+2+3+...+n≤n²。

基础情况是n=1时,不等式左边为1,右边为1²=1,不等式成立。

技巧二:归纳假设的运用假设当n为一些自然数时,不等式也成立,即假设1+2+3+...+n≤n²成立。

然后我们要利用这个假设来证明当n为n+1时,不等式仍然成立。

例如,我们要证明对于任意的正整数n,都有1+2+3+...+n+(n+1)≤(n+1)²。

根据归纳假设,我们可以得到1+2+3+...+n≤n²,所以我们可以将不等式右边的(n+1)²展开为n²+2n+1现在,我们需要证明1+2+3+...+n+(n+1)≤n²+2n+1、我们可以逐步将左边拆分成两部分,即(1+2+3+...+n)+(n+1)。

根据归纳假设,我们知道前一部分不大于n²,所以该不等式可以进一步简化为n²+(n+1)≤n²+2n+1最后,可以发现左边的n²+(n+1)小于等于右边的n²+2n+1,因为(n+1)小于等于2n+1、所以,我们得到了当n为n+1时,不等式仍然成立。

综上所述,通过基础情况的证明和归纳假设的运用,可以使用数学归纳法证明不等式。

这两个技巧可以帮助我们在证明过程中合理利用已有的条件和假设,从而简化证明的过程。

第3章 3.2 用数学归纳法证明不等式,贝努利不等式

第3章 3.2   用数学归纳法证明不等式,贝努利不等式

3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式1.会用数学归纳法证明简单的不等式.2.会用数学归纳法证明贝努利不等式;理解贝努利不等式的应用条件.[根底·初探]教材整理1用数学归纳法证明不等式在不等关系的证明中,有多种多样的方法,其中数学归纳法是最常用的方法之一,在运用数学归纳法证不等式时,推导“k+1〞成立时其他的方法如比拟法、分析法、综合法、放缩法等常被灵敏地运用.教材整理2贝努利不等式1.定理1(贝努利不等式)设x>-1,且x≠0,n为大于1的自然数,那么(1+x)n>1+nx.2.定理2(选学)设α为有理数,x>-1,(1)假如0<α<1,那么(1+x)α≤1+αx;(2)假如α<0或者α>1,那么(1+x)α≥1+αx.当且仅当x=0时等号成立.事实上,当α是实数时,也是成立的.,那么2n与n的大小关系是()设n∈N+A.2n>nB.2n<nC.2n=nD.不确定【解析】2n=(1+1)n,根据贝努利不等式有(1+1)n≥1+n×1=1+n,上式右边舍去1,得(1+1)n>n,即2n>n.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们〞讨论交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]数学归纳法证明不等式S n =1+12+13+…+1n (n >1,n ∈N +),求证:S 2n >1+n2(n ≥2,n ∈N +). 【精彩点拨】 求S n 再证明比拟困难,可运用数学归纳法直接证明,注意S n 表示前n 项的和(n >1),首先验证n =2,然后证明归纳递推.【自主解答】 (1)当n =2时,S 22=1+12+13+14=2512>1+22,即n =2时命题成立.(2)假设n =k (k ≥2,k ∈N +)时命题成立,即S 2k =1+12+13+…+12k >1+k2. 当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12.故当n =k +1时,命题也成立.由(1)(2)知,对n ∈N +,n ≥2,S 2n >1+n2都成立.此题容易犯两个错误,一是由n =k 到n =k +1项数变化弄错,认为12k 的后一项为12k +1,实际上应为12k +1;二是12k +1+12k +2+…+12k +1共有多少项之和,实际上 2k +1到2k +1是自然数递增,项数为2k +1-(2k +1)+1=2k .[再练一题]1.假设在本例中,条件变为“设f (n )=1+12+13+…+1n (n ∈N +),由f (1)=1>12,f (3)>1,f (7)>32,f (15)>2,…〞 .试问:你能得到怎样的结论?并加以证明.【解】 数列1,3,7,15,…,通项公式为a n =2n -1,数列12,1,32,2,…,通项公式为a n =n2,∴猜测:f (2n -1)>n2.下面用数学归纳法证明:①当n =1时,f (21-1)=f (1)=1>12,不等式成立.②假设当n =k (k ≥1,k ∈N +)时不等式成立, 即f (2k -1)>k2, 那么f (2k +1-1)=f (2k-1)+12k +12k +1+…+12k +1-2+12k +1-1>f (2k-1)+=f (2k-1)+12>k 2+12=k +12.∴当n =k +1时不等式也成立.据①②知对任何n ∈N +原不等式均成立.利用数学归纳法比拟大小设P n =(1+x )n ,Q n =1+nx +n (n -1)2x 2,n ∈N +,x ∈(-1,+∞),试比拟P n 与Q n 的大小,并加以证明.【导学号:38000059】【精彩点拨】 此题考察数学归纳法的应用,解答此题需要先对n 取特殊值,猜测P n 与Q n 的大小关系,然后利用数学归纳法证明.【自主解答】 (1)当n =1,2时,P n =Q n .(2)当n ≥3时,(以下再对x 进展分类). ①假设x ∈(0,+∞),显然有P n >Q n . ②假设x =0,那么P n =Q n . ③假设x ∈(-1,0),那么P 3-Q 3=x 3<0,所以P 3<Q 3.P 4-Q 4=4x 3+x 4=x 3(4+x )<0,所以P 4<Q 4. 假设P k <Q k (k ≥3),那么P k +1=(1+x )P k <(1+x )Q k =Q k +xQ k =1+kx +k (k -1)x 22+x +kx 2+k (k -1)x 32=1+(k +1)x +k (k +1)2x 2+k (k -1)2x 3 =Q k +1+k (k -1)2x 3<Q k +1, 即当n =k +1时,不等式成立. 所以当n ≥3,且x ∈(-1,0)时,P n <Q n .1.利用数学归纳法比拟大小,关键是先用不完全归纳法归纳出两个量的大小关系,猜测出证明的方向,再用数学归纳法证明结论成立.2.此题除对n 的不同取值会有P n 与Q n 之间的大小变化,变量x 也影响P n 与Q n 的大小关系,这就要求我们在探究大小关系时,不能只顾“n 〞,而无视其他变量(参数)的作用.[再练一题]2.数列{a n },{b n }与函数f (x ),g (x ),x ∈R ,满足条件:b 1=b ,a n =f (b n )=g (b n+1)(n ∈N +),假设函数y =f (x )为R 上的增函数,g (x )=f -1(x ),b =1,f (1)<1,证明:对任意x ∈N +,a n +1<a n .【证明】 因为g (x )=f -1(x ),所以a n =g (b n +1)=f -1(b n +1),即b n +1=f (a n ).下面用数学归纳法证明a n +1<a n (n ∈N +). (1)当n =1时,由f (x )为增函数,且f (1)<1,得 a 1=f (b 1)=f (1)<1, b 2=f (a 1)<f (1)<1, a 2=f (b 2)<f (1)=a 1, 即a 2<a 1,结论成立.(2)假设n =k 时结论成立,即a k +1<a k .由f (x )为增函数,得f (a k +1)<f (a k ),即b k +2<b k +1. 进而得f (b k +2)<f (b k +1),即a k +2<a k +1. 这就是说当n =k +1时,结论也成立. 根据(1)和(2)可知,对任意的n ∈N +,a n +1<a n .利用贝努利不等式证明不等式设n 为正整数,记a n =⎝ ⎛⎭⎪⎫1+1n n +1,n =1,2,3,….求证:a n +1<a n .【精彩点拨】 用求商比拟法证明a n +1<a n ,其中要用贝努利不等式. 【自主解答】 由a n 的意义知对一切n =1,2,3,…都成立. ∴只需证明a na n +1>1,n =1,2,3,….由于a n a n +1=⎝ ⎛⎭⎪⎫1+1n n +1⎝ ⎛⎭⎪⎫1+1n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+1n 1+1n +1n +1×⎝ ⎛⎭⎪⎫1+1n +1-1 =⎣⎢⎢⎡⎦⎥⎥⎤(n +1)(n +1)n (n +2)n +1×n +1n +2=⎣⎢⎢⎡⎦⎥⎥⎤1+n (n +2)n (n +2)n +1×n +1n +2=⎣⎢⎡⎦⎥⎤1+1n (n +2)n +1×n +1n +2,因此,根据贝努利不等式, 有a na n +1>⎣⎢⎡⎦⎥⎤1+(n +1)×1n (n +2)×n +1n +2>⎝ ⎛⎭⎪⎪⎫1+n +1n 2+2n +1×n +1n +2 =⎝ ⎛⎭⎪⎫1+1n +1×n +1n +2=1. ∴a n >a n +1对于一切正整数n 都成立.此题在证明的过程中,综合运用了求商比拟法,放缩法,进而通过贝努利不等式证明不等式成立.[再练一题]3.设a 为有理数,x >-1.假如0<a <1,证明:(1+x )a ≤1+ax ,当且仅当x =0时等号成立.【证明】 0<a <1,令a =mn ,1≤m <n ,其中m ,n 为正整数,那么由平均值不等式,得(1+x )a=(1+x )mn≤m (1+x )+(n -m )n =mx +n n =1+m n x =1+ax ,当且仅当1+x =1,即x =0时,等号成立.[探究共研型]放缩法在数学归纳法证明不等式中的应用探究【提示】 放缩法是不等式证明中最重要的变形方法之一,放缩必须有目的.而且要恰到好处,目的往往要从证明的结论考虑.常用的放缩方法有增项、减项、利用分式的性质、利用不等式的性质、利用不等式、利用函数的性质进展放缩等.比方:舍去或加上一些项:⎝ ⎛⎭⎪⎫a +122+34>⎝ ⎛⎭⎪⎫a +122;将分子或分母放大(缩小):1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1(k ∈R ,k >1)等.证明:2n +2>n 2(n ∈N +). 【精彩点拨】验证n =1,2,3时不等式成立⇒假设n =k 成立,推证n =k +1⇒n =k +1成立,结论得证【自主解答】 (1)当n =1时,左边=21+2=4;右边=1,左边>右边; 当n =2时,左边=22+2=6,右边=22=4, 所以左边>右边;当n =3时,左边=23+2=10,右边=32=9,所以左边>右边. 因此当n =1,2,3时,不等式成立.(2)假设当n =k (k ≥3且k ∈N +)时,不等式成立,即2k +2>k 2(k ∈N +). 当n =k +1时,2k +1+2=2·2k +2 =2(2k +2)-2>2k 2-2 =k 2+2k +1+k 2-2k -3=(k 2+2k +1)+(k +1)(k -3)≥k 2+2k +1=(k +1)2.(因为k ≥3,那么k -3≥0,k +1>0)所以2k+1+2>(k+1)2,故当n=k+1时,原不等式也成立.根据(1)(2)知,原不等式对于任何n∈N+都成立.1.本例中,针对目的k2+2k+1,由于k的取值范围(k≥1)太大,不便于缩小.因此,用增加奠基步骤(把验证n=1扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,到达目的.2.利用数学归纳法证明数列型不等式的关键是由n=k到n=k+1的变形.为满足题目的要求,常常要采用“放〞与“缩〞等手段,但是放缩要有度,这是一个难点,解决这个难题一是要仔细观察题目构造,二是要靠经历积累.[再练一题]4.设x>-1,且x≠0,n为大于1的自然数,用数学归纳法证明(1+x)n>1+nx.【证明】(1)当n=2时,由x≠0,知(1+x)2=1+2x+x2>1+2x,因此n=2时命题成立.(2)假设n=k(k≥2为正整数)时命题成立,即(1+x)k>1+kx,那么当n=k+1时,(1+x)k+1=(1+x)k(1+x)>(1+kx)(1+x)=1+x+kx+kx2>1+(k+1)x.即n=k+1时,命题也成立.由(1)(2)及数学归纳法知原命题成立.不等式中的探究、猜测、证明探究2【提示】 利用数学归纳法解决探究型不等式的思路是先通过观察、判断,猜测出结论,然后用数学归纳法证明.这种分析问题和解决问题的思路是非常重要的,特别是在求解存在型或探究型问题时.假设不等式1n +1+1n +2+1n +3+…+13n +1>a 24对一切正整数n 都成立,求正整数a 的最大值,并证明你的结论.【导学号:38000060】【精彩点拨】 先通过n 取值计算,求出a 的最大值,再用数学归纳法进展证明,证明时,根据不等式特征,在第二步,运用比差法较方便.【自主解答】 当n =1时,11+1+11+2+13×1+1>a 24,那么2624>a24,∴a <26. 又a ∈N +,∴取a =25. 下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524. (1)n =1时,已证.(2)假设当n =k 时(k ≥1,k ∈N +),1k +1+1k +2+…+13k +1>2524, ∴当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +1+13k +2+13k +3+13(k +1)+1=⎝⎛⎭⎪⎫1k +1+1k +2+…+13k +1+⎝ ⎛ 13k +2+13k +3+⎭⎪⎫13k +4-1k +1 >2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-23(k +1). ∵13k +2+13k +4=6(k +1)9k 2+18k +8>23(k +1),∴13k +2+13k +4-23(k +1)>0,∴1(k +1)+1+1(k +1)+2+…+13(k +1)+1>2524也成立.由(1)(2)可知,对一切n ∈N +, 都有1n +1+1n +2+…+13n +1>2524,∴a 的最大值为25.1.不完全归纳的作用在于发现规律,探究结论,但结论必须证明.2.此题中从n =k 到n =k +1时,左边添加项是13k +2+13k +3+13k +4-1k +1,这一点必须清楚.[再练一题]5.设a n =1+12+13+…+1n (n ∈N +),是否存在n 的整式g (n ),使得等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)对大于1的一切正整数n 都成立?证明你的结论.【解】 假设g (n )存在,那么当n =2时, 由a 1=g (2)(a 2-1),即1=g (2)⎝ ⎛⎭⎪⎫1+12-1,∴g (2)=2; 当n =3时,由a 1+a 2=g (3)(a 3-1), 即1+⎝ ⎛⎭⎪⎫1+12=g (3)⎝ ⎛⎭⎪⎫1+12+13-1,∴g (3)=3,当n =4时,由a 1+a 2+a 3=g (4)(a 4-1), 即1+⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫1+12+13=g (4)⎝ ⎛⎭⎪⎫1+12+13+14-1,∴g (4)=4,由此猜测g (n )=n (n ≥2,n ∈N +).下面用数学归纳法证明:当n ≥2,n ∈N +时,等式a 1+a 2+a 3+…+a n -1=n (a n -1)成立.(1)当n =2时,a 1=1,g (2)(a 2-1)=2×⎝ ⎛⎭⎪⎫1+12-1=1, 结论成立.(2)假设当n =k (k ≥2,k ∈N +)时结论成立,即a 1+a 2+a 3+…+a k -1=k (a k -1)成立,那么当n =k +1时,a 1+a 2+…+a k -1+a k=k (a k -1)+a k =(k +1)a k -k=(k +1)a k -(k +1)+1=(k +1)⎝ ⎛⎭⎪⎫a k +1k +1-1=(k +1)(a k +1-1), 说明当n =k +1时,结论也成立,由(1)(2)可知,对一切大于1的正整数n ,存在g (n )=n 使等式a 1+a 2+a 3+…+a n -1=g (n )(a n -1)成立.[构建·体系]1.用数学归纳法证不等式:1+12+14+…+12n -1>12764成立,起始值至少取( )A.7B.8C.9D.10【解析】 左边等比数列求和S n =1-⎝ ⎛⎭⎪⎫12n 1-12=2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n >12764, 即1-⎝ ⎛⎭⎪⎫12n >127128,⎝ ⎛⎭⎪⎫12n<1128,∴⎝ ⎛⎭⎪⎫12n <⎝ ⎛⎭⎪⎫127,∴n >7, ∴n 取8,选B.【答案】 B2.用数学归纳法证明2n ≥n 2(n ≥5,n ∈N +)成立时第二步归纳假设的正确写法是( )A.假设n =k 时命题成立B.假设n =k (k ∈N +)时命题成立C.假设n =k (k ≥5)时命题成立D.假设n =k (k >5)时命题成立【解析】 由题意知n ≥5,n ∈N +,故应假设n =k (k ≥5)时命题成立.【答案】 C3.用数学归纳法证明不等式1n +1+1n +2+…+12n >1314(n ≥2,n ∈N +)的过程中,由n =k 递推到n =k +1时不等式左边( )【导学号:38000061】A.增加了一项12(k +1)B.增加了两项12k +1,12k +2 C.增加了两项12k +1,12k +2,但减少了一项1k +1D.以上各种情况均不对【解析】 ∵n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2, ∴增加了两项12k +1,12k +2,少了一项1k +1.【答案】 C4.用数学归纳法证明“2n +1≥n 2+n +2(n ∈N +)〞时,第一步的验证为________.【解析】 当n =1时,21+1≥12+1+2,即4≥4成立.【答案】 21+1≥12+1+25.试证明:1+12+13+ (1)<2n (n ∈N +). 【证明】 (1)当n =1时,不等式成立.(2)假设n =k (k ≥1,k ∈N +)时,不等式成立,即1+12+13+ (1)<2k . 那么n =k +1时,⎝⎛⎭⎪⎫1+12+13+…+1k +1k +1 <2k +1k +1=2k (k +1)+1k +1< k +(k +1)+1k +1=2k +1. 这就是说,n =k +1时,不等式也成立.根据(1)(2)可知,不等式对n ∈N +成立.我还有这些缺乏:(1)(2) 我的课下提升方案:(1)(2)。

:数学归纳法证明不等式

:数学归纳法证明不等式

第四讲:数学归纳法证明不等式数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。

数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。

本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比与猜想、抽象与概括、从特殊到一般等数学思想方法。

在用数学归纳法证明不等式的具体过程中,要注意以下几点:(1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征;(2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置;(4)有的试题需要先作等价变换。

例题精讲例1、用数学归纳法证明n n n n n 212111211214131211+++++=--++-+-分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明:1︒当n=1时,左边=1-21=21,右边=111+=21,所以等式成立。

2︒假设当n=k 时,等式成立,即k k k k k 212111211214131211+++++=--++-+-。

那么,当n=k+1时,221121211214131211+-++--++-+-k k k k 221121212111+-+++++++=k k k k k )22111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21121213121+++++++++=k k k k k这就是说,当n=k+1时等式也成立。

综上所述,等式对任何自然数n 都成立。

点评:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确.要证明的等式左边共2n 项,而右边共n 项。

数学归纳法证明不等式

数学归纳法证明不等式

二.用数学归纳法证明几何问题
例2.平面上有n( n N , n 3)个点, 其中任何三点都不在 同一条直线上, 过这些点中任意两点作 直线, 这样的直线 共有多少条? 证明你的结论.
特别提示:
用数学归纳法证几何问题,应特别注意语言叙述正确,清 楚,一定要讲清从n=k到n=k+1时,新增加量是多少.一般 地,证明第二步常用的方法是加一法,即在原来的基础上, 再增加一个,也可以从k+1个中分出一个来,剩下的k个利 用假设.
例2.证明不等式sin n n sin ( n N )
例3.证明贝努利不等式: 如果x是实数, 且x 1, x 0, n为大于1的自然数, 那么有 (1 x ) 1 nx
n
注: 事实上, 把贝努利不等式中的正整数 n 改为实数 仍有 类似不等式成立 . 当 是实数,且 或 0 时 ,有 (1 x ) ≥ 1 x ( x 1) 当 是实数,且 0 1 时 ,有 (1 x ) ≤ 1 x ( x 1)
若 k 1 个正数 a1 , a2 , , ak , ak 1 都相等 ,则它们都是 1. 其和为 k 1 ,命题成立.
若这 k 1 个正数 a1 , a2 , , ak , ak 1 不全相等 , 则其中 必有大于 1 的数,也有小于 1 的数(否则与 a1a2 ak ak 1 1 矛盾).不妨设 a1 1, a2 1 „„
一.用数学归纳法证明等式问题
通过计算下面的式子, 猜想出 1 3 5 ( 1)n ( 2n 1) 的结果, 并加以证明. 1 3 _____;1 3 5 ______ 1 3 5 7 ______;1 3 5 7 9 _______

用数学归纳法证明不等式举例

用数学归纳法证明不等式举例

6k+1 1 1 2 ∵ + = 2 > , 3k+2 3k+4 9k +18k+8 3k+1 1 1 2 ∴ + - >0, 3k+2 3k+4 3k+1 1 1 1 25 ∴ + +…+ > 也成立. k+1+1 k+1+2 3k+1+1 24
返回菜单
服/务/教/师
免/费/馈/赠
服/务/教/师 免/费/馈/赠
返回菜单
数学[新课标· 选修4-5]
1 设0<a<1,定义a1=1+a,an+1= +a, an 1 求证:对一切正整数n∈N ,有1<an< . 1-a 【证明】 (1)当n=1时,a1=1+a,且0<a<1,
*
∴a1>1. 1 又a1=1+a< , 1-a 因此当n=1时, 1 不等式1<an< 成立. 1-a
k
∴当n=k+1时不等式也成立. 据①、②知对任何n∈N*原不等式均成立.
服/务/教/师
免/费/馈/赠
返回菜单
数学[新课标· 选修4-5]
证明:2n+2>n2(n∈N*).
【思路探究】 验证n=1,2,3时不等式成立⇒假设n=k成
立,推证n=k+1⇒n=k+1成立,结论得证
【自主解答】 左边>右边;
【思路探究】 先通过n取值计算,求出a的最大值,再用
数学归纳法进行证明,证明时,根据不等式特征,在第二步, 运用比差法较方便.
服/务/教/师
免/费/馈/赠
返回菜单
数学[新课标· 选修4-5]
【自主解答】 26 a 则24>24, ∴a<26. 又a∈N*, ∴取a=25.
1 1 1 a 当n=1时, + + > , 1+1 1+2 3×1+1 24

如何应用数学归纳法证明不等式

如何应用数学归纳法证明不等式

如何应用数学归纳法证明不等式数学归纳法是一种常见的数学证明方法,通过证明初始情况成立和任意情况都成立,来证明一般情况成立。

在不等式证明中,也可以应用数学归纳法。

本文将介绍如何应用数学归纳法证明不等式。

第一步,证明初始情况成立。

通常,需要选取一个最小的自然数来作为初始情况,然后证明不等式在该自然数下成立。

以证明$a^n-1$能够被$(a-1)$整除为例。

当$n=1$时,$a^1-1=a-1$,由于$a-1$显然能够整除$a-1$,因此初始情况成立。

第二步,假设任意情况成立。

即假设当$n=k(k \in N^*)$时,$a^k-1$能够被$(a-1)$整除。

第三步,证明一般情况也成立。

即证明当$n=k+1$时,$a^{k+1}-1$也能够被$(a-1)$整除。

由于$a^{k+1}-1 = a^k \cdot a - 1 = (a^k-1) \cdot a + (a-1)$,而根据假设,$a^k-1$能够被$(a-1)$整除,因此$a^{k+1}-1$也能够被$(a-1)$整除。

通过上述三步,我们得到了$a^n-1$能够被$(a-1)$整除。

类似的,可以应用数学归纳法证明其他的不等式。

例如证明$1+2+...+n=\frac{n(n+1)}{2}$,我们可以选取$1$作为初始情况;假设当$n=k(k \in N^*)$时,$1+2+...+k=\frac{k(k+1)}{2}$;然后证明当$n=k+1$时,$1+2+...+k+(k+1)=\frac{(k+1)(k+2)}{2}$。

当然,在进行数学归纳法证明时,选择初始情况和需要证明的语句都需要谨慎选择。

总结一下,数学归纳法是一种常见的数学证明方法,可以应用在不等式证明当中。

通过证明初始情况成立、假设任意情况成立、证明一般情况也成立这三步,可以有效地证明不等式。

高中数学高三第六章不等式数学归纳法(教案)

高中数学高三第六章不等式数学归纳法(教案)

高三一轮复习 6.7 数学归纳法【教学目标】1.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.【重点难点】1。

教学重点:了解数学归纳法的原理并能用数学归纳法证明一些简单的数学命题;2。

教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】叫做数学归纳法.2.数学归纳法的框图表示1.必知关系;数学归纳法是一种只适用于与正整数有关的命题的证明方法,第一步是递推的“基础”,第二步是递推的“依据",两个步骤缺一不可.2.必清误区;运用数学归纳法应注意以下两点:(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.(2)第二步中,归纳假设起着“已知条件”的作用,在证明n =k+1时,命题也成立的过程中一定要用到它,否则就不是拨从而提高学生的解题能力和兴教师引导学生及时总结,以帮助学生形成完整的认知结构。

强理解记忆,提高解题技能。

k+1·错误!=错误!,要证当n=k+1时结论成立,只需证错误!≥错误!,即证错误!≥k+1k+2,由基本不等式得错误!=错误!≥错误!成立,故错误!≥错误!成立,所以,当n=k+1时,结论成立.由①②可知,n∈N*时,不等式错误!·错误!·……·错误!〉错误!成立.跟踪训练:1。

已知数列{a n},a n≥0,a1=0,a错误!+a n+1-1=a错误!。

求证:当n∈N*时,a n<a n+1.【证明】(1)当n=1时,因为a2是方程a错误!+a2-1=0的正根,所以a1〈a2。

(2)假设当n=k(k∈N*)时,。

高中数学第四讲数学归纳法证明不等式1数学归纳法素材

高中数学第四讲数学归纳法证明不等式1数学归纳法素材

4。

1 数学归纳法庖丁巧解牛知识·巧学一、数学归纳法的定义证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性:(1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(k∈N*,k≥n0)时命题成立,证明当n=k+1时命题也成立。

完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法。

从数学归纳法的定义我们可以看出,它强调的就是两个基本步骤.数学归纳法的两个步骤,是问题的两个方面,一个是命题成立的基础,一个是命题之间可递推的依据,二者缺一不可。

缺步骤(2),则证明就是“一叶障目,以一代全”不能保证命题对所有的自然数n 都成立;而缺步骤(1),则证明就成了“空中楼阁",也难以保证命题对所有自然数n都成立.我们通常称第(1)步为奠基步骤。

记忆要诀总结以上的分析,归纳如下:“奠基步骤不能少,归纳假设要用到,结论写明莫忘掉."如果同学们能正确地理解了数学归纳法证明的要义,才能轻松自如地运用它,而不致误用.误区警示数学归纳法的两个步骤,是问题的两个方面,一个是命题成立的基础,一个是命题之间可递推的依据,二者缺一不可.疑问:既然第(2)步已经证明了任两个连续自然数对应的命题的递推关系,那么第(1)步是否是多余的?请看如下例子:对于欲证的命题:1+2+3+…+n=21n (n+1)+1。

第二步证明为:若n=k 时命题成立,即1+2+3+…+k=21k(k+1)+1, 则当n=k+1时,1+2+3+…+k+(k+1)=21k (k+1)+1+(k+1)=21(k+1)(k+2)+1,即当n=k+1时命题也成立.但我们会发现:当n=1时,左式=1,右式=2,显然命题不成立。

辨析比较归纳法与数学归纳方法我们在研究问题时,还常常用到如下的一种思维方法,即从特殊到一般的思维方法,举例如下:1=12,1+2+1=4=22,1+2+3+2+1=9=32,1+2+3+4+3+2+1=16=42, …,我们由此发现并得出如下结论: 1+2+3+…+(n-1)+n+(n —1)+…+3+2+1=n 2(n ∈N ).这就是考察具有1+2+3+…+(n —1)+n+(n —1)+…+3+2+1特征的某几个式子的数值后,发现了蕴含其中的共性之后而得到的一个结论。

第四讲 数学归纳法证明不等式 章末复习方案 课件(人教A选修4-5)

第四讲 数学归纳法证明不等式 章末复习方案 课件(人教A选修4-5)

由 a2=3,得 a3=a2-2a2+1=4; 2 由 a3=4,得 a4=a2-3a3+1=5. 3 由此猜想:an=n+1(n∈N*).
(2)①用数学归纳法证明: 当 n=1 时,a1≥3=1+2,不等式成立; 假设当 n=k 时,不等式成立,即 ak≥k+2, 那么当 n=k+1 时, ak+1=a2-kak+1=ak(ak-k)+1 k ≥(k+2)(k+2-k)+1=2(k+2)+1 ≥k+3=(k+1)+2, 也就是说,当 n=k+1 时,ak+1≥(k+1)+2. 综上可得,对于所有 n≥1,有 an≥n+2. ②由 an+1=an(an-n)+1 及①,对 k≥2,有
xk 2 1 则 < + 2 2 2k 1 xk> 1 1 2+k


因为①、②不是同向不等式,所以由递推式无法完成 由 k 到(k+1)的证明, 到此好像“山重水复疑无路”, 证题 思路受到阻碍.
受阻原因分析: xk 1 1 要利用递推式 xk+1= +x ,只要找出关系式x <A,才有 2 k k 可能推导下去. 1 因此,只有寻觅出 xk> A 这样一个条件,才可以接通思 路.当注意到前面已证明 xn> 2以后,问题就可以解决了.思 路受阻的原因就在于不会借用前面已经证明的结论.事实上,
1 5 n0=2 时,1+ > ,再用数学归纳法证明. 3 2 答案:2
6.若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推 关系式是f(k+1)=________. 解析:∵f(k)=12+22+…+(2k)2, ∴f(k+1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2, ∴f(k+1)=f(k)+(2k+1)2+(2k+2)2. 答案:f(k)+(2k+1)2+(2k+2)2

第二节证明不等式的基本方法、数学归纳法证明不等式

第二节证明不等式的基本方法、数学归纳法证明不等式

(2)某个命题与正整数n有关,如果当n=k时该命题成立.那么可
推导出当n=k+1时也成立.现已知n=12时,该命题不成立.那么 可推得n=______时,该命题不成立. 【解析】∵n=12时,命题不成立.∴n=11时命题不成立.同理 n=10、9、8、…、2、1时命题均不成立. 答案:1、2、3、…、11
往往用分析法找思路,用综合法写步骤,由此可见,分析法与综
合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,
可以拓宽解题思路,开阔知识视野.
2.分析法的应用
当所证明的不等式不能使用比较法,且和重要不等式、基本不 等式没有直接联系,较难发现条件和结论之间的关系时,可用 分析法来寻找证明途径,使用分析法证明的关键是推理的每一 步必须可逆.
4 4 4 1 64 . 1 4 ,
三式同向相乘,得(1-a)a(1-b)b(1-c)c> 又 1 a a
1 c c
( ( 1 a a 2 )
2
) 1 4 .
2
1 4
, 1 b b (
1 b b 2
)
2
1 c c 2
∴(1-a)a(1-b)b(1-c)c≤
1 2
) 2+
1 2
]≥0,
∴1+2x4≥2x3+x2.
方法二:(1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0 ∴1+2x4≥2x3+x2.
(2)
a b
a
b
ab
ba
ab
ab 2
a

数学归纳法证明不等式的步骤数学归纳法两种形式适用范围

数学归纳法证明不等式的步骤数学归纳法两种形式适用范围

一、数学归纳法证明不等式的步骤
(1)证明当n取初始值n0(例如n0=0,n0=1等)时不等式成立;
(2)假设当n=k(k为自然数,k≥n0)时不等式成立,证明当n=k+1时不等式也成立。

二、数学归纳法:由有限多个个别的特殊事例得出一般结论的推理方法,称为归纳法。

三、对数学归纳法的理解:
(1)数学归纳法是一种用于证明与自然数n有关的命题的正确性的证明方法.它的操作步骤简单、明确。

(2)运用数学归纳法证明与正整数有关的数学命题,两个步骤缺一不可.理解数学归纳法中的递推思想,尤其要注意其中第二步,证明n =k+1命题成立时必须要用到n=k时命题成立这个条件.这种理解不仅使我们能够正确认识数学归纳法的原理与本质,也为证明过程中第二步的设计指明了思维方向.。

用数学归纳法证明不等式(1)

用数学归纳法证明不等式(1)

由(1),(2)所证不等式对一切 n N , n 2 都成立.

1 k 2

13 24
(
1 2k 1

1 2k 2
)
13 24

1 ( 2 k 1)( 2 k 2 )

13 24
.
即当n=k+1时,不等式也成立.
2 由(1)、(2)原不等式对一切 n N , n 都成立.
例.证明不等式:
1
1 2

1 3

1 n
2
n (n N )
练习3:已知
f (n) 1
1 2

1 3

, 求证 n
1
f (2 )
n
n 2 2
( n 1)
证:(1)当n=2时, 不等式成立.
f (2 ) f (4) 1
2
1 2

1 3

1 4
2
1 12
,
22 2
k
(2)假设当n=k(k≥2)时不等式成立,即 则当n=k+1时, 有:
1
1 2
2
,
5 4
右边=
2
1
,由2 2
3

5 4

3 2
,
故不等式成立.
1 1 k
2
(2)假设n=k( k N , k ≥ 2 )时命题成立,即
1 1 2
2

3
2

2
1 k
.
则当n=k+1时,
1 1 2
2

1 3
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题: 数学归纳法与不等式
目的要求:1.了解数学归纳法的原理及适用范围和基本步骤 ; 2.会运用数学归纳法证明含有任意正整数n 的不等式(包括贝努利不等式)
重点难点: 认识数学归纳法的证明思路;运用数学归纳法时,在
“假设与递推”的步骤中发现具体问题中的递推关系。

教学设计: 一、引入:
数学归纳法是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这
是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是递推的依据。

实际上它使命题的正确性突破了有限,达到无限。

证明时,关键是k +1步的推证,要有目标意识。

二、范例分析:
例1、证明:23333)321(321n n ++++=++++ 。

例2、设1->x ,*N n ∈,证明贝努利不等式:nx x n +>+1)1(。

例3、设b a ,为正数,*
N n ∈,证明:n
n n b a b a )2
(2+≥+。

例4、设数列{a n }的前n 项和为S n ,若对于所有的自然数n ,都有S n =2
)
(1
n a a
n +,证明{a n }是等差数列。

(94年全国文)
例5、已知数列
811322
··,得,…,
8212122
··n
n n ()()-+,…。

S n 为其前n
项和,求S 1、S 2、S 3、
S 4,推测S n 公式,并用数学归纳法证明。

(93年全国理)
解:计算得S 1=89
,S 2=2425
,S 3=4849
,S 4=8081
, 猜测S n =()
()
211
212
2
n n +-+
(n ∈N)
【注】 从试验、观察出发,用不完全归纳法作出归纳猜想,再用数学归纳法进行严格证明,这是探索性问题的证法,数列中经常用到。

(试值 → 猜想 → 证明)
【另解】 用裂项相消法求和
例6、设a
n =12×+23×+…+n n()+1 (n∈N),证明:1
2
n(n
+1)<a
n <1
2
(n+1)2。

三、小结:
四、练习:
五、作业:
1、设f(log
a x)=a x
x a
()
()
2
2
1
1
-
-
, ①.求f(x)的定义域;②.在y=
f(x)的图像上是否存在两个不同点,使经过这两点的直线与x轴平行?证明你的结论。

③.求证:f(n)>n (n>1且n∈N)。

2、已知数列{a
n }满足a
1
=1,a
n
=a
n-1
cosx+cos[(n-1)x], (x
≠kπ,n≥2且n∈N)。

①.求a
2和a
3
;②.猜测a
n
,并用数
学归纳法证明你的猜测。

相关文档
最新文档