201x版中考数学一轮复习第30课时概率导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019版中考数学一轮复习第30课时概率导学案
姓名学号班级
学习目标
1.理解频数、频率的概念,会计算频率,了解概率的意义,会计算一些简单问题的概率,能用概率做出估计,能依据概率知识判断游戏是否公平.
2.能利用概率计算随机事件发生的平均次数,解决一些实际问题.
重难点:计算等可能条件下简单事件发生的概率,能运用概率解决一些实际问题.
学习过程
一.知识梳理
(1)在一定条件下,有些事情我们事先能肯定它一定会发生,这样的事情是事件;
在一定条件下,有些事情我们事先能肯定它一定不会发生,这样的事情是事件;
必然事件、不可能事件都是事件;
在一定条件下,我们事先无法确定它会不会发生,这样的事情是事件.
(2)通过大量的重复试验,可以用事件发生的频率的稳定值来估计事件发生的.
(3)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,并且其中的m种结果事件A发生,那么事件A发生的概率为________.
二、典型例题
1.事件的分类
问题1.(泰州)有两个事件,事件A: 367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是( )
A.事件A、B都是随机事件;B.事件A、B都是必然事件
C.事件A是随机事件,事件B是必然事件;D.事件A是必然事件,事件B是随机事件
2.用频率估计概率
问题2.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()
A.①B.②C.①② D.①③
3.简单随机事件发生的概率
问题3.(xx•岳阳)从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()
A.1
5
B.
2
5
C.
3
5
D.
4
5
问题4.(xx•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()
A.4
7
B.
3
7
C.
2
7
D.
1
7
4.由概率做出估计
问题5. 一个口袋中有红球24个和若干个绿球,从口袋中随机摸出一个球记下其颜色,再把它放回口袋中摇匀,重复上述过程,实验200次,其中有125次摸到绿球,由此估计口袋中共有多少个球?
问题6.某航班平均每次约有100名乘客,飞机失事的概率p=0.00005.一家保险公司要为乘客保险,承诺飞机一旦失事,将向每名乘客赔偿人民币40万元.平均来说,保险公司应该如何收取保险费呢?
4.列表法与画树状图法求随机事件发生的概率
问题7.(xx•江西)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.
(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?
(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.
5.概率的学科内综合题
问题8.某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.
如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:
(1)小亮掷得向上一面的点数为奇数的概率是多少?
(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)
问题9.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点P(m,n)的横坐标,第二个数作为点P
(m,n)的纵坐标,则点P(m,n)在反比例函数
12
y
x
=的图象上的概率一定大于在反比例函数
6
y
x
=
的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?
(1)试用列表或画树状图的方法列举出所有点P(m,n)的情形;
(2)分别求出点P(m,n)在两个反比例函数的图象上的概率,并说明谁的观点正确.
三、中考预测
1.甲、乙两位同学在一次实验中统计了某一结果出现的频率,
给出的统计图如图所示,则符合这一结果的实验可能是()
A.掷一枚正六面体的骰子,出现6点的概率
B.掷一枚硬币,出现正面朝上的概率
C.任意写出一个整数,能被2整除的概率
D.一个袋子中装着只有颜色不同,其他都相同的两个红球和
一个黄球,从中任意取出一个是黄球的概率
2.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.
(1)写出所有的选购方案(用列表法或树状图);
(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?
3.甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1、2、3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.
(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;
(2)请判断该游戏对甲乙双方是否公平?并说明理由.若不公平,怎样修改游戏规则才对双方公平?
四、反思总结
1、本课复习了那些概念和法则?
2、你还有什么困惑?
五、达标检测
1.(xx秋•宝安区期末)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50
2.(xx•台湾)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()
A.1
2
B.
1
5
C.
1
10
D.
1
25
3.(xx•宁夏)如图所示的圆形纸板被等分成10个扇形挂在墙上,
玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的
概率是.
4.数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根木条,长度分别是3cm、8cm、13cm;乙组准备3根木条,长度分别是4cm、6cm、12cm.老师先从甲组再从乙组分别随机抽出一根木条,放在一起组成一组.
(1)用画树状图法(或列表法)分析,并列出各组可能.(画树状图或列表以及列出可能时不用写单位)
(2)现在老师也有一根木条,长度为5cm,与(1)中各组木条组成三角形的概率是多少?
5.如图,在边长为a的正方形内有不规则图形Ω.向正方形内
随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m,n,
则图形Ω面积的估计值为()
A.ma
n
B.
na
m
C.
2
ma
n
D.
2
na
m
6.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档