列方程解应用题(盈亏问题)word版本
一元一次方程--盈亏问题
1、某商品 现在的销售价是 元,比原来的售价低了 、 现在的销售价是34元 15%,原来的售价是( 40 )元 ,原来的售价是( 2、某商店进了一批商品,每件商品的进价为 a元,若 、某商店进了一批商品, 元 要获利20%,则每件商品的零售价应为( 1.2a )元。 要获利 ,则每件商品的零售价应为( 3、某商场把进价 元的电脑按标价的八折出售, 、某商场把进价5000元的电脑按标价的八折出售, 元的电脑按标价的八折出售 仍获利500,则该商品的标价为( 6875 )元 仍获利 ,则该商品的标价为( 4、某商店在同一天以每件60元的价格卖出两件 、某商店在同一天以每件 元的价格卖出两件 衣服,一件盈利20%,另一件亏损 衣服,一件盈利 ,另一件亏损20%,请问卖 , 这两件衣服总的是盈是亏?还是不盈不亏? 这两件衣服总的是盈是亏?还是不盈不亏?
探究: 探究:销售中盈亏问题
某商店在某一时间以每件60元的价格 某商店在某一时间以每件 元的价格 卖出两件衣服,其中一件盈利25%,另一件 卖出两件衣服,其中一件盈利 , 亏损25%, 亏损25%,卖这两件衣服总的是盈利还是亏 或是不盈不亏? 损,或是不盈不亏? 提出问题: 提出问题: 1、你知道商品销售中的盈亏如何计算吗? 、你知道商品销售中的盈亏如何计算吗? 2、 本题中两件衣服的售价、进价各是多少? 、 本题中两件衣服的售价、进价各是多少?
再探实际问题与 再探实际问题与一元一次方程
一时失志不免怨叹 一时落魄不免胆寒 那通失去希望 每日醉茫茫 无魂有体亲像稻草人 人生可比是海上的波浪 有时起有时落好运歹运 总嘛要照起工来行 三分天注定七分靠打拼 三分天注定七分靠打拼 爱拼才会赢
——盈亏问题
进价:指购进商品时的价钱。 进价:指购进商品时的价钱。 指标出的商品价格。 指标出的商品价格。 标价: 标价: 售价:是指商品在出卖时的价格。 售价:是指商品在出卖时的价格。 利润:是指经营中赚的钱。 利润:是指经营中赚的钱。 利润= 利润 售价 - 进价 利润率= 利润÷进价× 利润率 利润÷进价×100%
专题30一元一次方程应用之销售盈亏问题(原卷版)
专题30 一元一次方程应用之销售盈亏问题1.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元2.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利60% ,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利37.5 元C.亏损25 元D.盈利12.5 元3.一件工艺品按成本价提高50%后,以105元售出,则这件工艺品的利润是()A.20元B.25元C.30元D.35元4.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16B.18C.24D.327.据了解,个体服装销售要高出进价的20%方可盈利,一销售老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)最低售价多少元时,销售老板方可盈利?8.“双十一”期间,某电商决定对网上销售的商品一律打8折销售,张燕购买一台某种型号时发现,每台比打折前少支付500元,求每台该种型号打折前的售价.9.贵阳市人民广场某超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)的12(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?10.“元旦”期间,某文具店购进80只两种型号的文具进行销售,其进价和售价如表:(1)该店用700元可以购进A,B两种型号的文具各多少只?(2)在(1)的条件下,若把所购进A,B两种型号的文具全部销售完,利润率有没有超过35%?请你说明理由.11.某学校2019学年举行席地绘画大赛.共收到绘画作品480件,其中的优秀作品评出了一、二、三等奖.(1)则a= ;b= ;c= ;(2)学校决定为获一等奖同学每人购买一个书包,获得二等奖同学每人购买一个文具盒,获得三等奖同学每人购买一支钢笔,并且每位获奖同学颁发一个证书,已知文具盒单价是书包单价的35,证书的单价是文具盒单价的110,钢笔的单价是文具盒单价的16,学校购买书包、文具盒、钢笔共用4000元,那么学校购买证书共用了多少元?12.目前节能灯已基本普及,节能还环保,销量非常好,某商场计划购进甲、乙两种型号节能灯共1200只,这两种节能灯的进价、售价如表所示:(1)商场应如何进货,使进货款恰好为46000元?(2)若商场销售完节能灯后获利不超过进货价的30%,至少购进甲种型号节能灯多少只?13.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克?(2)当天卖完这些番茄和长豆角能盈利多少元?14.列一元一次方程解决下面的问题新隆嘉水果店第一次用800元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多20千克,甲、乙两种苹果的进价和售价如下表:(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为820元,求第二次乙种苹果按原价打几折销售?15.2019年元旦,某超市将甲种商品降价30%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为2400元,某顾客参加活动购买甲、乙各一件,共付1830元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中是盈利还是亏损了?如果是盈利,求商场销售甲、乙两种商品各一件盈利了多少元?如果是亏损,求销售甲、乙两种商品各一件亏损了多少元?16.列方程式应用题.天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.请问:哪种方案获利更多?获利多少元?17.引进扶贫产品,丰富市民菜篮子.为了完成新时代脱贫攻坚的目标任务,某市商务局近些年致力于帮扶地区特色产品走进市民的菜篮子.该市帮助扶贫产品和市场需求有效对接,实现了农产品的特色化、品牌化,助力更多优质农产品走出了地区、走向了全国.已知该市去年和今年两年的“明星”扶贫农产品销售总额为179.8万,其中“明星”扶贫农产品去年的价格为16元/千克,今年的价格为12元/千克,今年的销售产量比去年增长了25%.(1)请问今年的“明星”扶贫农产品销售了多少千克?(2)为了促进该地区滞销农产品的销售,现市商务局决定采用直播带货的方式进行销售.某电商平台采取分段收取“坑位费”的计算方法,如市商务局“直播带货”销售农产品的销售额不超过20万的部分按15%交给电商公司,超过20万不超过50万的部分按12%交给电商公司,超过50万的部分按10%的比例交给电商公司.已知此次直播扣除坑位费的销售额为643700元,则这次直播未扣除坑位费的销售额为多少?。
(完整word版)趣味奥数之盈亏问题
趣味奥数之盈亏问题专题简析:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,每人多一些,物品就不够;每人少一些,物品就有余。
盈亏问题就是在已知盈亏的情况下来确定物品总数和参加分配的人数。
解答盈亏问题的关键是弄清盈、亏与两次分得差的关系。
盈亏问题的数量关系是:(1)(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数(2)每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量例1:一个植树小组植树.如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵.这个植树小组有多少人?一共有多少棵树?【分析与解答】由题意可知,植树的人数和树的棵数是不变的。
比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。
这是因为两种分配方案每人植树的棵数相差7-5=2棵。
所以植树小组有18÷2=9人,一共有5×9+14=59棵树。
练习一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个.幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少学生?【答案】:1。
小朋友人数:(20+40)÷(3-2)=60(人)积木数量2×60+20=140(个)2。
宿舍:(10+16)÷(8-6)=13(间)学生:13×6+16=94(人)3.(6+9)÷(9-6)=5(条)6×(5+1)=36(人)例2:学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
(完整word版)七年级一元一次方程解应用题分类【大量题目】【经典全面】
列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该队战平几场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的三分之一,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
3.3一元一次方程的解--盈亏问题(3)
实战演练
1. 某商品的进价是1 000元,标价为1 500元,商店要求 以获利不低于5%的售价打折出售,售货员最低可以打几 折出售此商品?
解:设售货员最低打x折,则今依题意可得: 设售货员最低打 折 则今依题意可得: 1500×0.1x-1000=1000×5% × × 答:售货员最低可打7折。 售货员最低可打 折 解得: 解得:x =7
求出进价是本题 的关键所在! 的关键所在!
问题3:你能分析总的亏损情况吗? 问题 :你能分析总的亏损情况吗?
两件衣服的进价是x+ = 两件衣服的进价是 +y=128元,而两件衣服的售价 元 是120元,进价大于售价,由此可以知道卖这两件衣服总 元 进价大于售价, 的盈亏是亏损8元. 的盈亏是亏损 元
2. 甲商品的进价是1 400元,按标价1 700元的九折出 售.乙商品的进价是400元,按标价560元的八折出 售.两种商品哪种获利更高些?
解:甲商品获利1700×0.9 – 1400 =130(元) 甲商品获利 × ( 乙商品获利560×0.8 – 400 = 48(元) 乙商品获利 × ( 甲商品获利更高! 答:甲商品获利更高!
继续回到探究1 继续回到探究
某商店在某一时间内以每件60元的价格卖出两件衣 某商店在某一时间内以每件 元的价格卖出两件衣 其中一件盈利25%,另一件亏损25%, %,另一件亏损 %,卖这两件衣 服,其中一件盈利 %,另一件亏损 %,卖这两件衣 服总的是盈利还是亏损,或是不亏不损? 服总的是盈利还是亏损,或是不亏不损? 问题2你能否求出探究问题中的两件物品的进价吗? 问题 你能否求出探究问题中的两件物品的进价吗? 你能否求出探究问题中的两件物品的进价吗
退出 返回 上一张下一张
利润与利润率
人教版七年级数学上册 实际问题与一元一次方程销售盈亏问题同步训练(word版含简答答案)
一、单选题
1.随着地摊经济的复苏,失业的小李做起了小本生意,他把一件标价90元的T恤衫,按照7折销售仍可获利10元,设这件T恤的成本为x元,根据题意,下面所列的方程正确的是()
A. B. C. D.
2.某物美超市同时卖出了两种相同数量不同规格包装的牛奶 和 牛奶售价为69元, 牛奶售价为34元,按成本计算,超市人员发现 牛奶盈利了15%,而 牛奶却亏损了15%,则这次超市是()
18.(1)购进 型台灯 盏,则购进 型台灯 盏;(2) 元.
19.(1)156元和530元;(2)节省了56元钱;(3)此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省
20.(1)该超市第一次购进甲种商品每件15元,乙种商品每件20元;(2)1600元
A.110B.120C.130D.140
7.一家商店将某新款羽绒服先按进价提高50%标价,再按标价的八折销售,结果每件仍可获利50元,设这款羽绒服每件进价为x元,根据题意可列方程为()
A. B.
C. D.
8.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢”,根据两人的对话可知,小华结账时实际付了()
A.540元B.522元C.486元D.469元
二、填空题
9.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利18元,则这件夹克衫的成本价是____________元.
10.一件风衣,按进价提高50%后标价,后因季节关系按标价的八折出售,每件卖240元,这件风衣的进价是______元.
甲
乙
人教版七年级上册数学一元一次方程应用题—盈亏问题
人教版七年级上册数学一元一次方程应用题—盈亏问题1.现在大力提倡绿色、低碳出行,越来越多的人选择用电动车出行,某商场销售的一款电动车每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款电动车每台的进价?(2)在这次促销活动中,商场销售了这款电动车100台,问盈利多少元?2.超市恰好用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的与1 3少10件,甲、乙两种商品的进价和售价如表;(注:每件商品获利=售价﹣进价).(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?3.某商场用2750元购进A,B两种新型节能台灯共50盏,这两种台灯的进价,标价如下表所示:(1)这两种台灯各购进多少盏?(2)若A型台灯按标价的9折出售,B型台灯按标价的8折出售,那么这批台灯全部售出后,商场共获利多少元?4.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?5.某社区超市第一次用6000元购进甲、乙两种商品,其中甲商品的件数比乙商品件倍少30件,甲、乙两种商品的进价和售价如表:数的2(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原售价销售,乙商品在原售价上打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多720元,求第二次乙种商品是按原价打几折销售?6.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”小华说:“那就多买一个吧,谢谢.”根据两人的对话可知,小华结账时实际买了多少个笔袋?7.某服装店购进A、B两种新式服装,按标价售出后可获利1600元.已知购进B种服装的数量是A种服装数量的2倍,这两种服装的进价、标价如下表所示(1)这两种服装各购进了多少件?(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店的利润比按标价出售少收入多少元?8.某市大市场进行高端的家用电器销售,若按标价的八折销售该电器一件,则可获利400元,其利润率为20%.求:(1)该电器的进价是多少?(2)现如果按同一标价的九折销售该电器一件,那么获得的纯利润为多少?9.某商店出售的某种茶壶每只定价20元,茶杯每只3元,该商店在营销淡季规定一项优惠方法,即买一只茶壶赠送一只茶杯,某顾客花了170元,买回茶壶和茶杯一共38只,问该顾客买回茶壶和茶杯各多少只?10.某超市计划购进甲、乙两种型号的台灯1000台,这两种型号台灯的进价、售价如下表:(1)如果超市的进货款为54000元,那么可计划购进甲、乙两种型号的台灯各多少台?(2)为确保乙种型号的台灯销售更快,超市决定对乙种型号的台灯打折销售,且保证乙种型号台灯的利润率为20%,问乙种型号台灯需打几折?11.儿童商店举办庆六一大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x元.(1)若将该商品按原价的八折出售,则售价为________元(用含x的代数式表示);(2)求出x的值.12.某超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1多215件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?13.用1 块A 型钢板可制成2 块C 型钢板和1 块D 型钢板;用1 块B 型钢板可制成1 块C 型钢板和 3 块D 型钢板,现准备A,B 型钢板共100 块,并全部加工成C,D 型钢板.(1)若B 型钢板的数量是A 型钢板的数量的两倍还多10 块,求A,B 型钢板各有多少块?(2)若C,D 型钢板的利润分别为100 元/块,120 元/块,且全部售出.①当A 型钢板数量是20 块,那么可制成C 型钢板块,D 型钢板块;①当C,D 型钢板全部售出所得利润的利润为42500 元,求A 型钢板有多少块?14.小明自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装.为了缓解资金压力,小明决定打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装的标价是多少元?(2)为了尽快减少库存,又要保证不亏本,请你告诉小明最多能打几折.(3)小明认真总结了前一次的教训,进行了详细的市场调查后第二次进货600件,按第一次的标价销售了200件后,剩下的进行打折甩卖,为了尽快减少库存,又要保证盈利两万元钱,请你告诉小明最多能打几折.15.某商场计划购进甲,乙两种空气净化机共500台,这两种空气净化机的进价、售价如下表:解答下列问题:(1)按售价售出一台甲种空气净化机的利润是元.(2)若两种空气净化机都能按售价卖出,问如何进货能使利润恰好为450 000元?16.(1)某饮料加工厂生产A饮料的成本价为每瓶3元,由于冬季天冷影响了A饮料的销售,该加工厂决定按照原价的8折销售,此时每瓶A饮料的利润是0.2元,那么A饮料的原价是每瓶多少元?(提示:利润=销售价﹣成本价)(2)若饮料加工厂将生产的A、B两种饮料卖给其销售代理商,1万瓶A饮料获利1.5万元,1万瓶B饮料获利2.5万元,若该加工厂卖给销售代理商A、B两种饮料共100万瓶,共获利210万元,求饮料加工厂卖给代理商A、B两种饮料各多少瓶?17.一商店在某一时间经销甲、乙两种商品,甲种商品以每件60元的价格售出,每件盈利为50%,乙种商品每件进价50元,每件以亏损20%的价格售出(Ⅰ)甲种商品每件进价元;乙种商品每件售价元(Ⅰ)若该商店当时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲、乙两种商品各多少件?18.一家商店因换季将某种服装打折销售,每件服装如果按标价的4折出售将亏40元,而按标价8折出售将赚40元.问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为了保证不亏损,最多可以打几折?19.某天,一蔬菜经营户用44元钱从蔬菜批发市场批发了西红柿和豆角共40千克到菜市场去卖,西红柿和豆角这天的批发价与零售价如下表:问:他当天卖完这些西红柿和豆角能赚多少钱?20.学校准备添置一批课桌椅,原计划订购60套,每套100元,店方表示:如果多购,可以优惠.结果校方实际订购了72套,每套减价3元,但商店获得了同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.。
列方程解应用题试卷打印版
用方程解决问题(1)---------调配问题1、甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?2、某班女生人数比男生的23还少2人,如果女生增加3人,男生减少3人,那么女生人数等于男生人数的79,那问男、女生各多少人?3、某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10人,又知二个大齿轮和三个小齿轮配套一套,问应如何安排劳力使生产的产品刚好成套?4、某同学做数学题,如果每小时做5题,就可以在预定时间完成,当他做完10题后,解题效率提高了60%,因而不但提前3小时完成,而还多做了6道,问原计划做几题?几小时完成?5、6、小丽在水果店花18元,买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各多少千克?7、甲仓库有煤200吨,乙仓库有煤80吨,如果甲仓库每天运出15吨,乙仓库每天运进25吨,问多少天后两仓库存煤相等?8、两个水池共贮有水50吨,甲池用去水5吨,乙池注进水8吨后,这时甲池的水比乙池的水少3吨,甲、乙水池原来各有水多少吨?9、某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?用方程解决问题(2)---------比例问题与日历问题1、甲、乙、丙三村集资140万元办学,经协商甲、乙、丙三村的投资之比是5:2:3。
问他们应各投资多少万元?2、有蔬菜地975公顷,种植青菜、西红柿和芹菜,其中青菜和西红柿的面积比是3︰2,种西红柿和芹菜的面积比是5︰7,三种蔬菜各种的面积是多少公顷?3、建筑工人在施工中,使用一中混凝土,是由水、水泥、黄沙、碎石搅拌而成的,这四种原料的重量的比是0.7:1:2:4.7,搅拌这种混凝土2100千克,分别需要水、水泥、黄沙、碎石多少千克?4、甲、乙、丙三种货物共有167吨,甲种货物比乙种货物的2倍少5吨,丙种货物比甲种货物的15多3吨,求甲、乙、丙三种货物各多少吨?5、小名出去旅游四天,已知四天日期之和为66,求这四天分别是哪几日?6、小华在日历上任意找出一个数,发现它连同上、下、左、右的共5个数的和为85,请求出小华找的数。
用方程解盈亏问题
用方程解决盈亏问题【例1】三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?【巩固】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?【巩固】老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?【巩固】有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?【例2】猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多只.【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?【巩固】王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?【巩固】工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?【例3】某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?【巩固】学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?【巩固】智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?【例4】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?【巩固】学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?【巩固】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?【巩固】一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?【巩固】实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?【例5】甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?【例6】幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。
人教版七年级上册数学一元一次方程应用题—盈亏问题训练
人教版七年级上册数学一元一次方程应用题—盈亏问题训练1.某玩具工厂出售一种玩具,其成本价为每件28元,如果直接由厂家门市部销售,每件产品售价为35元,同时每月还要支出其他费用2100元;如果委托商场销售,那么出厂价为32元.(1)求在两种销售方式下,每个月销售多少件时,所得利润相等;(2)若每个月销售量达到1000件时,采用哪种销售方式获得利润较多?2.某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问:(1)每件服装的标价是多少元?(2)每件服装的成本是多少元?(3)为保证不亏本,最多能打几折?3.一家商店因换季准备将某种服装打折销售,每件服装如果按标价的五折出售将亏20元,而按标价的八折出售将赚40元.问:(1)每件服装的标价是多少?(2)每件服装的成本是多少?(3)为保证不亏本,最多能打几折?4.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍多15件,2甲、乙两种商品的进价和售价如表:(注:获利=售价-进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?5.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.6.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:(1)超市如何进货,进货款恰好为46000元?(2)为确保乙商品畅销,在(1)的条件下,商家决定对乙商品进行打折出售,且全部售完后,乙商品的利润率为20%,请问乙商品需打几折?7.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?8.某服装店两件衣服都以900元卖出,其中一件赚了15,而另一件亏了15,这两件衣服合在一起是赚了还是亏了?赚或亏了多少?9.商场将甲商品降价40%,乙商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,王老师参加了此次优惠促销活动,购买甲、乙商品各一件共付1000元.请你帮王老师算一算甲、乙两种商品原销售单价各是多少元.10.某校开展校园艺术节系列活动,派张老师到文体商店购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与张老师的对话内容,解答下列问题.商店老板:如果你再多买一个,就可以全部打八五折,花费比现在还省17元!张老师:那就多买一个吧,谢谢!(1)求张老师原计划购买多少个文具袋?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次该商店老板全部给予八折优惠,合计272元.求张老师购买的钢笔和签字笔各有多少支?11.某商场购进了40台甲型号和20台乙型号的扫地机器人,已知每台甲型号扫地机器人的进价比乙型号扫地机器人的进价便宜15%,甲型号扫地机器人每台售价1800元,乙型号扫地机器人每台售价2400元.“春节”期间商场促销,甲型号扫地机器人按原售价销售,乙型号扫地机器人按原售价九折出售.(1)某公司一共花了13680元买了甲、乙两种型号扫地机器人共7台.问该公司甲、乙两种型号扫地机器人各买了多少台?(2)在促销期间,甲、乙两种型号扫地机器人销售一空,甲型号扫地机器人的总利润是乙型号扫地机器人总利润的1.25倍.问甲、乙两种型号扫地机器人每台进价各是多少元?12.在即将到来的“6.18年中大促”活动中,某商场计划对所有商品打折出售.已知某商品的进价是1500元,按照商品标价的八折出售时,利润率是12%,那么该商品的标价是多少元?13.一种节能型冰箱,商家计划按进价加价20%作为售价,为了促销,商家现在按原售价的九折出售了40 台,降价后的新售价是每台2430 元.(1)按照新售价出售,商家每台冰箱还可赚多少元?(2)售完这批冰箱后,商家将购进40 台冰箱的进货款存入银行,存期一年,不扣利息税到期可得人民币92025 元,求这项储蓄的年利率是多少?14.元旦期间,某商场开展促销活动,出售一种优惠购物卡注:(此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的7.5折购物.(1)顾客购买多少元的商品时,买卡与不买卡花钱相等?(2)小王要买一台标价为3400元的电视,如何购买合算?与另一种方式相比,小王能节省多少元钱?(3)在(2)的基础上,小王按合算的方案把这台电视买下,若该商场还能盈利20%,则这台电视的进价是多少元?15.某商场开展优惠促销活动,将甲种商品六折出存,乙种商品八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,问:商场销售甲、乙两种商品各一件时是盈利还是亏损了?具体金额是多少?16.冬季取暖要确保防火安全.为了满足顾客的需要,某购物广场用25000元购进A,B两种新型防火取暖器共50个,这两种取暖器的进价、标价如下表所示:(1)A,B两种新型取暖器分别购进多少个?(2)若A型取暖器按标价的七五折出售,B型取暖器每台在标价的基础上降价75元出售,这批取暖器全部售完后商场共获利4000元,请求出表格中m的值.17.某百货超市经销甲、乙两种服装,甲种服装每件进价50元,售价80元;乙种服装商品每件售价120元,可盈利50%.(1)乙种服装每件进价为____________元;(2)若该商场同时购进甲、乙两种服装共40件,总进价用去2750元,求商场销售完这批服装,共盈利多少?元).张先生上午买了一件标价为320元的羽绒服,到了晚上八点后,超市又推出:先打折,再参与“每满100元减30元”的让利活动,他发现现在购买反而要多付4.4元.问该超市晚上八点后推出的让利活动是先打多少折再进行满减活动的?18.大润发和贵城两家超市相同商品的标价相同,在2022新年即将到来之际,两大超市分别推出如下促销活动:大润发超市:全场均按八五折优惠;贵城超市:购物不超过200元,不给予优惠;超过200元而不超过500元一律打八八折;超过500元时,其中的500元优惠12%,超过500元的部分打八折;(1)当购物总额是多少时,大润发、贵城两家超市实际付款相同?(2)某顾客在贵城超市购物实际付款490元,试问该顾客的选择划算吗?试说明理由.19.元旦前夕,某商场从厂家购进了甲、乙两种商品,甲种商品的每件进价比乙种商品的每件进价少20元.若购进甲种商品7件,乙种商品2件,需要760元.(1)甲、乙两种商品的每件进价分别是多少元?(2)该商场从厂家购进了甲、乙两种商品共80件,所用资金恰好为7400元.则购进甲、乙两种商品各多少件?20.某商场从厂家购进甲、乙两种文具,甲种文具的每件进价比乙种文具的每件进价少20元.若购进甲种文具7件,乙种文具2件,则需要760元.(1)求甲、乙两种文具的每件进价分别是多少元?(2)该商场从厂家购进甲、乙两种文具共50件,所用资金恰好为4400元.在销售时,每件甲种文具的售价为100元,要使得这50件文具销售利润率为30%,每件乙种文具的售价为多少元?。
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练(含解析)
2023-2024年人教版七年级上册数学第三章一元一次方程应用题(销售盈亏问题)训练1.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)2.新华书店准备订购一批图书,现有甲、乙两个供应商,均标价每本40元.为了促销,甲说:“凡来我处购书一律九折.”乙说:“如果购书超出100本,则超出的部分打八折.”(1)若新华书店准备订购150本图书,请分别求出去甲、乙两处需支付的钱数;(2)若新华书店去甲乙两处订购了相同数量的图书并且付了相同数量的钱,请问新华书店去甲乙各定了多少本书?3.某种笔记本的售价为5元/本,如果买100本以上,超过100本部分的,每本售价打八折.(1)甲校和乙校分别买了80本和120本,乙校比甲校多花了多少钱?(2)如果丙校买这种笔记本花了740元,丙校买了多少本?(列方程求解)(3)如果丁校买这种笔记本花了a 元,丁校买了多少本?(a 是20的整数倍)4.某商铺准备在端午节前购进一批肉粽和蜜枣粽,已知肉粽的单价比蜜枣粽的单价多元,且花元购买的肉粽数刚好是花元购买的蜜枣粽数的倍.5202.53001002(2)若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得多少元的利润?(3)在实际销售过程中,超市按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,求乙型号节能灯按预售价售出了多少只?8.晨光文具店分两次购进一款礼品盲盒共70盒,总共花费960元,已知第一批盲盒进价为每盒15元,第二批盲盒进价为每盒12元.(利润销售额成本)(1)求两次分别购进礼品盲盒多少盒?(2)文具店老板计划将每盒盲盒标价20元出售,销售完第一批盲盒后,再打八折销售完第二批盲盒,按此计划该老板总共可以获得多少元利润?(3)在实际销售中,该文具店老板在以(2)中的标价20元售出一些第一批盲盒后,决定搞一场促销活动,尽快把第一批剩余的盲盒和第二批盲盒售完.老板现将标价提高到40元/盒,再推出活动:购买两盒,第一盒七五折,第二盒半价,不单盒销售.售完所有盲盒后该老板共获利润710元,按(2)中标价售出的礼品盲盒有多少盒?9.为了拉动内需,哈尔滨市自10月份开始启动“家电下乡”活动,某家电公司销售给农户的A 型电视机和型电视机在9月份(活动未开启)共售出960台,10月份销售给农户的A 型和型电视机的销量分别比9月份增长,,这两种型号的电视机共售出1228台.(1)9月份销售给农户的A 型和型电视机分别是多少台?(2)如果A 型电视机每台价格是1000元,型电视机每台价格是2000元,根据“家电下乡”的有关政府将按每台电视机价格的给购买电视机的农户补贴,10月份销售给农户的这两种型号共1228台电视机,政府共补贴了多少钱?10.某公司生产某种产品,每件成本价是元,销售价为元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预计下一季度这种商品每件售价会降低.销售量将提高.(1)下一季度每件产品的销售价和销售量各是多少?(2)为了使两个季度的销售利润保持不变,公司必须降低成本,问每件商品的成本应降低=-B B 30%25%B B 3%4006205%10%多少元11.静静超市购进一批魔方,按进价提高40%后标价,为了促销,超市决定打八折出售,这时每个魔方的售价为28元.(1)求每个魔方的进价是多少元?(2)魔方卖出一半后,超市决定将剩下的魔方以3个为一组捆绑销售,分组后恰好没有剩余,每组售价80元,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?12.工业园区某服装厂加工A,B两种款式的学生服共100件,加工A种学生服的成本为每件80元,加工B种学生服的成本为每件100元,加工两种学生服的成本共用去9200元.(1)A、B两种学生服各加工多少件?(2)服装厂将这批学生服送到市场部销售,A种学生服的售价为200元,B种学生服的售价为220元,在销售过程中发现A种学生服的销量不好,A种学生服卖出一定数量后,服装厂决定余下的部分按原价的八折出售,两种学生服全部卖出后,共获利10520元,则A种学生服卖出多少件后打折销售?13.某超市购进一批运动服,按进价提高40%后标价.(1)为了让利于民,增加销量,超市决定打八折(即按标价的80%)出售,超市是亏损了还是盈利了?请说明理由.(2)若每套运动服的售价为140元,在(1)的条件下,超市卖出一半后,正好赶上双十一促销,商店决定将剩下的运动服每3套400元的价格出售,很快销售一空,这批运动服超市共获利7000元,求该超市所购进运动服的进价及数量?14.某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元.(1)请分别计算生产并销售A型车床5台与11台时,工厂的总获利分别是多少?(2)若生产并销售B型车床比生产并销售A型车床获得的利润多70万元,问:生产并销参考答案:1.(1)元(2)选择乙商场购买更合算.【分析】本题考查一元一次方程的应用,有理数混合运算的实际应用,有理数的大小比较,(1)设一个水瓶元,则一个水杯为元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场的费用,比较即可得到结果;正确理解题意,找出题目中的等量关系并列出方程是解题的关键.【详解】(1)解:设一个水瓶元,则一个水杯为元,根据题意得:,解得:,∴(元),∴一个水瓶元,一个水杯是元;(2)选择乙商场购买更合算.理由:在甲商场购买所需费用为:(元),在乙商场购买所需费用为:(元),∵,∴选择乙商场购买更合算.2.(1)去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元(2)当订购200本图书时,去两个供应商处的进货价钱一样【分析】(1)根据题意列式计算即可;(2)列出方程,进行计算即可.【详解】(1)解:由题意得:甲:(元);乙:(元),答:去甲处需支付的钱数为5400元;去乙处需支付的钱数为5600元;40x ()48x -x ()48x -()3448152x x +-=40x =4848408x -=-=408()40582080%288⨯+⨯⨯=()40520528280⨯+-⨯⨯=288280>150400.95400⨯⨯=()40100150100400.85600⨯+-⨯⨯=∴,解得:,答:第二次甲种商品按原价打8折销售.【点睛】此题考查了一元一次方程的应用,弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.7.(1)购进甲型号的节能灯300只,购进乙型号的节能灯400只(2)3500元(3)300只【分析】(1)设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,根据购进700只节能灯的进货款恰好为20000元,列出方程,解方程即可;(2)根据题意列出算式进行计算即可;(3)设乙型号节能灯按预售价售出了y 只,根据购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润3100元,列出方程,解方程即可.【详解】(1)解:设该超市购进甲型号的节能灯x 只,则购进乙型号的节能灯只,由题意,得,解得,所以(只).答:该超市购进甲型号的节能灯300只,购进乙型号的节能灯400只.(2)解:(元).答:若按预售价将甲、乙两种型号的节能灯全部售完,该超市可获得3500元的利润.(3)解:设乙型号节能灯按预售价售出了y 只,由题意,得,解得.答:乙型号节能灯按预售价售出了300只.【点睛】本题主要考查了一元一次方程的应用,解题的关键是根据等量关系列出方程.8.(1)第一次购买了40盒,第二次购买了30盒(2)按此计划该老板总共可以获得320元的利润120050004600y﹣=8y =()700x -()700x -()203570020000x x +-=300x =700700300400x -=-=()()30025204004035150020003500⨯-+⨯-=+=()()()()300252040354004090%353100y y ⨯-+-+-⨯⨯-=300y =程求解;(2)根据总价乘以,列算式计算求解.【详解】(1)解:设9月份销售给农户的型台,则型电视机是台,则:,解得:,,答:9月份销售给农户的型560台,型电视机是400台;(2)(元,答:政府共补贴了51840元.【点睛】本题考查了一元一次方程的应用,根据题意列方程是解题的关键.10.(1)销售价为元,销售量为件(2)元【分析】(1)根据“商品每件售价会降低,销售量将提高”进行计算;(2)由题意可得等量关系:销售利润(销售利润=销售价-成本价)保持不变,列方程即可解得.【详解】(1)解:下一季度每件产品销售价为:(元).销售量为(件);(2)解:设该产品每件的成本价应降低x 元,则根据题意得:解这个方程得:.答:该产品每件的成本价应降低元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.11.(1)魔方的进价是25元(2)该超市共购进四阶魔方1200个【分析】(1)设魔方的进价是元,进价八折售价,列方程并解出即可;(2)设该超市共购进四阶魔方个,根据“商店决定将剩下的魔方以每3个80元的价格出0.03A x B (960)x -()0.30.259601228960x x +-=-560x =960400x ∴-=A B ()1000560 1.32000400 1.250.0351840´´+´´´=)58955000115%10%()62015%589⨯-=()50000110%55000⨯+=[589(400)]55000(620400)50000x --=-⨯⨯11x =11x (140%)⨯+⨯=y当生产并销售A 型车床11台时,总获利是:万元.答:工厂的总获利分别是158万元,161万元.(2)设生产并销售B 型车床x 台,则生产并销售A 型车床台,当时,,不成立;当时,每台B 型车床可以获利万元;由题意得:解得:,(舍去)答:生产并销售B 型车床10台.【点睛】本题考查有理数的四则混合计算的实际应用,一元一次方程的运用,审题,明确数量间的关系是解题的关键.15.(1)每件服装的标价为200元,进价为120元(2)最低能打5折【分析】(1)设标价是x 元,根据题意,列出一元一次方程进行求解即可;(2)设小张最低能打a 折,根据题意,列出一元一次方程进行求解即可.【详解】(1)解:设标价是x 元,由题意,得,解得.即每件服装的标价是200元.进价为(元).答:每件服装的标价为200元,进价为120元.(2)解:设小张最低能打a 折,由题意,得:.解得.答:小张最低能打5折.【点睛】本题考查一元一次方程的应用.读懂题意,找准等量关系,正确的列出方程,是解题的关键.16.(1)购进青菜120斤,则购进瓜类80斤1110(1411)17161⨯+-⨯=()14x -4x ≤()171014271400x x x --=-<4x >()()17421x x ⎡⎤⎣=⎦---()()21101470x x x ---=110x =221x =50%2080%40x x +=-200x =50%2050%20020120x +=⨯+=()()()3002001205003002000.112020000a ⨯-+-⨯⨯-=5a =乙种商品每件的进价是元;∴甲、乙两种商品每件的进价分别是330元、590元.【点睛】此题考查了一元一次方程的应用,正确理解题意列得方程是解题的关键.19.(1)元(2)当每条裤子降价元时达到盈利的预期目标【分析】(1)根据利润(售价进价)数量直接计算即可得到答案;(2)设降价x 元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,(元),∴前条裤子的利润是元;(2)解:设降价x 元,由题意可得,,解得:,答:当每条裤子降价元时达到盈利的预期目标;【点睛】本题考查列代数式与一元一次方程解决销售利润问题,解题的关键是找到等量关系式.20.(1)第一次购进甲种商品50件,则购进乙种商品115件(2)9折【分析】(1)设第一次购进甲种商品x 件,则购进乙种商品件,根据“第一次以4450元购进甲、乙两种商品”列方程求解即可;(2)设第二次甲商品是按原价打m 折销售,根据“第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样”列方程求解即可.【详解】(1)解:设第一次购进甲种商品x 件,则购进乙种商品件,由题意得:,解得,,因此第一次购进甲种商品50件,则购进乙种商品115件.(2)解:设第二次甲商品是按原价打m 折销售,8000.850590⨯-=160002045%=-⨯400(12080)16000⨯-=4001600016000100(12080)8050045%x +⨯--=⨯⨯20x =2045%(215)x +(215)x +2030(215)4450x x ++=50x =21525015115x +=⨯+=。
盈亏问题计算公式+例题分析(打印版)
数学运算:盈亏问题计算公式把若干物体平均分给一定数量得对象,并不就是每次都能正好分完。
如果物体还有剩余,就叫盈;如果物体不够分,就叫亏。
凡就是研究盈与亏这一类算法得应用题就叫盈亏问题。
盈亏问题得常见题型为给出某物体得两种分配标准与结果,来求物体数量与参与分配得对象数量。
由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果得组合,这里以一道典型得盈亏问题对三种情况得几种组合加以说明。
注意:公司中两次每人分配数得差也就就是大分减小分一、基础盈亏问题1、一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数得差)=人数。
例如,“小朋友分桃子,每人10个少9个,每人8个多7个。
问:有多少个小朋友与多少个桃子?”解:(7+9)÷(10-8)=16÷2=8(个)………………人数10×8-9=80-9=71(个)………………………桃子或8×8+7=64+7=71(个)(答略)测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。
2、两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数得差)=人数。
例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。
问:有士兵多少人?有子弹多少发?”解:(680-200)÷(50-45)=480÷5=96(人)45×96+680=5000(发)或50×96+200=5000(发)(答略)测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。
3、两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数得差)=人数。
例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。
有多少学生与多少本本子?”解:(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略)测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。
一元一次方程应用题盈亏问题训练题(含解析)
一元一次方程应用题盈亏问题(含解析)一、单选题(共8题;共16分)1.(2020七上·哈尔滨月考)文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利25%,另一台亏本20%,则两台电子琴卖出后()A. 不赔不赚B. 赔48元C. 赚64元D. 赔80元2.(2020七上·哈尔滨月考)某商贩在一次买卖中,同时卖出两件上衣,售价都是元,若按成本计,其中一件盈利另一亏本在这次买卖中他()A. 不赚不赔B. 赚6 元C. 赔6 元D. 赔4 元3.(2020七上·息县期末)已知某网络书店销售两套版本不同的《趣味数学丛书》,售价都是70元,其中一套盈利,另一套亏本,则在这次买卖中,网络书店的盈亏情况是()A. 盈利15元B. 盈利10元C. 不盈不亏D. 亏损10元4.(2020七上·清涧期末)某超市两个进价不同的书包都卖84元,其中一个盈利,另一个亏本,在这次买卖中,这家超市()A. 不赚不赔B. 赚了4元C. 赚了52元D. 赔了4元5.(2020七上·罗湖期末)某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A. 不赚不亏B. 赚10元C. 赔20元D. 赚20元6.(2020七上·越秀期末)某商店以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,那么商店卖出这两件衣服总的是()A. 亏损10元B. 不盈不亏C. 亏损16元D. 盈利10元7.(2020七上·南海期末)某商场将一种商品以每件60元的价格售出,盈利20%,那么该商品的进货价是()A. 36元B. 48元C. 50元D. 54元8.(2020七上·林西期末)已知某饰品店有两种进价不同的花瓶都卖了120元,其中一种盈利50%,另一种亏损20%,在这次买卖中,这家饰品店()A. 不盈不亏B. 盈利10元C. 亏损10元D. 盈利70元二、填空题(共5题;共5分)9.(2020七上·凤山期末)元旦当天,怡佳商场把品牌彩电按标价的8折出售,仍然获利20% ,若该彩电的进价为3000元,则标价是________元.10.(2020七上·三门峡期末)某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是________.11.(2020七上·科尔沁期末)一家商店某种裤子按成本价提高后标价,又以八折优惠卖出,结果每条裤子获利10元,则这条裤子的成本是________.12.(2020七上·潢川期末)一商店,将某品牌西服先按原价提高,然后在广告中写上“大酬宾,八折优惠”,结果每套西服比原价多赚160元,那么每套西服的原价为________.13.(2019七上·辽阳月考)一商店将某种服装按成本价提高50%标价,又以9折优惠卖出,结果每件仍获利25元,这种服装每件的成本为多少元?设这种服装每件的成本为x元,根据题意列出的方程是________.三、解答题(共4题;共20分)14.(2020七上·弥勒月考)一家商店因换季将某种服装打折出售,如果每件服装按标价的5折出售将亏35元,而按标价的8折出售将赚55元,每件服装标价多少元?15.(2020·如皋模拟)某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏本,还是不盈不亏?16.(2020七上·柳州期末)商店里有某种型号的电视机,每台售价1200元,可盈利,现有一客商以11500元的总价购买了若干台这种型号的电视机,这样商店仍有的利润,问客商买了几台电视机?17.(2020七上·扎鲁特旗期末)一商店把某商品按标价的九折出售仍可获得20%的利润。
列方程解盈亏问题
列方程解盈亏问题
姓名:
例题1:一个植树小组去植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
问这个植树小组有多少人?一共植了多少棵树?
练一练:“雏鹰小队”的同学们参加植树活动。
如果每人栽5棵树,还剩12棵树;如果每人栽7棵树,就缺4棵树。
问这个小队有多少人?一共要栽多少棵树?
例题2:学生春游,租了几条船让学生们划。
如果每条船坐3人,则空出2人的位置;如果每条船坐5人,则空出16人的位置。
问有学生多少人?共租了多少条船?
练一练:五年级绿化小组植树,若每人植树7棵,则多7棵;若每人植树5棵,还多27棵。
问有多少学生参加?共植树多少棵?
例题3、五(1)班同学去玄武湖划船,他们计算了一下,如果增加一条船,每条船正好坐6人;如果减少一条船,每条船正好坐9人。
五(1)班共有学生多少人?
练一练:全班同学分组劳动,每组8人。
劳动中觉得每组人数太少,因而重新编组,每组改为12人,这样减少了2组。
问参加劳动的学生有多少人?
练习:
1、南京某单位向西北地区某村捐赠棉衣若干件,每户5件,还余99件,每户增加2件仍余33件,每户应分多少件才可以少余或不余?
2、幼儿园老师给小朋友分梨.每个小朋友分6个梨,就多出12个梨;每个小朋友分7个梨.就少11个梨.有几个小朋友和多少个梨?
3、少先队员去植树,每人植7棵,余ll棵,后来安排2人每人植6棵,其余每人植8棵,正好植完,问有多少个少先队员?多少棵树?。
初一数学上册一元一次方程盈亏问题6道经典题及答案
初一数学上册一元一次方程盈亏问题6道经典题及答案1、某公司销售甲、乙两种运动鞋,2014年这两种鞋共卖出18000双,2015年甲种运动鞋卖出的数量比2014年增加6%,乙种运动鞋卖出的数量比2014年减少5%,且这两种鞋的总销量增加了200双.求2014年甲,乙两种运动鞋各卖了多少双?解:设去年甲种运动鞋卖了x双,则乙种运动鞋卖了(12200﹣x)双,由题意,得(1+6%)x+(18000﹣x)(1﹣5%)=18000+200,解得:x=10000,∵18000﹣10000=8000,∴乙种球鞋卖了8000双.答:去年甲种运动鞋卖了10000双,则乙种运动鞋卖了8000双.2、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?解:设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?当购买15盒时甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.当购买30盒时甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.3、为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;到甲商场购买所花的费用为:150×100+100(a﹣100/10)=100a+14000(元)到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.4、某商场以每件120元的价格购进某品牌的衬衫500件,以标价每件为180元的价格销售了400件,为了尽快售完,衬衫,商场进行降价销售,若商场销售完这批衬衫要达到盈利42%的目标,则每件衬衫降价多少元?解:设每件衬衫降价x元,(180﹣120)×400+(500﹣400)(180﹣x﹣120)=120×500×42%解得,x=48,答:每件衬衫降价48元.5、某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得:(1+x)(1-5%)=1+14%解得x=1/2=20%答:这个月的石油价格相对上个月的增长率为20%.6、北山超市销售茶壶茶杯,茶壶每只定价20元,茶杯每只4元.超市在“双十一”期间开展促销活动,向顾客提供两种优惠方案:①买一只茶壶赠一只茶杯;②茶壶和茶杯都按定价的90%付款。
盈亏问题-范本模板
第四讲盈亏问题根据一定的数量,分配一定的物品,在两次分配中,一次有余,一次不足,或两次都有余,或两次都不足,这类涉及分配有余或不足的问题,叫盈亏问题。
解题方略:关键在于找出两次分配中数值保持一定的量,弄清盈、亏与两次分得的差之间的关系,运用包含除的原理,求得份数。
在解题时我们一般借助摘录条件法和画图法来分析题中的数量关系.盈亏问题基本数量关系式:(盈+亏)÷二次分配差=份数(大盈—小盈)÷二次分配差=份数(大亏-小亏)÷二次分配差=份数盈适足:一次分配有余,一次正好够分;不足适足:一次分配不足,一次正好够分.例1、学校组织学生去太阳岛活动,如果每船坐65人,则有15人上不了船.如果每船多坐5人,恰好多余了一条船。
问一共有几条船?多少名学生?解析;每船多坐5人也就是每船坐5+65=70(人),恰好多余一条船,说明还差一条船的人,即70人,因而原问题转化为:如果每船坐65人,则有15人坐不上船,如果每船坐70人,则还差70人,求有几条船?多少名学生?这就是典型的盈亏问题了,可求解:(15+70)÷(70-65)=17(条)…………船数65×17+15=1120(人)或70×17-70=1120(人)…………学生数答:一共有17条船,1120名学生。
已知在解盈亏问题时,有时题中没有给出直接条件,那么就需要根据已知条件和题中隐含条件,转化成所需条件,在进行求解.例2、少先队员去植树,如果每人各挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个,其余的人各挖6个树坑,就恰好挖完全部树坑。
问少先队员一共挖了多少个树坑?解析:我们需要把题目中已知“如果其中2人各挖4个树坑,其余的人各挖6个树坑,就恰好挖完全部树坑”。
转化为如果每人都挖6个树坑,那么就可以多挖树坑(6-4)×2=4(个),这样原题就转化为典型的盈亏问题,“如果每人各挖5个树坑,还有3个树坑没人挖;如果每人各挖6个树坑,就可多挖4个树坑"可求解(3+4)÷(6—5)=7(人)…………少先队员人数6×7—4=38(个)…………坑数答:少先队员一共挖了38个树坑。
小学数学应用题-盈亏问题
小学数学应用题-盈亏问题1、【来源】艾迪计划用若干天做一本习题集.如果他每天做5道题,那么最后两天每天要做10道题才能做完;如果他每天做6道题,恰好可以提前一天做完.请问:这本习题集中共有多少道题?2、【来源】广东广州小学高年级五年级上学期单元测试《第14节》复杂的方程应用题第6题旅途中,有一批游客过一条河,如果每只船坐10人,那么还剩4人:如每只船坐12人,那么最后一只船差4人才坐满.你知道这批游客有多少人,共有多少只船吗?3、【来源】 2016年广东深圳五年级模拟考试鹏程杯集训王芳做暑假作业,如果每天做4道题,则按计划时间计算还有48道题未做; 如果每天做6道题,则按计划做完后还有时间多做8道题,暑假作业共有多少道题?计划做几天?4、【来源】贝贝用一根绳子来测量课桌的长度,两折来量,绳子比课桌还长0.6米;三折来量,绳子比桌子短0.1米.绳子长多少米?(用方程解)5、【来源】 2019~2020学年11月四川绵阳涪城区绵阳东辰国际学校六年级上学期周测A卷第15题3分,每人可以分9个还余下7个.则原橘子小朋友分橘子,若每人分8个则差16个,若橘子总数增加14总数为个.6、【来源】东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天最多可以生产多少套这样成套的产品?7、【来源】“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%,“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点.某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3hm2,但是所产油菜籽的总产油量比去年提高3750kg,这个村去年和今年种植油菜的面积各是多少公顷?8、【来源】某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.两种客房各租住了多少间?9、【来源】某服装厂要生产一批学生服,已知3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套学生服?10、【来源】机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?1 、【答案】90.;【解析】设原计划需要x天做完,根据题意列方程得:5(x−2)+10×2=6(x−1)解得x=16,所以共有题6×(16−1)=90道.【标注】 ( 以盈亏问题形式运用方程解应用题 )2 、【答案】游客有44人,共有4只船;【解析】根据游客总数不变,建立方程.解:设有x只船.10x+4=12x−42x=8x=4游客人数:10×4+4=44(人)或12×4−4=44(人)答:这批游客有44人,共有4只船.【标注】 ( 简单的列方程解应用题 )3 、【答案】暑假作业有160道题,计划做28天 .;【解析】(一):设计划做x天,则有暑假作业(4x+48)道题或(6x−8)道题,由此列方程:4x+48=6x−8,解得x =28.4x +48=4×28+48=160,或6x −8=6×28−8=160.(二)设暑假作业有x 题,则按计划x−484天或x+86天完成,由此列方程: x−484=x+86, 解得x =160.x−484=160−484=28或x+86=160+86=28.答:暑假作业有160道题,计划做28天.【标注】 ( 以盈亏问题形式运用方程解应用题 ) ( 以盈亏问题形式运用方程解应用题 ) 4 、【答案】 4.2米;【解析】 设桌子长x 米.2(x +0.6)=3(x −0.1),x =1.5,(1.5+0.6)×2=4.2(米).【标注】 ( 以盈亏问题形式运用方程解应用题 )5 、【答案】 200;【解析】 小朋友分橘子,每人分8个则差16个,设橘子有x 个,则(x +16)÷8=人数,现橘子个数增加14成为x ×(1+14)=54x 个,54x ÷人数=9(个)⋯7(个),所以(54x −7)÷人数=9, (54x −7)÷[(x +16)÷8]=9,54x −7=(x +16)÷8×9,54x −7=98x +18,18x =25,x =200,故原有橘子总数为200个.【标注】 ( 以盈亏问题形式运用方程解应用题 )6 、【答案】 300套.;【解析】 设生产大齿轮的为x 人则生产小齿轮的为(90−x )人,由题意得:20x ×3=15(90−x )×2,解得:x =30,20×30÷2=300(套).答:一天最多可以生产300套这样成套的产品.【标注】 ( 以盈亏问题形式运用方程解应用题 )7 、【答案】 去年:20;今年:17.;【解析】 设去年种植油菜x 公顷,则今年种植油菜(x −3)公顷.则有:整理得:1350(x −3)−960x =3750 先把常数项相乘移项得: 390x =7800 化简一元一次函数x =20,则x −3=20−3=17.即去年种植油菜20公顷,今年种植油菜17公顷.【标注】 ( 以盈亏问题形式运用方程解应用题 )8 、【答案】 三人间8间,两人间13间.;【解析】 设三人间为x ,两人间为y 间,{25×3×x +35×2×y =15103x +2y =50解之得:x=18,y=13∴三人间8间,两人间13间.【标注】 ( 以盈亏问题形式运用方程解应用题 )9 、【答案】360m生产上衣,240m生产裤子,共生产240套.;【解析】设用xm布料生产上衣,则用(600−x)m布料生产裤子,才能恰好配套,2x 3=3(600−x)3,解得:x=360,600−360=240,2×3603=240(套),答:用360m布料生产上衣,则用240m布料生产裤子,才能恰好配套,共能生产240套学生服.【标注】 ( 以盈亏问题形式运用方程解应用题 )10 、【答案】安排12名工人生产大齿轮,则安排15名工人生产小齿轮,才能使每天加工的大小齿轮刚好配套.;【解析】设安排x名工人生产大齿轮,则安排(27−x)名工人生产小齿轮,根据题意列方程:10x×3=12(27−x)×230x=24(27−x)5x=4(27−x)5x=108−4x9x=108∴x=1227−12=15(名).答:安排12名工人生产大齿轮,则安排15名工人生产小齿轮,才能使每天加工的大小齿轮刚好配套.【标注】 ( 以盈亏问题形式运用方程解应用题 )。
用方程解盈亏问的题目
2【解析】由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).
【巩固】学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?
1【解析】“差9本”和“差2本”两者相差 (本),每个人要多发 (本),因此就知道,共有老师 (人),书有 (本).
【巩固】幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?
【例 7】有一些糖,每人分 块则多 块,如果现有人数增加到原有人数的 倍,那么每人 块就少两块,这些糖共有多少块?
【巩固】卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?
【巩固】智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?
【巩固】秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?
1【解析】本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差 (元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费 (元).这样比实际多得 (元).
实际问题与一元二次方程盈亏
这节课我们学习了哪些内容?
小结
1、理解打折、利润、利润率,售 价、进价、标价等概念的含义 2、会用以下公式解决实际问题 利润=售价-进价 售价=标价×折扣
利润 利润率= ×100% 成本
小结:
●商品售价、进价、利润的关系式:
利润 = 售价—进价
●商品进价、利润、利润率的关系:
熟 记 下 列 关 系
50%
;
0.8x 元; (4)原价X元的商品打8折后价格为 (5)原价X元的商品提价40%后的价格为 1.4x 元;
解:设每件服装的成本价为X元,那么
每件服装的标价为: (1+40%)X元 ; 每件服装的实际售价为: 1.4X× 80%元
一家商店将某种服装按成本价提高40% 后标价,又以8折优惠卖出,结果每件仍 获利15元,这种服装每件的成本价是多 少元?
1.某琴行同时卖出两台钢琴,每台售价为960元。 其中一台盈利20%,另一台亏损20%。这次琴行是 盈利还是亏损,或是不盈不亏? 解:设盈利20%的那台钢琴进价为x元,则 x+0.2x=960 得 x=800
设亏损20%的那台钢琴进价为y元,则 y+(-0.2y)=960 得 y=1200
所以两台钢琴进价为2000元,而售价1920元, 进价大于售价,因此两台钢琴总的盈利情况为 亏本80元.
作业:课本108页3、4题
(补充)1、一件夹克按成本价提高50%后标 价,后因季节关系按标价的8折出售,每 件以60元卖出,这种夹克每件的成本价是 多少元? (补充)2、某商品的进价是1000元,售价是 1500元,由于销售情况不好,商店决定降 价出售,但又要保证利润率不低于5%,那 么商店最多可打几折出售此商品?
利润 利润率= ×100% 进价
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题(盈亏
问题)
盈亏问题
例1、幼儿园一个班的小朋友分饼干,如果每人分6块饼干,那么还多出12块;如果每人分8块饼干,那么还差24块饼干。
求幼儿园这个班的小朋友有多少个?饼干共有多少块?练 1、一堆桃子分给一群猴子,如果每只猴子分5个桃子,则桃子剩下30个没分完,如果每只猴子分8个,则刚好分完.求有多少个桃子?多少个猴子?
2、老师将一批练习本发给班上的同学,如果每人发6本,就少94本;如果每人发4本,就少2本。
求班上的人数和所发的练习本数?
3、学校买来一批书奖励三好学生,如果每人奖8本,则剩10本;如果每人奖7本,则剩15本,学校有三好学生多少人?学校共买书多少本?
例2、六(2)班的同学去划船,他们算了一下,如果增加一条船。
正好每条船坐6人;如果减少一条船,正好每条船坐9人。
求原计划准备租()条船?六(2)班有()个同学?
练 1、红山小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
2、用绳子测水池的水深,绳子两折时,余6米,绳子三折时还差4米,求绳子全长和水池的深度?
例3、少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
练园林工人种树,其中有3人分得树苗各4棵,其余的每人分3棵,这样最后余下树苗11棵;如果1人先分3棵,其余的每人分5棵,则树苗恰好分尽。
求人数和树苗的总数?
例3、学校买来一些篮球和排球分给各班,买来的排球个数是篮球的2倍。
如果篮球每班分2个,则多余4个;如果排球每班分5个,则少2个。
求学校买来篮球和排球各多少个?
练幼儿园有梨数是桃子数的2倍,分给幼儿园小朋友,每人分桃5个,最后余下15个;每人分梨14个,则梨数差30个.问幼儿园有桃、梨多少个?
综合练习
1、阅览室买来115本书,其中科幻书是故事书的2倍,故事书比文艺书多5本,这三种书各
多少本?
2、有两根电线,第一根长64米,第二根长52米,剪去同样长后,第一根是第二根的3倍,
则每根电线剪去几米?
3、火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯?
4、同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160
元放入二年级,那么六年级的捐款钱数还比二年级多40元,两个年级分别捐款多少元?5、A、B、C三所小学学生人数的总和为1997人,已知A校学生人数的2倍,B校学生人数减
去3人与C校学生加上6人都是相等的。
求A、B、C三个学校各有学生多少人?
6、面值是2元、5元的人民币共27张,合计99元。
两种面值的人民币各是多少张?
7、一批水泥,用小车装载,要用45辆,用大车装载,只用36辆,每辆大车比小车多装4
吨。
这批水泥共多少吨?
8、某次数学竞赛共20道题,评分标准是每做对一道得5分,每做错一道倒扣1分,刘量参加
了这次竞赛,得了64分。
刘量做对了多少道题?
9、有8个谜语让60人猜,猜对共338人次。
每人至少猜对3个,猜对3个的油6人,猜对4
个的10人,猜对5个和7个的人数同样多,8个全猜对的有多少人?
10、父子二人现在的年龄和是46岁,儿子13岁。
几年后,父亲年龄是儿子年龄的2倍?
11、叔叔比小华大18岁,明年叔叔的年龄是小华的3倍,小华今年几岁?
12、阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那
么就缺4块饼干.问有多少小朋友,有多少块饼干?
13、小强由家里到学校,如果每分钟走60米,正好准时到达学校;如果每分钟走70米,就
可以比上课时间提前2分钟到校.小强家到学校的路程是多少米?
14、用一根绳子测量井的深度,如果将绳两折时,多5米,;如果绳子3折时,差4米,绳子长?
米,井深?米.
15、少先队员去植树.如果每人种5棵,还有32棵没人种;如果其中10人各种4棵,其余
的人各种8棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
16、苹果个数是梨子数的3倍,如果每天吃2个梨和5个苹果,当梨吃完时,苹果还剩20
个。
问梨和苹果各有多少个?。