反常积分审敛法

合集下载

同济高等数学第六版-D5_5反常积分审敛法

同济高等数学第六版-D5_5反常积分审敛法

满足
limxpf(x)l
x
则有: 1) 当 p1,0l 时af(x)dx收敛 ;
2) 当 p1,0l 时af(x)dx发散 .
证: 1) 当p1时, 根据极限定义, 对取定的 0,当 x 充
分大时, 必有 xpf(x)l, 即
0
f
(x)

M xp
2) 当 q1,0l 时,abf(x)dx发散 .
例5. 判别反常积分 13ldnxx的敛散性 .
解: 此处 x1为瑕,利点 用洛必达法则得
lim(x1) 1 lim 1 1
x1
lnx
x 1
1 x
根据极限审敛法2 , 所给积分发散 .
定理4 目录 上页 下页 返回 结束
(M l)
可见 af(x)dx收敛 ;
目录 上页 下页 返回 结束
2) 当p1时,可取 0,使 l0,(l 时用任意
数 N代l替 ),必有
xpf(x)l

f
(x)

l
xp
N x
(Nl)
可见 af(x)dx发散 .
注意: xl im xpf(x)xl im f(1x) 此极限的大小刻画了
1 3 x4

1
4
x3
由比较审敛法 1 可知原积分收敛 .
思考题:
讨论反常积分
13
1 dx x3 1
的收敛性
.
提示: 当 x≥1 时, 利用
1 1 1 3x31 3(x1)3 x1
可知原积分发散 .
目录 上页 下页 返回 结束
定理4. (极限审敛法1) 若 f( x ) C [ a , ) ,且 f( x ) 0 ,

第五节 反常积分的审敛法 Γ函数

第五节  反常积分的审敛法 Γ函数

第五节* 反常积分的审敛法 函数
二、无界函数的反常积分的审敛法
第五节* 反常积分的审敛法 函数
由上节

例6 证明知反,常反积常分积分b
q
1
时发散b .
a(
x
dx a)q
a
,
(
x
dx a)
q
当 0< q <1 时收敛
当 0< q <1证时明收敛当,当q =q1时1 ,时发散. 于是有下面两个
b
f (x)dx 发散.
a
第五节* 反常积分的审敛法 函数
定理7(极限审敛法2) 设函数 f (x) 在区间(a , b] 上
连续,且 f (x) 0,x = a 为 f (x) 的瑕点.
(1) 如果存在常数 0 < q < 1,使得 lim (x a)q f (x) xa
连续,且 f (x) 0 , x = a 为 f (x) 的瑕点.
(1) 如果存在常数 M > 0 及 q < 1,使得
f
(x)
(x
M a)q
(a x b) ,
则反常积分 b f (x)dx 收敛;
a
(2) 如果存在常数 N > 0 ,使得 f (x)
N
(a x b) ,
xa
则反常积分
aa
gg
((
xx))ddxx
收收敛敛,,则则
aa
gg
((
xx))ddxx
发发散散,,则则
证明
设 0< t < +,由 0 g (x) f (x) 及
g ( x)dx
a
收敛,得
t
t

反常积分的审敛法

反常积分的审敛法

例1 判别反常积分 ∫ 1
+∞
dx
3
x4 + 1
的收敛性 .
解 ∵当 x ∈ [1,+∞ ) 时 ,
0<
1
3
<
+∞ 1
1
3
x +1
3
4
4 = , p = > 1, 4 3 x4 / 3 x
1
收敛.
∴ 反常积分 ∫
dx x4 + 1
(比较审敛法1)
定理 4 ( 极限审敛法1) 设函数 f ( x ) 在区间 [a ,+∞ ) (a > 0) 上连续,且 f ( x ) ≥ 0. 如果存在常数 p > 1,使得 lim x p f ( x ) 存在,
判别反常积分

3
1
dx 的收敛性 . ln x
1 ∵ lim = + ∞ ∴ x = 1是瑕点 x →1+ lnx
1 x −1 lim ( x − 1) = lim + x →1 x →1+ ln x ln x
0 ( )型 0
= lim +
x →1
= 1 > 0, 3 dx ∴ 反常积分 ∫ 发散 . (极限审敛法2) 1 ln x
1.递推公式 Γ( s + 1) = sΓ( s ) ( s > 0).
证明 Γ( s + 1) =
+∞ −x s 0

+∞
0
e x
+∞ 0 +∞
−x
( s + 1 ) −1
dx
−x
= ∫ e x dx = ∫ = [ x ( −e )]

反常积分极限审敛法

反常积分极限审敛法

反常积分极限审敛法
反常积分极限审敛法(FFTLL)是一种有效的用于快速求解非线性和复杂问题的工程数学方法。

有着持续发展的历史,它被广泛应用于解决各种复杂问题,在工程上取得了巨大的成功。

一、FFTLL的历史
反常积分极限审敛法(FFTLL)最初由1960年代的S.U.N.E.T.公司开发。

它被认为是最早应用于快速求解复杂问题的方法之一。

此方法依靠积分来解决复杂系统和分析,使积分理论可以应用于工程设计和操作。

在此方法完成之前,快速求解复杂问题的能力基本上依赖于分析和研究者的计算能力。

二、FFTLL的工作原理
反常积分极限审敛法(FFTLL)所采用的基本原理是“逆特征转换”,这是一种用于复杂系统的仿真的数学技术。

在这种方法中,采样的系统被模拟出来,并从系统的控制前提进行分析,比如函数,极限和求解问题。

该方法用于求解复杂问题,尤其是非线性系统,使用简单的算法,通过反运算来求解问题。

三、FFTLL的应用
FFTLL由于其计算简单及计算效率高的特点,已经被广泛应用于各种领域上,如机械设计、精密加工、控制系统、飞行器设计、太空探索等领域。

此外,它的应用也不断拓展,其中最有趣的应用是在惯性导航系统中,它可以被普遍应用于求解非线性控制系统相关问题。

四、FFTLL的优缺点
FFTLL技术被认为是求解一些复杂问题最有效的方法之一,它可以快速准确的求解一些复杂的问题。

另一方面,它也有一些优点,比如操作简单,程序实用,计算效率高,是一种经济高效的解决方法。

而FFTLL存在的一个缺点就是由于其反特征转换的机制,它往往只能进行有限数量的反复积分来模拟系统,这在一定程度上会限制它的模拟精度。

反常积分审敛法-精品文档

反常积分审敛法-精品文档
x

a
f ( x)dx 收 敛 ;
x
如 果limxf ( x) d 0 (或 limxf ( x) ), 则
x


af ( x)dx 发Fra bibliotek散 .
证明
dx 的收敛性 . 例2 判别反常积分 2 1 x1 x 1 2 解 lim x 1 , p21 2 x x1 x
F (x )在 [a , )上是单调增加的 .
F (x ) 在 [ a , ) 上有上界
lim F (x ) 存在 (极限的存在准则)
x x
即 lim 存在 f(t)dt
x a

收敛 f(x)dx
a
程序设计 网络课件 教学设计 多媒 体课件 PPT文档
f(x ) dx 发散 a 1 特别地,取 g( x ) p ,即得下面的 x
网络课件 教学设计 多媒 比较审敛法. 程序设计体课件 PPT文档

定理 3 (比较审敛法1 ) 设函数 f ( x) 在区间 [a, ) (a 0) 上连续,且 f ( x) 0. 如果存在常数 M 0 及 p 1 ,使得

arctan x 例4 判 别 反 常积 dx 分 的收 . 敛性 1 x arctan x x lim arctan x 解 lim 0 x x x 2
定理 2 ( 比较审敛原 ) 理 设函数 f (x)、 g(x) 在 区 间 [a, )上 连 续 、 非 , 负
如果 f (x) g(x),(a x ),并 且 a g(x)dx收 敛 , 则a f (x)dx也 收 敛 ; 如 f( 果 x) g(x),(a x ), 并且 则 f (x)dx也 发 散 . a g(x)dx发 散 , a

反常积分极限审敛法

反常积分极限审敛法

反常积分极限审敛法反常积分极限审敛法(IntegralLimitComparisonTest)是一种常用的数学分析方法,可以用来判断一个无穷级数的收敛性质以及它的收敛情况如何。

它是一种非常重要的定理,有助于我们解决无穷级数的问题。

反常积分极限审敛法(Integral Limit Comparison Test)是一种在数学分析中有着重要应用的定理,它可以根据一般情况下的某个无穷级数的收敛性质,对比另一个无穷级数,从而实现对两个无穷级数的收敛性质的比较。

其基本原理是,如果一个无穷级数的某项分母大于另一无穷级数的某项分母,且比值的反常积分不等于零,则该级数收敛。

反常积分极限审敛法的具体步骤是使用经典反常积分技术,先将待证明的无穷级数和另一个已知收敛的无穷级数,比如收敛正项级数,列出来,然后将它们做出比较,比较的结果若为恒等式,则证明无穷级数收敛;若为大于等于式,则证明无穷级数收敛;若为小于等于式,则证明无穷级数可能收敛,但不一定收敛;最后,通过对比反常积分的值,可以得出有关无穷级数收敛性质的最终结论。

反常积分极限审敛法具有很多优势,其中最主要的优势就是可以用来判断一个无穷级数的收敛性质及其如何收敛,只要满足其在无穷级数上的充要条件,就可以得出有关的结论。

另外,由于反常积分的某一项收敛性质被推广到一般情况,因此可以比较一般情况下的无穷级数的收敛性质,而不是只比较其特殊情况下的收敛情况。

最后,通过反常积分极限审敛法,可以有效解决无穷级数的问题,从而提高研究的效率。

综上所述,反常积分极限审敛法是一种非常重要的定理,在数学分析中有着十分重要的应用,它可以用来判断一个无穷级数的收敛性质以及它的收敛情况如何,并可以有效的解决无穷级数的问题,提高研究的效率。

然而,同时也要根据实际情况,审慎选择反常积分极限审敛法,以期获得比较准确的研究结果。

反常积分判敛的三种方法

反常积分判敛的三种方法

反常积分判敛的三种方法反常积分在数学中有着重要的地位,但有的反常积分发散,有的反常积分收敛。

那么,如何判断反常积分是否收敛呢?本文介绍三种判断反常积分是否收敛的方法。

一、比较判别法比较判别法是判断反常积分是否收敛的基本方法之一。

对于形如$\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若存在一个正函数 $g(x)$,使得当 $x \geq a$ 时有 $f(x) \leq g(x)$,且$\int_{a}^{+\infty}g(x)\text{d}x$ 收敛,则原积分收敛;若$\int_{a}^{+\infty}g(x)\text{d}x$ 发散,则原积分也发散。

同理,对于形如 $\int_{-\infty}^{a}f(x)\text{d}x$ 的反常积分,只需将“$x \geq a$” 替换为“$x \leq a$”,“$\leq$” 替换为“$\geq$” 即可。

二、极限判别法极限判别法是另一种判断反常积分是否收敛的方法。

对于形如$\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若极限 $\lim_{x \rightarrow +\infty} xf(x) = A$ 存在且有限,则积分收敛;若极限不存在或为无穷大,则积分发散。

对于形如 $\int_{-\infty}^{a}f(x)\text{d}x$ 的反常积分,则需将“$x \rightarrow +\infty$” 替换为“$x \rightarrow -\infty$”。

三、绝对收敛判别法绝对收敛判别法是在比较判别法的基础上引出的判定方法。

对于形如 $\int_{a}^{+\infty}f(x)\text{d}x$ 的反常积分,若$\int_{a}^{+\infty}|f(x)|\text{d}x$ 收敛,则原积分绝对收敛;反之,若 $\int_{a}^{+\infty}|f(x)|\text{d}x$ 发散,则原积分发散。

反常积分极限审敛法

反常积分极限审敛法

反常积分极限审敛法
反常积分极限审敛法(infinitesimalnormalintegrals,INI)是一种用于数学计算的极限处理方法,可以用来计算无穷级数的极限、积分、微积分以及积分变换的表达式。

它可以改善数学计算的速度,减少计算的时间和空间。

INI是一种基于几何学极限理论的数值计算方法,可以对数值系统中无穷级数求极限,并可以进行无穷级数的积分求值。

反常积分极限审敛法主要是使用紧凑方案实现多维反常积分、无限级数求极限以及积分变换等操作,以及针对椭圆和抛物面等复杂曲面的积分求值。

INI的基本原理是,在坐标空间中定义一组均匀的虚拟小网格,以虚拟小网格边界为界,绘制出一组分割的小网格,其中的每个小网格都由一组函数值组成,这些函数值的计算可以采用积分的方法完成。

然后通过积分极限的方法,求出无穷级数的极限,从而求出积分变换表达式。

在有限维空间中,INI可以极大程度地提高计算效率,可以以较低的计算时间实现较高精度的极限求解和控制。

此外,INI的优势在于在多维空间中也可以实现较快的计算,而不需要耗费大量的计算时间,也不受精度的限制。

INI在实际应用中有着广泛的用途,可以用于特征提取、状态估计、机器学习、信号处理等领域。

同时,对于微分方程常见的解析方法,INI也能提供一种数值计算方法,具有较高的解析精度和准确性。

最后,INI也可以用于包括智能控制、智能工业、智能建筑等场景。

总之,反常积分极限审敛法是一种用于计算无穷级数的极限、积分和微积分等表达式的极限处理方法,它可以提高计算效率,减少计算的时间和空间,并有广泛的应用。

反常积分极限审敛法的应用可以提高计算精度和准确性,为实现各种智能技术提供一种高效的数值计算方法。

反常积分审敛法

反常积分审敛法

反常积分审敛法
反常积分审敛法是一种研究微分方程未知函数的求解方法,它通过将未知函数一次积分拆分成一系列已知函数的求积数来求解这些未知函数,从而实现未知函数的求解。

反常积分审敛法是一种重要的求解微分方程未知函数的经典方法,是近代数学家们普遍采用的重要解析方法。

二、基本原理
反常积分审敛法以未知函数为准绳,以不变量的积分为目的,将相关的微分方程的一次积分拆分为一系列未知函数的求积数,从而将未知函数求解的原问题转化为反常积分审敛法的求解问题,即估计其积分常数,从而得到未知数。

三、过程步骤
反常积分审敛法的求解过程由以下几步构成:
(1)确定求解方程的形式。

将微分方程按照一般的习惯和规则统一化,常用的形式为普通微分方程和关联微分方程,常用的积分参数为时间t、位置x和其他形式的变量;
(2)写出相关的微分方程,根据其中的量确定求解的未知函数;
(3)确定积分常数的估值法,通常采用隐式函数定理方法;
(4)运用反常积分审敛法计算出未知积分常数,得到未知函数的解;
(5)验证此解是否正确,如果不正确,可重新根据估值法计算,直到未知函数的解得到正确验证。

四、应用实例
反常积分审敛法在实际问题中应用广泛,如在简谐振荡问题中,使用反常积分审敛法可以得出简谐振荡器的解析解;在光学干涉中,可以用反常积分审敛法求出空间干涉图;在流体动力学等研究中,可以使用反常积分审敛法计算粘性系数;在抛物线和椭圆等圆周率的研究中,可以使用反常积分审敛法求出对应的参数。

五、结论
反常积分审敛法是一种重要的求解复杂微分方程未知函数的解
析方法,它采用一次积分拆分的方式,将未知函数的求解问题转化成求函数积分常数的问题,解决了微分方程求解的一类重要问题,具有重要的实际意义。

反常积分的审敛法

反常积分的审敛法

反常积分的可积性
定义:如果函数在区间上的积分存在,则称该函数在该区间上可积 性质:可积函数在其定义域内的积分等于其不定积分在区间上的增量 判断方法:通过定积分、不定积分、级数等方法判断函数是否可积 应用:在数学、物理等领域中有着广泛的应用,如计算面积、体积等
反常积分与连续函数的关系
反常积分收敛时,其极限值 可能为无穷小
反常积分与正常积分的区别
积分范围:反常积分在无穷区间或有限区间上积分,正常积分在有限区间上积分 积分性质:反常积分可能存在奇点或无界,正常积分无奇点或有界 积分收敛性:反常积分可能存在收敛或发散的情况,正常积分总是收敛的 积分结果:反常积分的积分结果可能存在极限或无穷大的情况,正常积分的结果总是有限的
物理学:反常积分在量子力学和热力学等领域有广泛应用,例如计算粒子在有限空间内的分布 情况
金融学:反常积分在金融领域用于计算风险价值和预期收益等指标
在概率论和统计学中的应用
反常积分可用 于计算概率分
布函数
反常积分可用 于计算随机变 量的期望和方

反常积分在统 计推断中的应 用,如参数估 计和假设检验
积分审敛法
定义:反常积分 审敛法是指通过 判断反常积分的 敛散性,来确定 函数在无穷区间 上的积分是否收 敛的方法。
分类:根据积分 的不同性质,反 常积分审敛法可 以分为比较审敛 法、Cauchy审 敛法和Dirichlet 审敛法等。
应用:反常积分 审敛法在数学、 物理和工程等领 域有着广泛的应 用,是研究函数 积分的重要工具 之一。
反常积分审敛法的改进方向
引入更精确的收敛 性判别方法
优化积分计算的数 值稳定性
拓展审敛法在复杂 积分中的应用
深入研究不同类型 反常积分的审敛特 性

5.5 反常积分的审敛法

5.5 反常积分的审敛法

3 2
根据极限审敛法 , 该积分发散 .
5.5 反常积分的审敛法
函数
二、无界函数反常积分的审敛法
无界函数的反常积分可转化为无穷限的反常积分 . 由定义 例如
1 令 x a , 则有 t b f ( x) d x lim
a
f ( x) d x a f ( x) d x lim 0 a
函数
这表明左端的积分可用 函数来计算. 例如,
5.5 反常积分的审敛法 四、内容小结
函数
1. 两类反常积分的比较审敛法和极限审敛法 .
2. 若在同一积分式中出现两类反常积分, 可通过 分项使每一项只含一种类型的反常积分, 只有 各项都收敛时, 才可保证给定的积分收敛 . 3. 函数的定义及性质 .
根据极限审敛法, 椭圆积分收敛 .
5.5 反常积分的审敛法
函数
三、 函数
1. 定义5.4 函数
( s )
s 1 x x e 0
d x ( s 0)
下面证明这个特殊函数在 s 0 内收敛 .令
I1
ቤተ መጻሕፍቲ ባይዱ
1) 讨论 I1 . 当s 1时, I1 是定积分 ; 1 1 1 s 1 x 当0 s 1时, x e 1 s x 1 s x e x 而1 s 1, 根据比较审敛法知 I1 收敛 .
函数
的敛散性 .

由比较审敛法可知原积分收敛 .
5.5 反常积分的审敛法 例2 判别反常积分
函数
1
1

dx x 1 x2
2
的敛散性 .

lim x
x
2
x 1 x

反常积分 的审敛法

反常积分 的审敛法

第11章 反常积分§11. 1 反常积分的概念一 基本内容一、无穷限反常积分定义 1 设函数()f x 在[, )a +∞上有定义,且在任意区间[, ]a u 上可积,如果lim()d uau f x x→+∞⎰存在,则称此极限为()f x 在[, )a +∞上的反常积分,亦称为()f x 在[,)a +∞上的无穷限反常积分,简称无穷限积分,记作 ()d af x x+∞⎰.ie ()d lim ()d ua au f x x f x x+∞→+∞=⎰⎰:,此时并称 ()d a f x x+∞⎰收敛.如果极限不存在,则称 ()d af x x+∞⎰发散.同理可定义 ()d lim()d bbuu f x x f x x-∞→-∞=⎰⎰, ()d ()d ()d a af x x f x x f x x+∞+∞-∞-∞=+⎰⎰⎰,几何解释如图.()d af x x+∞⎰收敛是指图中阴影区域的 面积存在.二、瑕积分定义 2 设函数()f x 在(, ]a b 上有定义,且在点a 的任一右邻域内无界,而在[, ](, ]u b a b ⊂上有界可积,如果 lim ()d buu a f x x +→⎰存在,则称此极限为无界函数()f x 在上(, ]a b 的反常积分,记作 ()d baf x x⎰,ie ()d lim ()d bbauu af x x f x x+→=⎰⎰:,并称 ()d baf x x⎰收敛,否则称其发散.其中a 称为瑕点.无界函数的反常积分亦称为瑕积分.同理可得b 为瑕点时, ()d lim ()d bu a a u b f x x f x x-→=⎰⎰.当()f x 的瑕点(, )c a b ∈,则定义()d ()d ()d bcbaacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d u bauu cu cf x x f x x -+→→=+⎰⎰.若, a b 都是()f x 的瑕点,则定义()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰lim ()d lim ()d c uucu au bf x x f x x+-→→=+⎰⎰.二 习题解答1 讨论下列无穷积分是否收敛?若收敛,则求其值 (1)2d x xe x+∞-⎰;解:由于2201d (1)2ux u xe x e --=--⎰,21limd 2ux u xe x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(2)2d x xe x+∞--∞⎰;解:由于22 01d (1)2x u uxe x e -=--⎰21limd 2x ux xe x -→-∞=-⎰而2220d d d 0x x x xe x xe x xe x +∞+∞----∞-∞=+=⎰⎰⎰所以该反常积分收敛,且收敛于0.(3)0x +∞⎰;解:由于21ux ⎛⎫= ⎝⎰,lim 212u →+∞⎛⎫= ⎝.所以该反常积分收敛,且收敛于2.(4) 2 11d (1)x x x +∞+⎰;解:由于22 111111d d (1)1uu x x x x x x x ⎛⎫=-+ ⎪++⎝⎭⎰⎰11111ln 1ln ln 2ux u x x u u ++⎛⎫=-+=-+- ⎪⎝⎭.2 11limd 1ln 2(1)uu x x x →+∞=-+⎰.所以该反常积分收敛,且收敛于1ln 2-.(5) 2 1d 445x x x +∞-∞++⎰;解:由于 22 0 0111d d(21)4452(21)1u u x x x x x =+++++⎰⎰011arctan(21)arctan(21)228|u x u π=+=+-2 01lim d 445488uu x x x πππ→+∞=-=++⎰,0 022 111d d(21)4452(21)1u u x x x x x =+++++⎰⎰ 011arctan(21)arctan(21)282|u x u π=+=-+02 1lim d 44584u u x x x ππ→-∞=+++⎰所以该反常积分收敛,且收敛于2π.(6) 1sin d x e x x+∞-⎰;解:由于 11sin d [1(sin cos )]2ux ue x x e u u --=-+⎰,11lim sin d 2ux u e x x -→+∞=⎰.所以该反常积分收敛,且收敛于12.(7) sin d x e x x+∞-∞⎰;解:由于 01sin d [1(sin cos )]2uxu e x x e u u =-+⎰,1limsin d ux u e x x →+∞=∞⎰.所以该反常积分发散. (8)1x +∞⎰.解:由于 1ln(u x u =+⎰,1limuu x →+∞=+∞⎰.所以该反常积分发散.2 讨论下列瑕积分是否收敛?若收敛,则求其值(1) 1d ()b p a x x a -⎰; 解:由于x a =为瑕点,而11 ()1()11d 11()ln()ln()1p p b p u b a u a p x p px a b a u a p --⎧---≠⎪=--⎨-⎪---=⎩⎰,1 ()11lim d 1()1pb p u u a b a p x p x a p +-→⎧-<⎪=-⎨-⎪∞≥⎩⎰,所以1p <时,该瑕积分收敛,且值为1()1pb a p ---; 所以1p ≥时,该瑕积分发散.(2) 1201d 1x x -⎰;解:由于1x =为瑕点,而u2011d [ln(1)ln(1)]12x u u x =+---⎰,u2011lim d 1u x x -→=∞-⎰.所以该瑕积分发散.(3)2x⎰;解:由于1x =为瑕点,而2(1uux x ==⎰⎰,1lim 2uu x -→=⎰.同理21lim 2uu x +→=⎰,所以该瑕积分收敛,且值为4.(4)1x ⎰;解:由于1x =为瑕点,而1u x =⎰1lim 1uu x -→=⎰所以该瑕积分收敛,且值为1. (5)1ln d x x⎰;解:由于0x =为瑕点,而1ln d 1ln ux x u u u=-+-⎰,1lim ln d 1uu x x +→=-⎰.所以该瑕积分收敛,且值为1-. (6)x ⎰;解:令2sin x t =,则cos dx t t t=⎰⎰2220 02sin d(1cos2)d2t t t tπππ==-=⎰⎰,所以该瑕积分收敛,且值为2π.(7)1x⎰;解:令2sinx t=,则12x tπ=⎰⎰22d tππ==⎰.所以该瑕积分收敛,且值为π.(8)11d(ln)pxx x⎰.解:由于0x=,1为瑕点,又11(ln)111d(ln)ln ln1ppx C ppxx xx C p-⎧+≠⎪-=⎨⎪+=⎩⎰,而1p=时,1limlnlnxx-→=∞,1p<时,11lim(ln)1pxxp+-→=∞-1p>时,111lim(ln)1pxxp--→=∞-所以p R∀∈,瑕积分11d(ln)pxx x⎰发散.3 举例说明:瑕积分()dbaf x x⎰收敛时,2()dbaf x x⎰不一定收敛.解:例如x⎰收敛于2π,但1d1xxx-⎰发散.4 举例说明:积分()daf x x+∞⎰收敛,且()f x在[,)a+∞上连续时,不一定有lim()0xf x→+∞=.解:例如+41sin dx x x∞⎰.因令x=+ +41 11sin d4x x x t∞∞=⎰⎰.所以 +4 1sin d x x x∞⎰收敛,且4()sin f x x x =在[,)a +∞上连续,但lim ()x f x →+∞不存在.5 证明:若 ()d af x x+∞⎰收敛,且lim ()x f x A→+∞=存在,则0A =. 证:假设0A ≠,不妨设0A >,因lim ()x f x A→+∞=,所以0M ∃>,()2Ax M f x ∍>⇒>“”.于是 ()d ()2uMAf x x u M >-⎰,从而lim()d uMu f x x →+∞=∞⎰.此与 ()d af x x+∞⎰收敛矛盾,故0A =.6 证明:若()f x 在[,)a +∞上可导,且()d af x x+∞⎰与()d af x x+∞'⎰都收敛,则li m ()0x f x →+∞=.证:因为()d ()()u af x x f u f a '=-⎰,所以由()d af x x+∞'⎰都收敛知lim ()x f x →+∞存在,故由上一题知lim ()0x f x →+∞=.§11. 2 无穷限积分的性质与收敛判别一 基本内容一、无穷限积分的性质 由无穷限积分的定义知()d af x x+∞⎰收敛lim()d uau f x x→+∞⇔⎰存在;由极限的柯西收敛准则知lim()d uau f x x→+∞⎰存在0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.定理1()d af x x+∞⎰收敛0,,G a ε⇔∀>∃≥2112 ,()d u u u u G f x x ε∍>⇒<⎰“”.性质1 若 1 ()d ,af x x +∞⎰ 2 ()d af x x+∞⎰都收敛,则12,k k ∀,[] 1111()()d ak f x k f x x +∞+⎰也收敛,且[] 11111122 ()()d ()d ()d a aak f x k f x x k f x x k f x x+∞+∞+∞+=+⎰⎰⎰.性质2 若,()u a f x ∀>在[, ]a u 上可积,则b a ∀>, ()d af x x+∞⎰与 ()d bf x x+∞⎰同收同发,且()d ()d ()d b aabf x x f x x f x x+∞+∞=+⎰⎰⎰.性质3 若,()u a f x ∀>在[, ]a u 上可积,则()d af x x+∞⎰收敛()d af x x+∞⇒⎰收敛,且()d ()d aaf x x f x x+∞+∞≤⎰⎰.定义1 如果 ()d af x x+∞⎰收敛,则 ()d af x x+∞⎰称绝对收敛.二、比较判别法比较判别法仅应用于绝对收敛的判别. 由于()()d uaF u f x x=⎰单调上升,所以,()d af x x+∞⎰收敛()()d ua F u f x x⇔=⎰有上界.定理2 若,(),()u a f x g x ∀>在[, ]a u 上可积,且,()()x a f x g x ∀>≤,则 ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛;而 ()d af x x+∞⎰发散()d ag x x+∞⇒⎰发散.推论 (比较判别法的极限形式)若,(),()u a f x g x ∀>在[, ]a u 上可积,, ()0x a g x ∀>>,且()lim()x f x cg x →+∞=, 则(1) 0c <<+∞ ()d af x x+∞⇒⎰与 ()d ag x x+∞⎰同收同发; (2) 0c =时, ()d ag x x+∞⎰收敛()d af x x+∞⇒⎰收敛; (3) c =+∞时, ()d ag x x+∞⎰发散()d af x x+∞⇒⎰发散.当选用 11d p x x+∞⎰为比较“尺子”时,则得下面的柯西判别法.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]a u 上可积,则 1(1) ()p f x x ≤,且1p >时, ()d a f x x+∞⎰收敛;1(2) ()pf x x ≥,且1p ≤时, ()d a f x x +∞⎰发散.定理'3(柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]a u 上可积,且lim ()p x x f x λ→+∞=,则(1) 0λ≤<+∞,且1p >时, ()d af x x +∞⎰收敛; (2) 0λ<≤+∞,且1p ≤时, ()d af x x+∞⎰发散.三、狄立克雷判别法与阿贝尔判别法 此法是对一般无穷限积分的敛散性判别. 定理4 (狄立克雷判别法) 若,()()d uau a F u f x x∀>=⎰有界,()g x 在[,)a +∞上单调,且lim ()0x g x →+∞=,则()()af xg x dx+∞⎰收敛.定理 5 (阿贝尔判别法) 若()d af x x+∞⎰收敛,()g x 在[,)a +∞上单调有界,则()()d af xg x x+∞⎰收敛.二 习题解答1 设()f x 与()g x 是定义在[,)a +∞上的函数,u a ∀>,()f x 与()g x 在[,]a u 上可积,证明:若2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,则 ()()d af xg x x+∞⎰与 2 [()()]d af xg x x+∞+⎰亦收敛.证:(1) 因为t R ∀∈,()2()()0tf x g x -≥,从而()2()()d 0a tf x g x x +∞+≥⎰, 即222()d 2()()d ()d 0aaat f x x t f x g x x g x x +∞+∞+∞-+≥⎰⎰⎰.故由判别式为负得()2222()()d 4()d ()d 0aaaf xg x x f x x g x x +∞+∞+∞-≤⎰⎰⎰.即()222()()d ()d ()d aaaf xg x xf x xg x x+∞+∞+∞≤⎰⎰⎰.而 2()d a f x x +∞⎰,2()d a g x x+∞⎰收敛, 所以 ()()d a f x g x x +∞⎰收敛.又2 [()()]daf xg x x +∞+⎰2()d af x x +∞=⎰2()()af xg x x +∞+⎰2()d a g x x+∞+⎰,所以2 [()()]d af xg x x+∞+⎰收敛.证:(2) 因为 2 ()d af x x+∞⎰与 2 ()d ag x x+∞⎰都收敛,所以22 ()()d 2af xg x x+∞+⎰收敛.而 22()()()()2f x g x f x g x +≤,故 ()()d a f x g x x+∞⎰绝对收敛,亦收敛.又2 [()()]d af xg x x+∞+⎰22 ()d 2()()d ()d aaaf x x f xg x x g x x+∞+∞+∞=++⎰⎰⎰.所以由四则运算知 2 [()()]d af xg x x+∞+⎰收敛.2 设()f x 、()g x 、()h x 是定义在[,)a +∞上的三个连续函数,且()()()f x g x h x ≤≤,证明(1) 若 ()d a f x x+∞⎰, ()d a h x x+∞⎰都收敛,则 ()d a g x x+∞⎰也收敛;证:因为()()()f x g x h x ≤≤,所以u a ∀>,()d uaf x x ⎰()d u ag x x ≤⎰ ()d uah x x≤⎰.而()d af x x+∞⎰, ()d ah x x +∞⎰都收敛,所以 lim()d uau f x x →+∞⎰, lim()d ua u h x x→+∞⎰都存在,从而 lim()d uau g x x→+∞⎰存在,故 ()d ag x x+∞⎰收敛.(2) 若 ()d af x x +∞⎰ ()d ah x x A+∞==⎰,则 ()d a g x x A+∞=⎰.证:因为 ()d a f x x +∞⎰ ()d ah x x A +∞==⎰所以lim()d uau f x x A→+∞=⎰, lim()d uau h x x A→+∞=⎰,于是由夹逼性定理得 lim ()d uau g x x A→+∞=⎰,故 ()d a g x x A+∞=⎰.3 讨论下列无穷限积分的收敛性:(1) 0x +∞⎰;解:因为43lim 1x x →+∞=,而x+∞⎰收敛,故x+∞⎰收敛.(2)1d 1x xx e +∞-⎰;解:因为2lim 01x x x x e →+∞⋅=-,而 2 11d x x +∞⎰收敛,故 1d 1xxx e +∞-⎰收敛.(3)x +∞⎰;解:因为lim 1x =,而1x+∞⎰发散,故x+∞⎰发散.(4) 3 1arctan d 1x xx x +∞+⎰;解:因为23arctan lim 12x x x x x π→+∞⋅=+,而 2 01d xx +∞⎰收敛,故 3 1arctan d 1x xx x +∞+⎰收敛. (5) 1ln(1)d n x x x +∞+⎰; 解:当1n ≤时, 1ln(1)d n x x x +∞+⎰发散,当1n >时, 1ln(1)d n x x x +∞+⎰收敛.(6)d (,0)1mnx x m n x +∞>+⎰.解:因为lim 11m n mn x x xx -→+∞⋅=+,所以当1n m -≤时,0d 1mn x x x +∞+⎰发散, 当1n m ->时,0d 1mn x x x +∞+⎰收敛.4 讨论下列无穷限积分绝对收敛还是条件收敛: (1)1x x +∞⎰;解:因为12lim 1x x →+∞=,而1x+∞⎰发散,所以1x ⎰发散.又1()2cos14uF u x ==-≤⎰,()g x 在x →+∞时单调下降以零为极限,所以由狄氏判别法知1x ⎰收敛.综上可知 1x ⎰条件收敛.(2) 2 0sgn(sin )d 1x x x +∞+⎰; 解:因为22sgn(sin )111x x x ≤++,而 2 01d 1x x +∞+⎰收敛,所以 2 0sgn(sin )d 1x x x +∞+⎰绝对收敛.(3)x⎰;解:因为0()cos d sin 1u F u x x u ==≤⎰,而()g x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知x⎰收敛.=+,而x ⎰发散,0x⎰收敛,所以x⎰发散,综上可知0x⎰条件收敛.(4)ln(ln )sin d ln ex x x x +∞⎰.解:因为()sin d cos cos 2u eF u x x e u ==-≤⎰,ln(ln )()ln x g x x =在x →+∞时单调下降以零为极限,所以由狄氏判别法知ln(ln)sin dlnexx xx+∞⎰收敛.又2ln(ln)ln(ln)ln(ln)ln(ln)sin sin cos2ln ln2ln2lnx x x xx x x x x x x≥=-,而ln(ln)dlnexxx+∞⎰发散,ln(ln)cos2dlnexx xx+∞⎰收敛,所以ln(ln)sin dlnexx xx+∞⎰条件收敛.5 举例说明,()daf x x+∞⎰收敛时,2()daf x x+∞⎰不一定收敛;()daf x x+∞⎰绝对收敛时,2()daf x x+∞⎰也不一定收敛.证:例如()f x=1()df x x+∞⎰收敛,但221 1()df x x x+∞+∞=⎰⎰发散.又如345345333100,221,()1,11 01,(1)xn x n n x n nnf xn x n n x n nnx n nn n ⎧⎡⎤∈-⎪⎢⎥⎣⎦⎪⎪⎛⎫+-∈-⎪ ⎪⎝⎭⎪=⎨⎡⎤⎪-++∈+⎢⎥⎪⎣⎦⎪⎛⎫⎪∈-+-⎪⎪-⎝⎭⎩,如图.则23331111()d231236f x x nnπ+∞=⋅+⋅++⋅+=-⎰,所以 1()d f x x+∞⎰收敛且为绝对收敛.但21()df x x+∞⎰发散.6 证明:()daf x x+∞⎰若绝对收敛,且lim()0xf x→+∞=,则2()daf x x+∞⎰必定收敛.证:因为lim()0xf x→+∞=,所以110,,()1M a x M f x ε∀>∃>∍>⇒≤“”,于是1x M >时,2()()f x f x ≤,又()d af x x+∞⎰收敛,就上述ε,2M a ∃>,21122,()d u u u u M f x x ε∍>⇒<⎰“”取12max{,}M M M =,则12,u u M >时,22112()d ()d u u u u f x x f x x ε≤<⎰⎰,故 2 ()d af x x+∞⎰收敛.7 证明:若()f x 是[,)a +∞上的单调函数,且 ()d a f x x +∞⎰收敛,则lim ()0x f x →+∞=. 证:不妨设()f x ,则[,),()0x a f x ∀∈+∞≥.实因假设00[,),()0x a f x ∃∈+∞<,则0x x >时,0()()f x f x ≤, 从而 000 ()d ()()ux f x x f x u x ≥-⎰,即 0 l i m ()dux u f x x →+∞=∞⎰,此与 ()d af x x+∞⎰收敛矛盾.又由 ()d af x x+∞⎰收敛得 0,M a ε∀>∃>,22()d 2xx x M f t t ε∍>⇒<⎰“”. 而221()d ()d ()02x xxx f t t f x t xf x ≥=≥⎰⎰,所以2x M >时,0()xf x ε≤<,于是0()f x ε≤<, 故lim ()0x f x →+∞=.8 证明:若()f x 在[,)a +∞上一致连续,且 ()d a f x x+∞⎰收敛,则lim ()0x f x →+∞=.证:假设lim ()0x f x →+∞≠,则00ε∃>,M a ∀>,0x M ∃>,00()f x ε∍≥“”.因为()f x 在[,)a +∞上一致连续,所以0δ∃>,000()()22x x f x f x εδδ∍<-<⇒-<“”. 从而00()()()()2f x f x f x f x ε≥--≥于是M a ∀>,0,x x M ∃>,00()d 24xx f x x x x εεδ∍≥->⎰“”.此与 ()d af x x+∞⎰收敛矛盾,故lim ()0x f x →+∞=.9 利用狄利克雷判别法证明阿贝尔判别法. 证:因为 ()d af x x+∞⎰收敛,所以0M ∃>,u a ∀>,()()d uaF u f x x M=≤⎰,即()F u 在[,)a +∞上有界.又()g x 单调有界,所以极限存在.设lim ()x g x A→+∞=,则()lim ()0x g x A →+∞-=,从而由狄氏差别法知() ()()d af xg x A x+∞-⎰收敛.而() ()()d ()()d ()d a aaf xg x x f x g x A x A f x x+∞+∞+∞=--⎰⎰⎰故 ()()d af xg x x+∞⎰收敛.§11. 3 瑕积分的性质与收敛判别一 基本内容一、瑕积分的性质设a 为瑕点,由瑕积分的定义知()d baf x x⎰收敛存在lim ()d buu af x x+→⇔⎰,由极限的柯西收敛准则知lim ()d buu af x x+→⎰存在0,0,εδ⇔∀>∃>2112 ,(,)()u u u u a a f x dx δε∍∈+⇒<⎰“”.定理1()d baf x x⎰收敛0,0εδ⇔∀>∃>,2112 ,(,)()d u u u u a a f x x δε∍∈+⇒<⎰“”.性质 1 设 a 为瑕点,若1 ()d baf x x⎰、2 ()d baf x x⎰都收敛,则12,k k ∀,[] 1122()()d bak f x kf x x+⎰也收敛,且[] 11221122 ()()d ()d ()d bbba aak f x k f x x k f x x k f x x+=+⎰⎰⎰.性质2 设a 为瑕点,则(,)c a b ∀∈, ()d baf x x⎰与 ()d caf x x⎰同收同发,且收敛时,()d ()d ()d bcb aacf x x f x x f x x=+⎰⎰⎰.性质3 设 a 为瑕点,若,()u a f x ∀>在[, ]u b 上可积,则()d baf x x⎰收敛()d baf x x⇒⎰收敛,且()d ()d bbaaf x x f x x≤⎰⎰.定义1 如果收敛 ()d ba f x x⎰,则称 ()d ba f x x⎰绝对收敛. 二、比较判别法比较判别法仅应用于绝对收敛的判别.定理2 设a 为瑕点,若,(),()u a f x g x ∀>在[, ]u b 上可积,且,()()x a f x g x ∀>≤, 则 ()d ba g x x⎰收敛()d baf x x⇒⎰收敛,而()d baf x x⎰发散⇒()d bag x x⎰发散.推论(比较判别法的极限形式) 若,(),()u a f x g x ∀>在[, ]u b 上可积,, ()0x a g x ∀>>,且()lim ()x af x cg x +→=,则(1) 0c <<+∞时, ()d ba f x x⎰与 ()d bag x x ⎰同收同发; (2) 0c =时, ()d bag x x⎰收敛()d b af x x⇒⎰收敛;(3) c =+∞时, ()d bag x x⎰发散 ()d ba f x x ⇒⎰发散.定理3 (柯西判别法) 若0,()u a f x ∀>>在[, ]u b 上可积,则(1)1()()pf x x a ≤-且01p <<时, ()d b a f x x ⎰收敛; (2)1()()pf x x a ≥-且1p ≥时, ()d ba f x x ⎰发散. 定理 3 (柯西判别法的极限形式) 若0,()u a f x ∀>>在[, ]ub 上可积,且l i m ()|()|p x a x a f x λ+→-=,则(1) 0λ≤<+∞且01p <<时, ()d ba f x x⎰收敛;(2) 0λ<≤+∞且1p ≥时, ()d ba f x x⎰发散.二 习题解答1 讨论瑕积分的收敛性(1) 22 01d (1)x x -⎰;解:瑕点为1x =.改写积分为 2 1 2222 0 0 1111d d d (1)(1)(1)x x xx x x =+---⎰⎰⎰.因为121d(1)xx-⎰发散,所以221d(1)xx-⎰发散.(2)32sindxxxπ⎰;解:瑕点为0x=.因为2lim1xx→=,而 0xπ⎰收敛,所以32sindxxxπ⎰收敛.(3)1x ⎰;解:瑕点为0,1x=.因为H1111lim(1)lim11x x xxx--→→→-==,而11d1xx-⎰发散,所以1x⎰发散.(4)1lnd1xxx-⎰;解:瑕点为1x=.而112H211112ln ln(1)lim(1)lim lim012(1)x x xx x xxx xx---→→→--⋅===--,又1x⎰收敛,所以1lnd1xxx-⎰收敛.(5)13arctand1xxx-⎰;解:瑕点为1x=.而3211arctan arctanlim(1)lim1112x xx xxx x xπ--→→-⋅==-++,又11d1xx-⎰发散,所以13arctand1xxx-⎰发散.(6)21cosdmxxxπ-⎰;解:瑕点为0x=.而21cos1lim2mmxxxx+-→-⋅=,所以当21m-<,即3m<时21cosdmxxxπ-⎰收敛;所以当21m -≥,即3m ≥时2 01cos d m xx x π-⎰发散.(7) 1011sin d x xx α⎰;解:瑕点为0x =.而111sin x x x αα≤, 所以当01α<<时, 1 011sin d x x x α⎰绝对收敛;又2α≥时,1111sin xx x αα-≤,而 11 01d x x α-⎰发散,所以此时1011sin d x x x α⎰发散; 当12α≤<时, 1 011sin d x xx α⎰条件收敛. (8) 0ln d x e x x+∞-⎰.解:积分表为11ln d ln d ln d x x x e x x e x x e x x+∞+∞---=+⎰⎰⎰.就 1ln d x e x x-⎰,瑕点为0x =,而120lim ln 0xx x e x +-→⋅=,所以 1 0ln d x e x x-⎰收敛;就 1ln d x e x x+∞-⎰,因20lim ln 0x x x e x +-→⋅=,所以 1ln d x e x x+∞-⎰收敛.综上可知 0ln d x e x x+∞-⎰收敛.2 计算下列瑕积分的值 (1) 1(ln )d n x x⎰;解:设1 0(ln )d n n I x x=⎰,则1111 0lim(ln )lim (ln )d |n n n n eee e I x x n x x nI ++--→→=-=-⎰,而10 0d 1I x ==⎰,所以 1 0(ln )d (1)!n n x x n =-⎰.(2)1nx ⎰.解:令2sin x t =,则d 2sin cos d x t t t =,于是121202sin d n n n I x t t π+==⎰⎰ 22 02sin d(cos )n t t π=-⎰22122202sin cos 22sin cos d |nn t t n t t tππ-=-+⋅⎰212122 04sind 4sin d n n n t t n t tππ-+=-⎰⎰12()n n n I I -=-,于是 1221n n n I I n -=+,而0I =2 02sin d 2t t π==⎰,所以212(2)!!2(!)2(21)!!(21)!n n n n I n n +=⋅=++.3 证明瑕积分2 0ln(sin )d J x xπ=⎰收敛,且ln 22J π=-,(提示:利用22 0ln(sin )d ln(cos )d x x x xππ=⎰⎰,并将它们相加).证:瑕点为0x =,而3H 20001sin lim ln(sin )lim lim 2cos x x x x x x x+++→→→=-⋅3201sin lim 02cos x x x x +→=-=,所以2 0ln(sin )d J x xπ=⎰收敛.令2x t π=-知22 0 0ln(sin )d ln(cos )d x x x x ππ=⎰⎰,于是22 0 02ln(sin )d ln(cos )d J x x x xππ=+⎰⎰22 0 0sin 2ln(sin cos )d lnd 2xx x x x ππ==⎰⎰2 0ln sin 2d ln 22x x ππ=-⎰.而令2x t =得201ln sin 2d ln sin d 2x x t t ππ=⎰⎰ 2 0 211ln sin d ln sin d 22t t t t πππ=+⎰⎰ 22 0 011ln sin d ln cos d 22t t t t J ππ=+=⎰⎰.所以ln 22J π=-.4 利用上题结果,证明(1)2ln(sin )d ln 22ππθθθ=-⎰;证:令t θπ=-,则ln(sin )d ()ln(sin )d t t tππθθθπ=-⎰⎰,于是ln(sin )d ln(sin )d 2πππθθθθθ=⎰⎰220ln(sin )d ln 22πππθθ==-⎰.(2) 0sin d 2ln 21cos πθθθπθ=-⎰.证:() 0 0sin d d ln(1cos )1cos ππθθθθθθ=--⎰⎰ln 2ln(1cos )d ππθθ=--⎰2 0 0ln 2ln 2d ln sin d 2ππθπθθ⎛⎫=-- ⎪⎝⎭⎰⎰ 02lnsin d 2πθθ=-⎰2 04lnsin d t tπ=-⎰2ln2π=. 所以 0sin d 2ln 21cos πθθθπθ=-⎰.总练习题111 证明下列等式(1) 110 1d d ,011p px x x x p x x --+∞=>++⎰⎰;证:令1x t =,则21d d x t t =-,于是1111 1112 0 00111d lim d lim d 1111p p p e e e e x x x x t x x t t t ++---→→⎛⎫==⋅⋅-⎪++⎝⎭+⎰⎰⎰1 1 10lim d d 11p p ee t t t tt t +--+∞→==++⎰⎰, 所以110 1d d ,011p p x x x x p x x --+∞=>++⎰⎰.(2) 10 0d d ,0111p px x x x p x x --+∞+∞=<<++⎰⎰.证:因为01p <<,所以0x =为瑕点.令1x t =,则21d d x tt =-,于是1 0 12 00111d d d 1111p pp x t x t tx t t t t --+∞+∞-+∞=-⋅⋅=+++⎰⎰⎰所以10 0d d 11p px x x x x x --+∞+∞=++⎰⎰. 2 证明下列不等式(1)12π<<⎰; 证:1x =为瑕点.而12111lim(1)lim 2x x x --→→-==,所以1⎰收敛.又设sin x t =,则d cos d x t t =,于是12 0π=⎰⎰而1≤≤, 所以12π<<⎰. (2) 21111d 122x e x e e +∞-⎛⎫-<<+ ⎪⎝⎭⎰. 证:因为22lim 0x x x e -→∞=,所以2d xe x+∞-⎰收敛.而2222110 1d d d d x x x xe x e x e x e x+∞+∞----=+>⎰⎰⎰⎰22 11201d d()2x x xe x e x --≥=--⎰⎰1122e =-.222211d d d 1d x x x xe x e x e x xe x+∞+∞+∞----=+<+⎰⎰⎰⎰()22111d 2x e x +∞-=--⎰112e =+. 故结论成立.3 计算下列反常积分的值. (1) 0cos d (0)ax e bx x a +∞->⎰;解:01cos d d(sin )ax axe bx x e bx b +∞+∞--=⎰⎰ 01sin sin d ax axa e bx e bx x bb +∞+∞--=+⎰2d(cos )ax a e bx b +∞-=-⎰2 22cos cos d ax ax a a e bx e bx xb b +∞+∞--=--⎰222 0cos d ax a a e bx xb b+∞-=-⎰所以22 0cos d ax ae bx x a b +∞-=+⎰为所求.(2) 0sin d (0)ax e bx x a +∞->⎰;解:方法同上可得22 0sin d ax be bx x a b +∞-=+⎰.(3) 2 0ln d 1xx x +∞+⎰;解: 1 222 0 0 1ln ln ln d d d 111x x xx x x xx x +∞+∞=++++⎰⎰⎰,就 2 1ln d 1x x x +∞+⎰作变换1x t =,则21d d x t t =-,于是20 12222 1 1 0ln ln 1ln d d d 111x t t t x t t x t t t +∞⎛⎫=-⋅-=- ⎪+++⎝⎭⎰⎰⎰ 所以 2 0ln d 01xx x +∞=+⎰. (4)2ln(tan )d πθθ⎰.解:设tan x θ=,则21d d 1x x θ=+,于是2ln(tan )d πθθ⎰2 0ln d 01xx x +∞==+⎰.4 讨论反常积分sin d (0)bxx b x λ+∞≠⎰,λ取何值时绝对收敛,λ取何值时条件收敛.解: 1 0 0 1sin sin sin d d d bx bx bxx x x x x x λλλ+∞+∞=+⎰⎰⎰,就 1 0sin d bxx x λ⎰,当0λ>时,0x =为瑕点.当01λ<<时,sin 1bx x x λλ≤,而 1 01d x x λ⎰收敛, 所以当01λ<<时, 1 0sin d bxx xλ⎰绝对收敛.当12λ≤<时,因为10sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xx λ-⎰收敛,所以当12λ≤<时,10sin d bxx x λ⎰绝对收敛.当2λ≥时,因为100sin sin lim lim 0x x bx bxx b x x λλ-→→==>,而111d xxλ-⎰发散,所以当2λ≥时,10sin d bxx x λ⎰发散.就 1sin d bx x xλ+∞⎰,当0λ≤时, 1sin d bxx x λ+∞⎰发散.当01λ<≤时, 1()sin d uF u bx x=⎰在[1,)+∞上有界,1()g x x λ=单调以零为极限,由狄氏判别法知1sin d bxx x λ+∞⎰收敛.而22sin sin 1cos bx bx bx x x x x λλλλ≥=-, 所以1sin d bx x x λ+∞⎰发散,故 1sin d bxx x λ+∞⎰条件收敛.当1λ>时,因为sin 1bx x x λλ≤, 而 1 01d x xλ⎰收敛,所以当1λ>时, 10sin d bxx x λ⎰绝对收敛.综上可知,当0λ≤时,或2λ≥时, + 0sin d bxx xλ∞⎰发散;当01λ<≤时, + 0sin d bxx x λ∞⎰条件收敛;当12λ<<时, + 0sin d bxx x λ∞⎰绝对收敛.5 证明:设f 在[0,)+∞上连续,0a b <<. (1) 若lim ()x f x k→+∞=,则()()d ((0))ln f ax f bx bx f k x a +∞-=-⎰;证:令ax t =,则 ()()d d A aA a f ax f t x t x t δδ=⎰⎰,令bx t =,则 ()()d d A bA b f bx f t x t xt δδ=⎰⎰,于是 0()()()()d d d aA bA a b f ax f bx f t f t x t t x t t δδ+∞-=-⎰⎰⎰ ()()()()d d d d b bA aA bA a b bA b f t f t f t f t t t t t t t t t δδδδ=++-⎰⎰⎰⎰()()d d b bA a aA f t f t t t t t δδ=-⎰⎰ ()()d d b b a a f y f Ay y y y y ε=-⎰⎰1[()()]d b a f f A yyδξη=-⎰(积分中值定理,,(,)a b ξη∈)[()()]lnbf f A a δξη=-.令0,A δ+→→+∞得 0()()d ((0))lnf ax f bx bx f k x a +∞-=-⎰.(2) 若 ()d a f x x x +∞⎰收敛,则 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.证:由(1)得()()d f ax f bx x x +∞-⎰()()d d b bA a aA f t f t t tt t δδ=-⎰⎰.因()d af x x x +∞⎰收敛,所以由柯西收敛准则得0,M a ε∀>∃>,2112(),d u u f x u u M x x ε∍>⇒<⎰“”.即 ()lim d 0bA aA A f t t t →∞=⎰.故 0()()d (0)ln f ax f bx bx f x a +∞-=⎰.6 证明下述命题(1) 设0a >,()f x 为[,)a +∞上的非负连续函数.若 ()d axf x x+∞⎰收敛,则 ()d af x x+∞⎰也收敛.证:因为 ()d axf x x+∞⎰收敛,所以所以由柯西收敛准则得0,M a ε∀>∃>,2112,()d u u u u M xf x x a ε∍>⇒<⎰“”.而1()d ()d aa f x x xf x xa +∞+∞<⎰⎰,于是亦有21()d u u f x x ε<⎰.故 ()d af x x+∞⎰收敛.(2) 设0a >,()f x 为[,)a +∞上的连续可微函数,且当x →+∞时,()f x 递减地趋于0,则 ()d af x x+∞⎰收敛的充要条件为 ()d axf x x+∞'⎰收敛.证:()⇒设 ()d af x x+∞⎰收敛,因()d ()()d |aaaf x x xf x xf x x+∞+∞+∞'=-⎰⎰而lim ()0x xf x →+∞=(本章第二节第8题) 所以 ()d axf x x+∞'⎰收敛.()⇐设 ()d a xf x x +∞'⎰收敛,则0ε∀>,M a ∃>,()d AxA x M tf t t ε'∍>>⇒<⎰“”.因为()f x 递减地趋于0,所以()0f x '≤, 于是由积分中值定理得()d ()d [()()]AAxxtf t t f t t f A f x ξξ''==-⎰⎰,从而 0[()()][()()]x f A f x f A f x ξε≤-≤-<.又lim ()0A f A →+∞=,所以lim ()0x xf x →+∞=.从而()d ()()d |aaaxf x x xf x f x x+∞+∞+∞'=-⎰⎰()()d aaf a f x x+∞=-⎰,故 ()d af x x+∞⎰收敛.反常积分无限区间上的积分或无界函数的积分,这两类积分叫作广义积分,又名反常积分.1.无限区间上的积分一般地,我们有下列定义定义6.2设函数在区间上连续,如果极限()存在,就称上极限值为在上的广义积分.记作即( 6.24 )这时我们说广义积分存在或收敛;如果不存在,就说不存在、发散或不收敛.类似地,可以定义在及上的广义积分.( 6.25 )其中( 6.26 )对于广义积分,其收敛的充要条件是:与都收敛.广义积分收敛时,具有常义积分的那些性质与积分方法,如换元法、分部积分法以及牛顿—莱布尼兹公式等,但有时代数和运算要注意,不要随便拆开.在用广义的牛顿—莱布尼兹公式时,无穷远点应取极限.为方便起见,引入记号,这样,若为的一个原函数,则(其中)注意:这里与是独立变化的,不能合并成 .2.无界函数的积分先给出瑕点或奇点的概念,若(或)时,,则点(或点)称为无界函数的瑕点或奇点. 的无穷间断点就是的瑕点.定义6.3设函数在上连续,左端点为的瑕点,如果存在,就称此极限值为无界函数在上的广义积分.记作( 6.27 )这时我们说广义积分存在或收敛.如果不存在,就说广义积分不存在、不收敛或发散.。

§6.2反常积分判敛法

§6.2反常积分判敛法
+∞ −t 故 而 Γ(1)= e dt =1 , Γ( n + 1) = n ! 。 0

3.Γ 函数的定义域的扩充
有定义, 当 −1< x < 0 ,即 x + 1> 0 时 , Γ ( x + 1) 有定义, >
Γ( x + 1) 从而定义 Γ( x )= , −1< x < 0 , x
有定义, 当 − 2 < x < −1 , 即 − 1< x + 1< 0 时 , Γ ( x + 1) 有定义 ,
−t x
+∞ = −∫ 0
t d (e )
x
−t
= −t xe− t
+ ∫ + ∞ e − t d ( t x ) = x ∫ + ∞ e − t t x −1dt = xΓ( x ) 0 0
当 x 为正整数 n 时,有
Γ( n + 1)= nΓ( n)= n( n −1)Γ( n −1)=L= n( n −1)( n − 2)L2⋅1⋅Γ(1)= n!Γ(1)
收敛, 收敛 , 从而 ∫
+ ∞ −ax e sin bxdx 0
收敛。 收敛 。
6.2.2 6.2.2 被积函数有无穷型间断点的反常积分的判敛法
定理 4(比较判别法) (比较判别法)
= 为无穷型间断点, 设 f ( x ), g ( x )∈C [a , b ) , x= b 为无穷型间断点,
且 x∈[a ,b ) 时, 0≤ f ( x )≤ g ( x ) , ∈ 收敛时, 也收敛; 则(1)当 ∫ g ( x )dx 收敛时, ∫ f ( x )dx 也收敛;

反常积分的审敛法

反常积分的审敛法

反常积分的审敛法反常积分是数学中的一个重要概念,它在计算学科中有着广泛的应用。

本文将介绍反常积分的审敛法,包括其定义、性质以及常用的审敛法。

一、反常积分的定义反常积分是对于某些函数在某个区间上积分不存在或者无穷大的情况下的一种积分方法。

对于函数f(x),在区间[a, b]上的反常积分定义如下:∫[a, b] f(x)dx = lim┬(n→∞)⁡〖∫[a, b] f(x)dx〗其中,lim表示极限,n表示一个趋向于无穷大的数列。

二、反常积分的性质1. 线性性质:对于函数f(x)和g(x),以及常数k,有如下性质:∫[a, b] (f(x)+g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx ∫[a, b] k·f(x)dx = k·∫[a, b] f(x)dx2. 区间可加性:对于函数f(x),在区间[a, b]和[b, c]上的反常积分分别存在,则有:∫[a, c] f(x)dx = ∫[a, b] f(x)dx + ∫[b, c] f(x)dx3. 非负性:对于函数f(x),如果在区间[a, b]上f(x)≥0,则有:∫[a, b] f(x)dx ≥ 0反常积分的审敛法是判断反常积分是否收敛的一种方法。

常用的审敛法有以下几种:1. 比较审敛法:对于函数f(x)和g(x),如果在某个区间[a, b]上f(x)≤g(x),且∫[a, b] g(x)dx收敛,则有∫[a, b] f(x)dx也收敛;反之,如果∫[a, b] f(x)dx发散,则有∫[a, b] g(x)dx也发散。

2. 极限审敛法:对于函数f(x),如果存在极限lim┬(x→a)⁡(x-a)·f(x)=L,则有∫[a, b] f(x)dx收敛,其中a为积分区间的一个端点,b为另一个端点。

3. 部分和审敛法:对于函数f(x),如果存在数列{S_n},使得lim┬(n→∞)⁡S_n=L,则有∫[a, b] f(x)dx收敛,其中S_n表示函数f(x)在区间[a, b]上的部分和。

反常积分判敛的方法

反常积分判敛的方法

反常积分判敛的方法在数学中,积分是一种非常重要的概念,而对于一些特殊的积分,我们需要进行判敛来确定其是否收敛。

在处理反常积分时,有一些特殊的方法可以帮助我们进行判敛,本文将介绍一些常用的反常积分判敛方法。

一、无穷积分的判敛方法对于形如$\int_{a}^{+\infty}f(x)dx$的无穷积分,我们可以通过比较判别法来确定其是否收敛。

比较判别法主要包括以下几种情况: 1. 若存在常数$M>0$和$a$,使得对充分大的$x$有$|f(x)|\leqM\cdot g(x)$,其中$\int_{a}^{+\infty}g(x)dx$收敛,则$\int_{a}^{+\infty}f(x)dx$也收敛。

2. 若存在常数$a$,使得对充分大的$x$有$0\leq f(x)\leqg(x)$,其中$\int_{a}^{+\infty}g(x)dx$发散,则$\int_{a}^{+\infty}f(x)dx$也发散。

通过比较判别法,我们可以对无穷积分的收敛性进行初步的判断。

二、无界函数积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,如果被积函数在区间$(a,b)$上无界,我们可以通过以下方法进行判敛:1. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以将积分区间分割成多个小区间,分别处理每个小区间上的积分。

2. 若在$(a,b)$上,$f(x)$有无穷间断点,我们可以通过换元积分的方法将无界函数转化为有界函数,然后再进行积分计算。

通过以上方法,我们可以处理一些在有界区间上无界的函数积分,从而判断其收敛性。

三、奇异点附近积分的判敛方法对于形如$\int_{a}^{b}f(x)dx$的积分,在奇异点附近积分时,我们可以通过留数定理来判断其收敛性。

留数定理是一种处理奇异点的有效方法,可以帮助我们求解一些复杂的积分。

在处理奇异点附近积分时,我们需要注意以下几点:1. 确定奇异点的类型,包括可去奇点、极点和本性奇点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
lim F (x) lim f (t) d t
x
x a
存在
,
即反常积分
a
f
( x) d
x 收敛
.
目录 上页 下页 返回 结束
定理2 . (比较审敛原理) 设 f (x) C[a , ),且对充
分大的x 有 0 f (x) g(x) , 则
a
g
(
x)
dx
收敛
a
g
(
x)
dx
发散
证: 不失一般性 ,
f
(x)
M xp
p 1,
f
(
x)
N xp
目录 上页 下页 返回 结束
例1. 判别反常积分
的敛散性 .
解:
由比较审敛法 1 可知原积分收敛 . 思考题: 讨论反常积分 提示: 当 x≥1 时, 利用
的敛散性 .
可知原积分发散 .
目录 上页 下页 返回 结束
定理4. (极限审敛法1)
满足
lim x p f (x) l
3
1
dx ln x
的敛散性
.
解: 此处 x 1为瑕点, 利用洛必达法则得
根据极限审敛法2 , 所给积分发散 .
定理4 目录 上页 下页 返回 结束
1
例6. 判定椭圆积分
dx
(k 2 1) 的敛
0 (1 x2 )(1 k 2 x2 )
散性 .
解: 此处 x 1为瑕点, 由于
1
(x 1)2
1
(1 x2 )(1 k 2x2 )
( x s 1
ex )
lim
x
x s 1 ex
0
根据极限审敛法1知 I2 收敛.
综上所述 , (s) I1 I2 在 s 0上收敛.
目录 上页 下页 返回 结束
2. 性质
(1) 递推公式 (s 1) s (s) (s 0)
证: (s 1) xs exd x xs dex (分部积分)
定理6. (比较审敛法 2)
瑕点 , 使对一切充分接近 a 的 x ( x > a) .
q 1,

f
(
x)
(
x
M a)q
有 f (x) N xa
定理3 目录 上页 下页 返回 结束
定理7. (极限审敛法2)
lim (x a)q f (x) l
x
则有: 1) 当
2) 当
例5.
判别反常积分
s 0时, (s)
(3) 余元公式:
(s)(1 s) π sin(π s)

s
1 2
时,

(0 s 1) (证明略)
目录 上页 下页 返回 结束
(4) (s)的其他形式
令 x u2,得
(s) 2 eu2 u2s1 d u (s 0) 0
再令 2s 1 t , 即s 1 t , 得应用中常见的积分 2
t
b
f (x) d x lim
a
0
1
1 ba
f
(a
1) t
dt t2
1 ba
f
(a
1) t
dt t2
因此无穷限反常积分的审敛法完全可平移到无界函数
的反常积分中来 .
目录 上页 下页 返回 结束
利用
b
a (
x
1 a)
q
dx
收敛 , 发散 ,
q 1 q 1
有类似定理 3 与定理 4 的如下审敛法.
(x)d x
a
a
a
f (x) d x
可见反常积分
a
f
( x) d
x
收敛 .
目录 上页 下页 返回 结束
定义. 设反常积分 f (x) d x 收敛 , a
若 a
f (x)
dx 收敛 , 则称
若 a
f (x) dx 发散 , 则称
绝对收敛 ; 条件收敛 .
例4. 判断反常积分 的敛散性 .
ut 0
eu2 d u
1 1 t22(t 1)这表明左端的积分可用 函数来计算. 例如,
目录 上页 下页 返回 结束
内容小结
1. 两类反常积分的比较审敛法和极限审敛法 . 2. 若在同一积分式中出现两类反常积分, 可通过分项
使每一项只含一种类型的反常积分, 只有各项都收敛时,
才可保证给定的积分收敛 .
lim
1
1
x1 (1 x)(1 k 2x2 ) 2(1 k 2 )
根据极限审敛法 2 , 椭圆积分收敛 .
定理4 目录 上页 下页 返回 结束
类似定理5, 有下列结论:
若反常积分
b
a
f
(x) d x
(a为瑕点)收敛 , 则反常积分
b
a
f
( x) d
x
收敛
,
称为绝对收敛
.
例7. 判别反常积分
的敛散性 .
目录 上页 下页 返回 结束
定理5. 若
f
(
x)
C
[a
,
)
,

a
f(x)d x收敛 ,
则反常积分
a
f
( x) d
x 收敛 .
证:令
(
x)
1 2
[
f
(
x)
f (x) ], 则 0 (x)
f (x)
a
f(x)d x收敛 ,
a
(
x)
d
x
也收敛
,

f (x) 2(x) f (x)
f (x)d x 2
例2. 判别反常积分 1 x 1 x2 的敛散性 .
解:
lim x2 x x
1 1 x2
lim
x
根据极限审敛法 1 , 该积分收敛 .
1 1
1 x2
1
3
例3.
判别反常积分
x2 1 1 x2
dx
的敛散性
.
解:
3
lim
x
x
1 2
1
x2 x2
lim x 1
x
2
x
2
1
根据极限审敛法 1 , 该积分发散 .
x
则有: 1) 当
2) 当
证: 1) 当p 1时, 根据极限定义, 对取定的
分大时, 必有
,即
当x充
目录 上页 下页 返回 结束
2) 当p 1时,可取 0, 使l 0, (l 时用任意正 数 N 代替 l ), 必有

注意:
此极限的大小刻画了
目录 上页 下页 返回 结束
d x
0
0
xs ex
s
xs1 exd x
0
0
s (s)
注意到: (1) n N , 有
0
e
x
d
x
1
(n 1) n(n) n(n 1)(n 1)
n!(1)
目录 上页 下页 返回 结束
(2) 当s 0时, (s) .
证: (s) (s 1) , (1) 1 s
且可证明(s)在s 0连续,
解:
此处 x 0 为瑕点, 因 lim
x
1 4
ln
x
0
,故对充分小
1
x0
的 x, 有 x4 ln x 1, 从而
1
ln x x
x4 ln x
1
x4
1
1
x4
据比较审敛法2, 所给积分绝对收敛 .
目录 上页 下页 返回 结束
三、 函数
1. 定义
(s)
xs1 exd x 0
(s
0)
下面证明这个特殊函数在 s 0 内收敛 . 令
3. 函数的定义及性质 .
思考与练习
P268
作业
1 (3), (4), (5), (8) ;
P268 1 (1), (2), (6), (7) ; 5 (1), (2)
2; 3
习题课 目录 上页 下页 返回 结束
则对 t a 有
t
t
a f (x)dx a g(x)dx

t
a
f
( x) dx

t
的单调递增有上界函数
,
因此
目录 上页 下页 返回 结束
t
lim f (x) dx
t a
a
f (x)dx
极限存在 ,
说明: 已知
得下列比较审敛法.
目录 上页 下页 返回 结束
定理3. (比较审敛法 1)
p 1,
I1
1 xs1 exd x ,
0
I2
xs1 exd x
1
1) 讨论 I1. 当s 1时, I1 是定积分 ;
当0 s 1时,
x s 1
ex
1 x1s
e1x
1 x1s
而1 s 1, 根据比较审敛法 2知 I1 收敛.
目录 上页 下页 返回 结束
I2
xs1 exd x
1
2) 讨论 I2 .
*第五节
第五章
反常积分的审敛法
函数
无穷限的反常积分 反常积分
无界函数的反常积分
一、无穷限反常积分的审敛法 二、无界函数反常积分的审敛法
目录 上页 下页 返回 结束
一、无穷限反常积分的审敛法
定理1. 证:
若函数
x
F (x) a f (t) d t
则反常积分
a
f
(x) d x收敛.
根据极限收敛准则知
相关文档
最新文档