2017-2019高考文数真题分类解析---立体几何(解答题)
2017-2019年高考真题立体几何解答题全集(含详细解析)
2017-2019年高考真题立体几何解答题全集(含详细解析)1.(2019•新课标Ⅱ)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE ⊥平面11EB C ;(2)若1AE A E =,求二面角1B EC C --的正弦值.2.(2019•新课标Ⅲ)图1是由矩形ADEB ,Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.3.(2019•新课标Ⅲ)图1是由矩形ADEB 、Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B CG A --的大小.4.(2019•天津)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.5.(2019•天津)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD ∆为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =. (Ⅰ)设G ,H 分别为PB ,AC 的中点,求证://GH 平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.6.(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求点C 到平面1C DE 的距离.7.(2019•浙江)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A AC AC ==,E ,F 分别是AC ,11AB 的中点. (Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.8.(2019•江苏)如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =. 求证:(1)11//A B 平面1DEC ; (2)1BE C E ⊥.9.(2019•新课标Ⅱ)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE ⊥平面11EB C ;(2)若1AE A E =,3AB =,求四棱锥11E BB C C -的体积.10.(2019•北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若60ABC ∠=︒,求证:平面PAB ⊥平面PAE ;(Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由.11.(2019•北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,//AD BC ,2PA AD CD ===,3BC =.E 为PD 的中点,点F 在PC 上,且13PF PC =. (Ⅰ)求证:CD ⊥平面PAD ; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.12.(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.13.(2019•上海)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC ====== (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积.14.(2018•江苏)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值;(2)求直线1CC 与平面1AQC 所成角的正弦值.15.(2018•北京)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB BC =,12AC AA ==. (Ⅰ)求证:AC ⊥平面BEF ; (Ⅱ)求二面角1B CD C --的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.16.(2018•江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(1)//AB 平面11A B C ; (2)平面11ABB A ⊥平面1A BC .17.(2018•天津)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,2AB =,AD =90BAD ∠=︒. (Ⅰ)求证:AD BC ⊥;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.18.(2018•新课标Ⅱ)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.19.如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG 且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(Ⅰ)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ; (Ⅱ)求二面角E BC F --的正弦值;(Ⅲ)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.20.(2018•浙江)如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(Ⅰ)证明:1AB ⊥平面111A B C ;(Ⅱ)求直线1AC 与平面1ABB 所成的角的正弦值.21.(2018•上海)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.22.(2018•新课标Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.23.(2018•新课标Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得//MC平面PBD?说明理由.24.(2018•北京)如图,在四棱锥P ABCD-中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA PD⊥,PA PD=,E,F分别为AD,PB的中点.(Ⅰ)求证:PE BC⊥;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证://EF平面PCD.25.(2018•新课标Ⅰ)如图,在平行四边形ABCM中,3AB AC==,90ACM∠=︒,以AC 为折痕将ACM∆折起,使点M到达点D的位置,且AB DA⊥.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且23BP DQ DA==,求三棱锥Q ABP-的体积.26.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.27.(2018•新课标Ⅱ)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.28.(2017•上海)如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5. (1)求三棱柱111ABC A B C -的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.29.(2017•天津)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,2AB =.(Ⅰ)求证://MN 平面BDE ; (Ⅱ)求二面角C EM N --的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE ,求线段AH 的长.30.(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是DF 的中点. (Ⅰ)设P 是CE 上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =时,求二面角E AG C --的大小.31.(2017•天津)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,//AD BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.32.(2017•新课标Ⅱ)如图,四棱锥P ABCD-中,侧面PAD为等边三角形且垂直于底面ABCD,12AB BC AD==,90BAD ABC∠=∠=︒,E是PD的中点.(1)证明:直线//CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45︒,求二面角M AB D--的余弦值.33.(2017•新课标Ⅰ)如图,在四棱锥P ABCD-中,//AB CD,且90BAP CDP∠=∠=︒.(1)证明:平面PAB⊥平面PAD;(2)若PA PD AB DC===,90APD∠=︒,求二面角A PB C--的余弦值.34.(2017•新课标Ⅱ)如图,四棱锥P ABCD-中,侧面PAD为等边三角形且垂直于底面ABCD,12AB BC AD==,90BAD ABC∠=∠=︒.(1)证明:直线//BC平面PAD;(2)若PCD∆面积为P ABCD-的体积.35.(2017•江苏)如图,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥,平面ABD ⊥平面BCD ,点E 、(F E 与A 、D 不重合)分别在棱AD ,BD 上,且EF AD ⊥. 求证:(1)//EF 平面ABC ; (2)AD AC ⊥.36.(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为,容器Ⅱ的两底面对角线EG ,11E G 的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱1CC 上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱1GG 上,求l 没入水中部分的长度.37.(2017•北京)如图,在三棱锥P ABC -中,PA AB ⊥,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA BD ⊥;(2)求证:平面BDE ⊥平面PAC ;(3)当//PA 平面BDE 时,求三棱锥E BCD -的体积.38.(2017•新课标Ⅲ)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.39.(2017•北京)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面MAC ,PA PD =4AB =. (1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值.40.(2017•新课标Ⅰ)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=︒. (1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.41.(2017•浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.(Ⅰ)证明://CE 平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.42.(2017•新课标Ⅲ)如图四面体ABCD 中,ABC ∆是正三角形,AD CD =. (1)证明:AC BD ⊥;(2)已知ACD ∆是直角三角形,AB BD =,若E 为棱BD 上与D 不重合的点,且AE EC ⊥,求四面体ABCE 与四面体ACDE 的体积比.43.(2017•江苏)如图,在平行六面体1111ABCD A B C D -中,1AA ⊥平面ABCD ,且2A B A D ==,1AA =,120BAD ∠=︒.(1)求异面直线1A B 与1AC 所成角的余弦值; (2)求二面角1B A D A --的正弦值.44.(2017•山东)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD , (Ⅰ)证明:1//A O 平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .45.(2017•上海)如图,长方体1111ABCD A B C D -中,2AB BC ==,13AA =; (1)求四棱锥1A ABCD -的体积;(2)求异面直线1A C 与1DD 所成角的大小.2017-2019年高考真题立体几何解答题全集(含详细解析)参考答案与试题解析1.(2019•新课标Ⅱ)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE ⊥平面11EB C ;(2)若1AE A E =,求二面角1B EC C --的正弦值.【解答】证明:(1)长方体1111ABCD A B C D -中,11B C ⊥平面11ABA B , 11B C BE ∴⊥,1BE EC ⊥,BE ∴⊥平面11EB C .解:(2)以C 为坐标原点,建立如图所示的空间直角坐标系, 设11AE A E ==,BE ⊥平面11EB C ,1BE EB ∴⊥,1AB ∴=,则(1E ,1,1),(1A ,1,0),1(0B ,1,2),1(0C ,0,2),(0C ,0,0), 1BC EB ⊥,1EB ∴⊥面EBC ,故取平面EBC 的法向量为1(1m EB ==-,0,1), 设平面1ECC 的法向量(n x =,y ,)z ,由100n CC n CE ⎧=⎪⎨=⎪⎩,得00z x y z =⎧⎨++=⎩,取1x =,得(1n =,1-,0),1cos ,||||2m n m n m n ∴<>==-,∴二面角1B EC C --.2.(2019•新课标Ⅲ)图1是由矩形ADEB ,Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【解答】解:(1)证明:由已知可得//AD BE ,//CG BE ,即有//AD CG , 则AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面; 由四边形ABED 为矩形,可得AB BE ⊥, 由ABC ∆为直角三角形,可得AB BC ⊥, 又BCBE B =,可得AB ⊥平面BCGE ,AB ⊂平面ABC ,可得平面ABC ⊥平面BCGE ;(2)连接BG ,AG ,由AB ⊥平面BCGE ,可得AB BG ⊥,在BCG ∆中,2BC CG ==,120BCG ∠=︒,可得2sin 60BG BC =︒=可得AG =在ACG ∆中,AC ,2CG =,AG , 可得cosACG ∠=sin ACG ∠,则平行四边形ACGD 的面积为24=.3.(2019•新课标Ⅲ)图1是由矩形ADEB 、Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1AB =,2BE BF ==,60FBC ∠=︒.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B CG A --的大小.【解答】证明:(1)由已知得//AD BE ,//CG BE ,//AD CG ∴,AD ∴,CG 确定一个平面, A ∴,C ,G ,D 四点共面,由已知得AB BE ⊥,AB BC ⊥,AB ∴⊥面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE .解:(2)作EH BC ⊥,垂足为H ,EH ⊂平面BCGE ,平面BCGE ⊥平面ABC , EH ∴⊥平面ABC ,由已知,菱形BCGE 的边长为2,60EBC ∠=︒,1BH ∴=,EH ,以H 为坐标原点,HC 的方向为x 轴正方向,建立如图所求的空间直角坐标系H xyz -,则(1A -,1,0),(1C ,0,0),(2G ,0),(1CG =,0,(2AC =,1-,0),设平面ACGD 的法向量(n x =,y ,)z ,则3020CG n x z AC n x y ⎧=+=⎪⎨=-=⎪⎩,取3x =,得(3n =,6,, 又平面BCGE 的法向量为(0m =,1,0),3cos ,||||2n m n m n m ∴<>==,∴二面角B CG A --的大小为30︒.4.(2019•天津)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.。
2019年高考文数——立体几何(解答)
2019年高考文数——立体几何1.(19全国一文19.(12分))如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.2.(19全国二文17.(12分))如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.3.(19全国三文19.(12分))图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.4.(19北京文(18)(本小题14分))-中,PA⊥平面ABCD,底部ABCD为菱形,E为CD的中点.如图,在四棱锥P ABCD(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.5.(19天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(Ⅰ)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;(Ⅲ)求直线AD 与平面PAC 所成角的正弦值.参考答案:1.解:(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =. 从而点C 到平面1C DE 的距离为417.2.解:(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.3.解:(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)取CG 的中点M ,连结EM ,DM.因为AB ∥DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE ⊥CG .由已知,四边形BCGE 是菱形,且∠EBC =60°得EM ⊥CG ,故CG ⊥平面DEM . 因此DM ⊥CG .在Rt △DEM 中,DE =1,EM =3,故DM =2. 所以四边形ACGD 的面积为4.4.解:(Ⅰ)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(Ⅱ)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE . 因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(Ⅲ)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ∥EG . 因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .5.(Ⅰ)证明:连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD . (Ⅱ)证明:取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD .(Ⅲ)解:连接AN ,由(Ⅱ)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以3DN =又DN AN ⊥,在Rt AND △中,sin DN DAN AD ∠==所以,直线AD 与平面PAC 所成角的正弦值为3.。
2017年高考真题分类汇编理数专题6 立体几何 含解析 精
2017年高考真题分类汇编(理数):专题6 立体几何(解析版)一、单选题(共7题;共14分)1、(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A、+1B、+3C、+1D、+32、(2017•浙江)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,= =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D ﹣QR﹣P的平面角为α、β、γ,则()A、γ<α<βB、α<γ<βC、α<β<γD、β<γ<α3、(2017•北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A、3B、2C、2D、24、(2017•新课标Ⅰ卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A、10B、12C、14D、165、(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A、B、C、D、6、(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A、90πB、63πC、42πD、36π7、(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A、πB、C、D、二、填空题(共5题;共5分)8、(2017•山东)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为________.9、(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10、(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是________.11、(2017•新课标Ⅰ卷)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.12、(2017•新课标Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是________(填写所有正确结论的编号)三、解答题(共9题;共60分)13、(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(12分)(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.14、(2017·天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.15、(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.16、(2017•北京卷)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17、(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.18、(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.19、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20、(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.21、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.答案解析部分一、单选题1、【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为× ×π×12×3+ × × × ×3= +1,故选:A【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.2、【答案】B【考点】用空间向量求平面间的夹角,二面角的平面角及求法【解析】【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,= ,=(0,3,6 ),=(,5,0),= ,= .设平面PDR的法向量为=(x,y,z),则,可得,可得= ,取平面ABC的法向量=(0,0,1).则cos = = ,取α=arccos .同理可得:β=arccos .γ=arccos .∵>>.∴α<γ<β.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.则cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.∴cosα>cosγ>cosβ,α,β,γ为锐角.∴α<γ<β.故选:B.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.可得cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.即可得出.3、【答案】B【考点】由三视图求面积、体积,由三视图还原实物图【解析】【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA= ==2 ,故选:B.【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.4、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图【解析】【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形= ×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可5、【答案】C【考点】余弦定理的应用,异面直线及其所成的角【解析】【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN= AB1= ,NP= BC1= ;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ= AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC= ,∴MQ= ;在△MQP中,MP= = ;在△PMN中,由余弦定理得cos∠MNP= = =﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【分析】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.6、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.7、【答案】B【考点】棱柱、棱锥、棱台的体积【解析】【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r= = ,∴该圆柱的体积:V=Sh= = .故选:B.【分析】推导出该圆柱底面圆周半径r= = ,由此能求出该圆柱的体积.二、填空题8、【答案】2+【考点】由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2= ×π×12×1= ,则该几何体的体积V=V1+2V1=2+ ,故答案为:2+ .【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.9、【答案】【考点】球的体积和表面积【解析】【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R= ,则球的体积V= π•()3= ;故答案为:.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.10、【答案】【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则= = .故答案为:.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.11、【答案】4 cm3【考点】棱锥的结构特征,棱柱、棱锥、棱台的体积【解析】【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= = = ,=3 ,则V= = = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤ =4 cm3,∴体积最大值为4 cm3.故答案为:4 cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h= ,求出S△ABC=3 ,V= =,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f (x)≤f(2)=80,由此能求出体积最大值.12、【答案】②③【考点】异面直线及其所成的角,用空间向量求直线间的夹角、距离【解析】【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),| |=1,直线b的方向单位向量=(1,0,0),| |=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,=(﹣cosθ,﹣sinθ,1),| |= ,设与所成夹角为α∈[0,],则c osα= = |sinθ|∈[0,],∴α∈[ ,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ= = = |cosθ|,当与夹角为60°时,即α= ,|sinθ|= = = ,∵cos2θ+sin2θ=1,∴cosβ= |cosθ|= ,∵β∈[0,],∴β= ,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.三、解答题13、【答案】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BEGH为菱形,∴AE=GE=AC=GC= .取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM= .在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>= .∴二面角E﹣AG﹣C的大小为60°.【考点】旋转体(圆柱、圆锥、圆台),直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.14、【答案】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>= .∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=| |=| |= .解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.【考点】异面直线及其所成的角,平面与平面平行的判定,平面与平面平行的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长.15、【答案】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,设PC=AD=2DC=2CB=2,则C(0,1,0),D(0,0,0),P(1,0,1),E(),A(2,0,0),B(1,1,0),=(),=(1,0,﹣1),=(0,1,﹣1),设平面PAB的法向量=(x,y,z),则,取z=1,得=(1,1,1),∵= =0,CE⊄平面PAB,∴CE∥平面PAB.解:(Ⅱ)=(﹣1,1,﹣1),设平面PBC的法向量=(a,b,c),则,取b=1,得=(0,1,1),设直线CE与平面PBC所成角为θ,则sinθ=|cos<>|= = = .∴直线CE与平面PBC所成角的正弦值为.【考点】直线与平面平行的判定,直线与平面所成的角,向量方法证明线、面的位置关系定理,用空间向量求直线与平面的夹角【解析】【分析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z 轴,建立空间直角系,利用向量法能证明CE∥平面PAB.(Ⅱ)求出平面PBC的法向量和,利用向量法能求出直线CE与平面PBC所成角的正弦值.16、【答案】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z= ,得.取平面PAD的一个法向量为.∴cos<>= = .∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=| |=| |=.【考点】直线与平面平行的性质,平面与平面垂直的性质,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3.)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值.17、【答案】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(Ⅰ)∵cos<>= = .∴异面直线A1B与AC1所成角的余弦值为;(Ⅱ)设平面BA1D的一个法向量为,由,得,取x= ,得;取平面A1AD的一个法向量为.∴cos<>= = .∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(Ⅱ)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.18、【答案】证明:(Ⅰ)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(Ⅱ)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定【解析】【分析】(Ⅰ)利用AB∥EF及线面平行判定定理可得结论;(Ⅱ)通过取线段CD 上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.19、【答案】(Ⅰ)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2,BN= ,MN= ,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ== ,二面角M﹣AB﹣D的余弦值为:= .【考点】直线与平面平行的判定,二面角的平面角及求法【解析】【分析】(Ⅰ)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(Ⅱ)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M ﹣AB﹣D的余弦值即可.20、【答案】(Ⅰ)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B到平面ACE的距离分别为h D,h E.则= .∵平面AEC把四面体ABCD分成体积相等的两部分,∴= = =1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C的余弦值为.【考点】平面与平面垂直的判定,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO= AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.(Ⅱ)设点D,B到平面ACE的距离分别为h D,h E.则= .根据平面AEC把四面体ABCD分成体积相等的两部分,可得= = =1,即点E是BD的中点.建立如图所示的空间直角坐标系.设AB=2.利用法向量的夹角公式即可得出.21、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【考点】平面与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.。
(2017-2019)高考文数真题分类汇编专题06 立体几何(解答题)(教师版)
专题06立体几何(解答题)1.AA 1=4,AB =2,【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)417.17【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =又因为N 为A 1D 的中点,所以ND =1B 1C .21A 1D .2∥∥D ,故ME ∥ND ,由题设知A ,可得BC 1B 1=DC 1=A 1=因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面C 1DE ,所以MN ∥平面C 1DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE ⊥BC ,DE ⊥C 1C ,所以DE ⊥平面C 1CE ,故DE ⊥CH.从而CH ⊥平面C 1DE ,故CH 的长即为C 到平面C 1DE 的距离,由已知可得CE =1,C 1C =4,所以C 1E =17,故CH =417.17从而点C 到平面C 1DE 的距离为417.17【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥E -BB 1C 1C 的体积.【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE 平面ABB 1A 1,故B 1C 1⊥BE .又BE ⊥EC 1,所以BE ⊥平面EB 1C 1..(2)由(1)知∠BEB 1=90°︒由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =∠A 1EB 1=45,故AE =AB =3,AA 1=2AE =6.作EF ⊥BB 1,垂足为F ,则EF ⊥平面BB 1C 1C ,且EF =AB =3.所以,四棱锥E -BB 1C 1C 的体积V =1⨯3⨯6⨯3=18.3【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.4.【2019年高考北京卷文数】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底部ABCD为菱形,E 为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,所以PA⊥BD.又因为底面ABCD为菱形,所以BD⊥AC.所以BD⊥平面PAC.(2)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PAB.所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=1AB.21AB.2因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG平面PAE,所以CF∥平面PAE.【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.【答案】(1)见解析;(2)见解析;(3)3.3【解析】(1)连接BD,易知AC I BD=H,BH=DH.又由BG=PG,故GH∥ PD.又因为GH⊄平面P AD,PD⊂平面P AD,所以GH∥平面P AD.(2)取棱PC的中点N,连接DN.依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC I平面PCD=PC,所以DN⊥平面P AC,又PA⊂平面P AC,故DN⊥PA.又已知PA⊥CD,CD I DN=D,所以PA⊥平面PCD.(3)连接AN,由(2)中DN⊥平面P AC,可知∠DAN为直线AD与平面P AC所成的角,因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=3.又DN⊥AN,在Rt△AND中,sin∠DAN=DN3.=AD33.3所以,直线AD与平面P AC所成角的正弦值为【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED 平面DEC 1,A 1B 1平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90︒,∠BAC=30︒,A1A=AC=AC,E,F分别是AC,A1B1的中点.1(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.【答案】(1)见解析;(2)【解析】方法一:3.5(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.所以BC⊥平面A1EF.因此EF⊥BC.(2)取BC中点G,连接EG,GF,则EGFA1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGFA1为矩形.由(1)得BC⊥平面EGFA1,则平面A1BC⊥平面EGFA1,所以EF在平面A1BC上的射影在直线A1G上.连接A1G交EF于O,则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC=4,则在Rt△A1EG中,A1E=23,EG=3.由于O为A1G的中点,故EO=OG=A1G15,=22EO2+OG2-EG23所以cos∠EOG==.2EO⋅OG5因此,直线EF与平面A1BC所成角的余弦值是方法二:(1)连接A1E,因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又平面A1ACC1⊥平面ABC,A1E平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以,A1E⊥平面ABC.如图,以点E为原点,分别以射线EC,EA1为y,轴的正半轴,建立空间直角坐标系E–y.3.5不妨设AC=4,则A1(0,0,23),B(3,1,0),B1(3,3,23),F(33,,23),C(0,2,0).22u u u ru u u r33因此,EF=(,,23),BC=(-3,1,0).22由EF⋅BC=0得EF⊥BC.(2)设直线EF与平面A1BC所成角为θ.u u u r u u u ru u u r u u u r由(1)可得BC=(-3,,10),AC2-23).1=(0,,z),设平面A1BC的法向量为n=(x,y,u u u r⎧⎧BC⋅n=0⎪-3x+y=0⎪由⎨,得⎨,⎪⎪⎩A1C⋅n=0⎩y-3z=0u u u ru u u r|EF⋅n|4r1),故sinθ=|cos EF,n|=u u u=,取n=(1,3,|EF|⋅|n|5因此,直线EF与平面A1BC所成的角的余弦值为3.5【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90︒,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=2DA,求三棱锥Q-ABP的体积.3【答案】(1)见解析;(2)1.【解析】(1)由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=32.2DA,所以BP=22.31作QE⊥AC,垂足为E,则QE∥=3DC.又BP=DQ=由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为111VQ-ABP=⨯QE⨯S△ABP=⨯1⨯⨯3⨯22sin45︒=1.332【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到∠BAC=90°,即BA⊥AC,再结合已知条件BA⊥AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【答案】(1)见解析;(2)45.5【解析】(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=23.连结OB.因为AB=BC=12ABC OB AC OB=AC=2.,所以△为等腰直角三角形,且⊥,AC22由OP2+OB2=PB2知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=1242AC=2,CM=BC=,∠ACB=45°.233所以OM=OC⋅MC⋅sin∠ACB45 25=,CH=.OM3545.5所以点C到平面POM的距离为【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB,欲证PO⊥平面ABC,只需证明PO⊥AC,PO⊥OB即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C作CH⊥OM,垂足为M,只需论证CH的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.»上异»所在平面垂直,M是CD 10.【2018年高考全国Ⅱ卷文数】如图,矩形ABCD所在平面与半圆弧CD于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.»上异于C,D的点,且DC为直径,所以DM⊥CM.因为M为CD又BC∩CM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连结AC交BD于O.因为ABCD为矩形,所以O为AC中点.连结OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP平面PBD,所以MC∥平面PBD.【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P为AM中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P−ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA=PD,且E为AD的中点,∴PE⊥AD.∵底面ABCD为矩形,∴BC∥AD,∴PE⊥BC.(2)∵底面ABCD为矩形,∴AB⊥AD.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB⊥PD.又PA⊥PD,∴PD⊥平面PAB,∴平面PAB⊥平面PCD.(3)如图,取PC中点G,连接FG,GD.∵F,G分别为PB和PC的中点,∴FG∥BC,且FG=∵四边形ABCD为矩形,且E为AD的中点,∴ED∥BC,DE=1BC.21BC,2∴ED∥FG,且ED=FG,∴四边形EFGD为平行四边形,∴EF∥GD.又EF⊄平面PCD,GD⊂平面PCD,∴EF∥平面PCD.【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=23,∠BAD=90°.(1)求证:AD⊥BC;(2)求异面直线BC与MD所成角的余弦值;(3)求直线CD与平面ABD所成角的正弦值.【答案】(1)见解析;(2)133;(3).264【解析】(1)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(2)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=在Rt△DAN中,AN=1,故DN=AD2+AM2=13.因为AD⊥平面ABC,故AD⊥AC.AD2+AN2=13.1MN13.在等腰三角形DMN中,MN=1,可得2cos∠DMN==DM26所以,异面直线BC与MD所成角的余弦值为13.26(3)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=3.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD=AC2+AD2=4.CM3.=CD43.4在Rt△CMD中,sin∠CDM=所以,直线CD与平面ABD所成角的正弦值为【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A 1B 1C ,A 1B 1平面A 1B 1C ,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形,因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1,所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B 平面A 1BC ,BC 平面A 1BC ,所以AB 1⊥平面A 1BC .因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB 1A 1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.A 1A ,B 1B ,C 1C 均垂直于平面ABC ,【2018年高考浙江卷】如图,已知多面体ABCA 1B 1C 1,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(1)见解析;(2)39.13【解析】方法一:(1)由AB=2,AA1=4,BB1=2,AA1⊥AB,BB1⊥AB得AB1=A,1B1=22 222所以A1B1+AB1=AA1.故AB1⊥A1B1.由BC=2,BB1=2,CC1=1,BB1⊥BC,CC1⊥BC得B1C1=5,由AB=BC=2,∠ABC=120︒得AC=23,222由CC1⊥AC,得AC1=13,所以AB1+B1C1=AC1,故AB1⊥B1C1.因此AB1⊥平面A1B1C1.(2)如图,过点C1作C1D⊥A1B1,交直线A1B1于点D,连结AD.由AB1⊥平面A1B1C1得平面A1B1C1⊥平面ABB1,由C1D⊥A1B1得C1D⊥平面ABB1,所以∠C1AD是AC1与平面ABB1所成的角.由BC1B1=11=5,A1B1=22,AC11=21得cos∠C1A所以C1D=3,故sin∠C1AD=61,,sin∠C1A1B1=77C1D39.=AC113因此,直线AC 1与平面ABB 1所成的角的正弦值是39.13方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为,y 轴的正半轴,建立空间直角坐标系O -y .由题意知各点坐标如下:A (0,-3,0),B (1,0,0),A 1(0,-3,4),B 1(1,0,2),C 1(0,3,1),因此AB 1=(1,3,2),A ,3,-2),AC 1B 1=(111=(0,23,-3),uuu r uuu u r uuu u ruuu r uuu u r由AB 1⋅A 1B 1=0得AB 1⊥A 1B 1.uuu r uuu u r由AB 1⋅AC 得AB 1⊥AC 11.11=0所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.uuu r uu u r uuu r由(1)可知AC 1=(0,23,1),AB =(1,3,0),BB 1=(0,0,2),设平面ABB 1的法向量n =(x ,y ,z ).uu u r⎧⎧x +3y =0,⎪n ⋅AB =0,⎪由⎨uuu 即可取n =(-3,1,0).r ⎨⎩2z =0,⎪⎩n ⋅BB 1=0,⎪uuu ruuu r |AC1⋅n |39=.所以sin θ=|cos AC 1,n |=uuur 13|AC 1|⋅|n |因此,直线AC 1与平面ABB 1所成的角的正弦值是39.13【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P−ABCD中,AB//CD,且∠BAP=∠CDP=90o.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90o,且四棱锥P−ABCD的体积为【答案】(1)见解析;(2)6+23.【解析】(1)由已知∠BAP=∠CDP=90︒,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.8,求该四棱锥的侧面积.3(2)在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,可得PE⊥平面ABCD.设AB=x,则由已知可得AD=2x,PE=2x.2故四棱锥P-ABCD的体积VP-ABCD=由题设得11AB⋅AD⋅PE=x3.33138x=,故x=2.33从而PA=PD=2,AD=BC=22,PB=PC=22.可得四棱锥P-ABCD的侧面积为1111PA⋅PD+PA⋅AB+PD⋅DC+BC2sin60︒=6+23.2222【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由AB⊥AP,AB⊥PD,得AB⊥平面PAD即可证得结果;(2)设AB=x,则四棱锥P-ABCD的体积VP-ABCD =11AB⋅AD⋅PE=x3,解得33x=2,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=1AD,∠BAD=∠ABC=90︒. 2(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为27,求四棱锥P-ABCD的体积.【答案】(1)见解析;(2)43.【解析】(1)在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD.又BC⊄平面PAD,AD⊂平面PAD,故BC∥平面P AD.(2)取AD的中点M,连结PM,CM,由AB=BC=1AD及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD. 2因为侧面P AD为等边三角形且垂直于底面ABCD,平面P AD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD,因为CM⊂底面ABCD,所以PM⊥CM.设BC=,则CM=,CD=2x,PM=3x,PC=PD=2.取CD的中点N,连结PN,则PN⊥CD,所以PN=14x. 2因为△PCD的面积为27,所以114⨯2x⨯x=27,22解得=−2(舍去),=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P−ABCD的体积V=12⨯(2+4)⨯⨯23=43. 32【名师点睛】解答本题时,(1)先由平面几何知识得BC∥AD,再利用线面平行的判定定理证得结论;(2)取AD的中点M,利用线面垂直的判定定理证明PM⊥底面ABCD,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅱ卷文数】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)见解析;(2)11【解析】(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC⊥BO.从而AC⊥平面DOB,故AC⊥BD.(2)连结EO.由(1)及题设知∠ADC=90°,所以DO=AO.在Rt△AOB中,BO2+AO2=AB2.又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2,故∠DOB=90°.1AC.21又△ABC是正三角形,且AB=BD,所以EO=BD.2由题设知△AEC为直角三角形,所以EO=故E为BD的中点,从而E到平面ABC的距离为D到平面ABC的距离的四面体ABCD的体积的1,四面体ABCE的体积为21,即四面体ABCE与四面体ACDE的体积之比为11.2【名师点睛】解答本题时,(1)取AC的中点O,由等腰三角形及等边三角形的性质得AC⊥OD,(2)先由AE⊥EC,结AC⊥OB,再根据线面垂直的判定定理得AC⊥平面OBD,即得AC⊥BD;合平面几何知识确定EO=1AC,再根据锥体的体积公式得所求体积之比为11.垂直、平行关系证明2中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P–ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E–BCD的体积.【答案】(1)见解析;(2)见解析;(3)1 . 3【解析】(1)因为PA⊥AB,PA⊥BC,所以PA⊥平面ABC,又因为BD⊂平面ABC,所以PA⊥BD.(2)因为AB=BC,D为AC中点,所以BD⊥AC,由(1)知,PA⊥BD,所以BD⊥平面PAC,所以平面BDE⊥平面PAC.(3)因为PA∥平面BDE,平面PAC I平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=1PA=1,BD=DC=2. 2由(1)知,PA⊥平面ABC,所以DE⊥平面ABC.所以三棱锥E-BCD的体积V=11 BD⋅DC⋅DE=. 63【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由V=1⨯S△BCD⨯DE即可求解. 319.【2017年高考天津卷文数】如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.【答案】(1)55;(2)见解析;(3).55【解析】(1)如图,由已知AD//BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=故cos∠DAP=AD2+PD2=5,AD5.=AP55.5所以,异面直线AP与BC所成角的余弦值为(2)因为AD⊥平面PDC,直线PD平面PDC,所以AD⊥PD.又因为BC//AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PB C.(3)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2.又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF =CD 2+CF 2=25,在Rt △DPF 中,可得sin ∠DFP =PD 5.=DF 55.5所以,直线AB 与平面PBC 所成角的正弦值为【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD ∥BC ,所以∠DAP或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ∠DAP =AD ;AP(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF ∥AB ,连结PF ,则∠DFP 为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取B 1D 1的中点O 1,连接CO 1,AO 11,由于ABCD -A 1B 1C 1D 1是四棱柱,所以AO 11∥OC ,AO 11=OC ,因此四边形AOCO 11为平行四边形,所以A 1O ∥O 1C ,⊄平面B 1CD 1,又O 1C ⊂平面B 1CD 1,AO 1所以A 1O ∥平面B 1CD 1.(2)因为AC ⊥BD ,E ,M 分别为AD 和OD 的中点,所以EM ⊥BD ,又A 1E ⊥平面ABCD ,BD ⊂平面ABCD ,所以A 1E ⊥BD ,因为B 1D 1∥BD ,所以EM ⊥B 1D 1,A 1E ⊥B 1D 1,又A 1E ,EM ⊂平面A 1EM ,A 1E I EM =E ,所以B 1D 1⊥平面A 1EM ,又B 1D 1⊂平面B 1CD 1,所以平面A 1EM ⊥平面B 1CD 1.【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.21.BC⊥BD,【2017年高考江苏卷】如图,在三棱锥A-BCD中,AB⊥AD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.【解析】(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD I平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC I AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.BC∥AD,【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.PEAB (1)证明:CE∥平面PAB;(2)求直线CE与平面PBC所成角的正弦值.【答案】(1)见解析;(2)D C2.8【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A中点为F,连接EF,FB.因为E,F分别为PD,P A中点,所以EF∥AD且EF=又因为BC∥AD,BC=1AD,21AD,所以2EF∥BC且EF=BC,即四边形BCEF为平行四边形,所以CE∥BF,因此CE∥平面P AB.(2)分别取BC,AD的中点为M,N.连接PN交EF于点Q,连接MQ.因为E,F,N分别是PD,P A,AD的中点,所以Q为EF中点,在平行四边形BCEF中,MQ//CE.由△P AD为等腰直角三角形得PN⊥AD.由DC⊥AD,N是AD的中点得BN⊥AD.所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,PD=2得CE =2,在△PBN 中,由PN =BN =1,PB =3得QH =在Rt △MQH 中,QH=所以sin ∠QMH =1,41,MQ =2,42,8所以直线CE 与平面PBC 所成角的正弦值是2.8【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
(2017-2019)高考文数真题分类汇编专题05 立体几何(选择题、填空题)(教师版)
专题05 立体几何(选择题、填空题)1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.2.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.4.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>;在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.5.【2018年高考全国Ⅰ卷文数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.172B.52C.3D.2【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点M在上底面上,点N在下底面上,且可以确定点M 和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,=,故选B.【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.6.【2018年高考全国Ⅰ卷文数】中国古建筑借助榫卯将木构件连接起,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.【名师点睛】本题主要考查空间几何体的三视图,考查考生的空间想象能力和阅读理解能力,考查的数学核心素养是直观想象.7.【2018年高考全国I 卷文数】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .C .D .【答案】C【解析】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ︒∠=,因为2AB =,所以1BC =,从而求得1CC =所以该长方体的体积为22V =⨯⨯= 故选C.【名师点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长、宽、高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,最终求得结果.8.【2018年高考全国I 卷文数】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π【答案】B【解析】根据题意,可得截面是边长为的圆,且高为所以其表面积为22π2π12πS =+=,故选B.【名师点睛】该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.9.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .8【答案】C【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯= 故选C.【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.10.【2018年高考全国Ⅰ卷文数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为 A. B. C.D.【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,俯视图正视图当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,24ABC S AB ==Q △,6AB ∴=,点M 为三角形ABC 的重心,23BM BE ∴==Rt OBM ∴△中,有2OM ==,426DM OD OM ∴=+=+=,()max 163D ABC V -∴=⨯= B.【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D 在平面ABC 上的射影为三角形ABC 的重心时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到23BM BE ==OM ,进而得到结果,属于较难题型.11.【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A .2 B .2C D 【答案】C【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【名师点睛】本题主要考查异面直线所成的角,考查考生的空间想象能力、化归与转化能力以及运算求解能力,考查的数学核心素养是直观想象、数学运算.求异面直线所成的角,需要将异面直线所成的角等价转化为相交直线所成的角,然后利用解三角形的知识加以求解.12.【2018年高考浙江卷】已知平面α,直线m ,n 满足m ⊄α,nα,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】因为,,m n m n ⊄⊂∥αα,所以根据线面平行的判定定理得m ∥α. 由m ∥α不能得出m 与α内任一直线平行, 所以m n ∥是m ∥α的充分不必要条件,故选A. 【名师点睛】充分、必要条件的三种判断方法:(1)定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.(2)等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.13.【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【答案】D【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ, 故选D.【名师点睛】分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.14.【2018年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .4【答案】C【解析】由三视图可得四棱锥P ABCD -如图所示,在四棱锥P ABCD -中,2,2,2,1PD AD CD AB ====,由勾股定理可知:3,PA PC PB BC ==== 则在四棱锥中,直角三角形有:,,PAD PCD PAB △△△,共3个, 故选C.【名师点睛】此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.解答本题时,根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.15.【2017年高考全国Ⅰ卷文数】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是A .B .C .D .【答案】A【解析】对于B ,易知AB ∥MQ ,则直线AB ∥平面MNQ ; 对于C ,易知AB ∥MQ ,则直线AB ∥平面MNQ ; 对于D ,易知AB ∥NQ ,则直线AB ∥平面MNQ . 故排除B ,C ,D ,选A .【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.16.【2017年高考全国Ⅱ卷文数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42πD .36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B.【名师点睛】(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. (2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.17.【2017年高考全国Ⅲ卷文数】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2r ==,由圆柱的体积公式,可得圆柱的体积是223ππ1π4V r h ==⨯⨯=⎝⎭,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.18.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.19.【2017年高考北京卷文数】某三棱锥的三视图如图所示,则该三棱锥的体积为A .60B .30C .20D .10【答案】D【解析】该几何体是如下图所示的三棱锥P ABC -.由图中数据可得该几何体的体积是,故选D. 【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面三角形的外面,否则中间的那条线就不会是虚线.20.【2017年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)115341032V =⨯⨯⨯⨯=是A .12π+ B .32π+ C .312π+D .332π+【答案】A【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:(1)首先看俯视图,根据俯视图画出几何体地面的直观图;(2)观察正视图和侧视图找到几何体前、后、左、右的高度;(3)画出整体,然后再根据三视图进行调整.21.【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【答案】B【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .【名师点睛】立体几何是高中数学中的重要内容,也是高考重点考查的考点与热点.这类问题的设置一般有线面位置关系的证明与角度距离的计算等两类问题.解答第一类问题时一般要借助线面平行与垂直的判定定理进行;解答第二类问题时先建立空间直角坐标系,运用空间向量的坐标形式及数量积公式进行求解.22.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC ,那么P 到平面ABC 的距离为___________.【解析】作,PD PE 分别垂直于,AC BC ,PO ⊥平面ABC ,连接CO ,由题意可知,CD PD CD PO ⊥⊥,=PD PO P I ,CD \^平面PDO ,又OD ⊂平面PDO ,CD OD ∴⊥,PD PE ==Q 2PC =,sin sin 2PCE PCD ∴∠=∠=, 60PCB PCA ︒∴∠=∠=,又易知PO CO ⊥,CO 为ACB ∠的平分线,451,,OCD OD CD OC ︒∴∠=∴===又2PC =,PO ∴==【名师点睛】本题主要考查学生空间想象能力,合理画图成为关键,准确找到P 在底面上的射影,使用线面垂直定理,得到垂直关系,利用勾股定理解决.注意画图视角选择不当,线面垂直定理使用不够灵活,难以发现垂直关系,问题则很难解决,将几何体摆放成正常视角,是立体几何问题解决的有效手段,几何关系利于观察,解题事半功倍.23.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形. 24.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.25.【2019年高考北京卷文数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 26.【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.27.【2019.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】π42=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心, 故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】本题主要考查空间几何体的结构特征以及圆柱的体积计算问题,解答时,根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.28.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.29.【2018年高考江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于√2,所以该多面体的体积为2142133⨯⨯⨯=. 【名师点睛】解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.30.【2018年高考天津卷文数】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.【答案】13【解析】如图所示,连接11A C ,交11B D 于点O ,很明显1A 在平面11BDD B 上的射影是点O ,则1A O 是四棱锥A 1–BB 1D 1D 的高,且111122A O A C ===1111BDD B S BD DD =⨯==四边形,结合四棱锥体积公式可得其体积为:1113323V Sh ===.【名师点睛】本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.31.【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.【答案】8π【解析】如下图所示,30,90SAO ASB ∠=∠=o o ,又211822SAB S SA SB SA =⋅==△,解得4SA =,所以12,2SO SA AO ====21π8π3V OA SO =⋅⋅⋅=.【名师点睛】此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.32.【2017年高考全国Ⅰ卷文数】已知三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S−ABC 的体积为9,则球O 的表面积为________.【答案】36π【解析】取SC 的中点O ,连接,OA OB ,因为,SA AC SB BC ==,所以,OA SC OB SC ⊥⊥,因为平面SAC ⊥平面SBC ,所以OA ⊥平面SBC ,设OA r =,则3111123323A SBC SBC V S OA r r r r -∆=⨯⨯=⨯⨯⨯⨯=, 所以31933r r =⇒=,所以球的表面积为24π36πr =.【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的各顶点的距离相等,然后用同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球. 33.【2017年高考全国Ⅱ卷文数】长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .【答案】14π。
三年高考(2017-2019)理科数学高考真题分类汇总:空间向量与立体几何
第二十三讲空间向量与立体几何2019年1.(2019全国I理18)如图,直四棱柱ABCD-AiBrCiDi的底面是菱形,AAi=4,AB=2,Z BAD=60°,E,M,N分别是BC,BB X,人刀的中点.(1)证明:枷〃平面CiDE;(2)求二面角A-MAi-N的正弦值.解析:(1)连结BiC,ME.因为E分别为BBi,BC的中点,所以ME//B1C,2又因为N为AiD的中点,所以ND=-A{D.2由题设^DAiB,P DC,可得B rCPAiD,故M E£ND,因此四边形为平行四边形,MN//ED.又MNS平面EDCr,所以MN〃平面CiDE.(2)由已知可^DE±DA.以D为坐标原点,瑟的方向为x轴正方向,建立如图所示的空间直角坐标系Q-xyz,L UUUl UULIU1则A(2,0,0),A i(2,0,4),M(1,a/3,2),ML。
,2),天人=(0,0,-4),=(-l,V3,-2),uuu uuuAN=(—I,o,—2),AN=(-1,0,-2).设m=(x,y,z)为平面AMA的法向量,贝!r uuuinm-A^M=0umim-A l A=0所以〈—x+y/3y~2z=0,_r-可取/n=(J5』,o).—4z=0.r uuirn•MN=0,uuir〃X n=o.设n=(p,q,r)为平面AMN的法向量,贝卜所以4'可取〃=(2,0,—1).-p-2r=0.工曰/、m n2^/3^/15于TH COS\/7l,n)=—-—=----户=----,|mll n\2x7?5所以二面角A-MA.-N的正弦值为零.2.(2019北京理16)如图,在四棱锥P-ABCD中,平面ABC。
,AD LCD,PF1 ADPBC,PA=AD=CD=2,BC=3.E为FQ的中点,点F在PC上,且一=一PC3(I)求证:CDJ_平面PAD;(II)求二面角F-AE-P的余弦值;(III)PC2设点G在PB上,且一=—.判断直线AG是否在平面AEF内,说明理由.PB3解析:(I)因为平面A3CD,所以PALCD.又因为AB LCD,所以CD平面PAD,(II)过A作AO的垂线交BC于点因为PA_L平面ABCD,所以PA±AM,D,如图建立空间直角坐标系A-xyz,则A(0,0,0),8(2,-1,0),C(2,2,0),D(0,2,0),F(0,0,2),因为E为PD的中点,所以E(0,1,1).UUU1UUIU ULUL所以AE=(0,1,1),FC=(2,2,—2),AF=(0,0,2).uun1uun 所以PF=—PC=3uuu uun uun AF=AP+PF=设平面AEF的法向量为〃=(x,y,z),则r UUJn-AE=0uuiy,即•n•AF=0y+z=0224•—x+—y+—z=0〔3 33令z=l,贝I]y=-l,x=-1.于是"=(—1,—1,1).又因为平面PAD的法向量为p=(l,O,O),所以cos<n,p>=C=\n\-\P\3因为二面角F-AE-P为锐角,所以其余弦值为3PG?UUL(III)直线AG在平面AEF内,因为点G在PB上,且—=PB=(2,-1,-2)PB3uum quit<474、uum uun uldu<49所以PG=-PB=\AG=AP+PG=\---,-\.3"333)(333J由(II)知,平面AEF的法向量为"=(一1,—1,1),uuin422所以AGn=--+—+—=0,所以直线AG在平面AEF内.3333.(2019浙江19)如图,己知三棱柱ABC—50,平面上平面A8C,/ABC=90°, ABAC=30°,=AC,E,F分别是ACMiBi的中点.(1)证明:EF±BC;(2)求直线EF与平面AiBC所成角的余弦值.解析:方法一:(I)连接&E,因为E是AC的中点,所以A.ELAC.又平®AiACCi±平面ABC,Ai£<=平面AiACG,平f fiAiACCiA平面A BOAC,所以,AiE_L平面ABC,贝Ui£±BC.又因为&F〃A3,ZABC=90°,故所以BC±平面AEF.因此EFLBC.(II)取BC中点G,连接EG,GF,贝怔GE4i是平行四边形.由于AiEI 平面ABC,故AEAEG,所以平行四边形EGFAi 为矩形.由(I )得BC±平面EGFAi ,则平面平面EGFAi ,所以EF 在平面血3。
(2017-2019年)高考真题数学(理)分项汇编 专题05 立体几何(选择题、填空题) 含解析
(2017-2019年)高考真题数学(理)分项汇编专题05 立体几何(选择题、填空题)1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥, PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==344π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12E F P B x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,344338V R ∴=π=π⨯=,故选D.2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则。
2017-2019高考文数真题分项解析-立体几何
B. 2 5
C.3
D.2
6.【2018 年高考全国Ⅲ卷文数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部
分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方
体,则咬合时带卯眼的木构件的俯视图可以是
7.【2018 年高考全国 I 卷文数】在长方体 ABCD A1B1C1D1 中, AB BC 2 , AC1 与平面 BB1C1C 所成
专题 05 立体几何(选择题、填空题)
1.【2019 年高考全国Ⅱ卷文数】设 α,β 为两个平面,则 α∥β 的充要条件是 A.α 内有无数条直线与 β 平行 B.α 内有两条相交直线与 β 平行 C.α,β 平行于同一条直线 D.α,β 垂直于同一平面
2.【2019 年高考全国Ⅲ卷文数】如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平 面 ABCD,M 是线段 ED 的中点,则
含端点),设 SE 与 BC 所成的角为 θ1,SE 与平面 ABCD 所成的角为 θ2,二面角 S−AB−C 的平面角为 θ3, 则
A.θ1≤θ2≤θ3
B.θ3≤θ2≤θ1
C.θ1≤θ3≤θ2
D.θ2≤θ3≤θ1
14.【2018 年高考北京卷文数】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
平面 SCA⊥平面 SCB,SA=AC,SB=BC,三棱锥 S−ABC 的体积为 9,则球 O 的表面积为________.
33.【2017 年高考全国Ⅱ卷文数】长方体的长,宽,高分别为 3, 2,1,其顶点都在球 O 的球面上,则球 O 的
表面积为
.
34.【2017 年高考天津卷文数】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为 18,
2019年高考数学试题分类汇编立体几何附答案详解
2019年高考数学试题分类汇编立体几何一、选择题.1、(2019年高考全国I 卷理科12)已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D答案:D解析:如图,三棱锥ABC P -为正三棱锥,不妨设a PC PB PA 2||||||===,底面外接圆半径为r ,由题意可得3||,||==CF a EF .在PAC ∆中,由余弦定理可得aa a a PAC 21222444cos 22=⨯⨯-+=∠,所以在EAC ∆中22124||222+=⨯⨯⨯-+=a aa a a EC 又︒=∠90CEF ,根据勾股定理可得222||||||CF EF EC =+,即2||=PC在直角POC ∆中,332||=OC ,36||||22=-=r PC OP 由正三棱锥外接球半径公式可得26||2||222=+=OP OP r R ,故体积为π6 2、(2019年高考全国II 卷文理科7)设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面答案:B解析:由“判定定理:如果一个平面内有两条相交直线分别与另一个平面内两条相交直线平行,那么这两个平面平行”可知答案选B3、(2019年高考全国II 卷文理科16).中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.) 答案:A解析:(1)上层8个,中层8个,下层8个上下底各1个(2)设棱长为a ,如图作出该几何体的截面,1,21=-=CE aCD 又△CDE 为等腰直角三角形,则a a=-⨯212,解得12-=a .则棱长为12- 4、(2019年高考全国III 卷文理科8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 答案:B解析:建系如图)23,0,23(),0,11,1(),3,0,1(),0,2,0(M N E B 所以7)023()20()023(||222=-+-+-=, 2)300()01()11(||222=-+-+-=又因为+=21所以B 、M 、E 、N 四点共面。
立体几何(解析版)
2017年高考真题分类汇编(理数):专题6 立体几何(解析版)一、单选题(共7题;共14分)1、(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A、+1B、+3C、+1D、+32、(2017•浙江)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,= =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A、γ<α<βB、α<γ<βC、α<β<γD、β<γ<α3、(2017•北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A、3B、2C、2D、24、(2017•新课标Ⅰ卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A、10B、12C、14D、165、(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A、B、C、D、6、(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A、90πB、63πC、42πD、36π7、(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A、πB、C、D、二、填空题(共5题;共5分)8、(2017•山东)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为________.9、(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10、(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是________.11、(2017•新课标Ⅰ卷)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.12、(2017•新课标Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是________(填写所有正确结论的编号)三、解答题(共9题;共60分)13、(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(12分)(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.14、(2017·天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.15、(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD ⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.16、(2017•北京卷)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17、(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.18、(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.19、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20、(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.21、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.答案解析部分一、单选题1、【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为× ×π×12×3+ × × × ×3= +1,故选:A【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.2、【答案】B【考点】用空间向量求平面间的夹角,二面角的平面角及求法【解析】【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,= ,=(0,3,6 ),=(,5,0),= ,= .设平面PDR的法向量为=(x,y,z),则,可得,可得= ,取平面ABC的法向量=(0,0,1).则cos = = ,取α=arccos .同理可得:β=arccos .γ=arccos .∵>>.∴α<γ<β.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.则cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.∴cosα>cosγ>cosβ,α,β,γ为锐角.∴α<γ<β.故选:B.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.可得cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.即可得出.3、【答案】B【考点】由三视图求面积、体积,由三视图还原实物图【解析】【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA= ==2 ,故选:B.【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.4、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图【解析】【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形= ×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可5、【答案】C【考点】余弦定理的应用,异面直线及其所成的角【解析】【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN= AB1= ,NP= BC1= ;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ= AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC= ,∴MQ= ;在△MQP中,MP= = ;在△PMN中,由余弦定理得cos∠MNP= = =﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【分析】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.6、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.7、【答案】B【考点】棱柱、棱锥、棱台的体积【解析】【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r= = ,∴该圆柱的体积:V=Sh= = .故选:B.【分析】推导出该圆柱底面圆周半径r= = ,由此能求出该圆柱的体积.二、填空题8、【答案】2+【考点】由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2= ×π×12×1= ,则该几何体的体积V=V1+2V1=2+ ,故答案为:2+ .【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.9、【答案】【考点】球的体积和表面积【解析】【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R= ,则球的体积V= π•()3= ;故答案为:.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.10、【答案】【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则= = .故答案为:.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.11、【答案】4 cm3【考点】棱锥的结构特征,棱柱、棱锥、棱台的体积【解析】【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= = = ,=3 ,则V= = = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤ =4 cm3,∴体积最大值为4 cm3.故答案为:4 cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= ,求出S△ABC=3 ,V= = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.12、【答案】②③【考点】异面直线及其所成的角,用空间向量求直线间的夹角、距离【解析】【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),| |=1,直线b的方向单位向量=(1,0,0),| |=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,=(﹣cosθ,﹣sinθ,1),| |= ,设与所成夹角为α∈[0,],则cosα= = |sinθ|∈[0,],∴α∈[ ,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ= = = |cosθ|,当与夹角为60°时,即α= ,|sinθ|= = = ,∵cos2θ+sin2θ=1,∴cosβ= |cosθ|= ,∵β∈[0,],∴β= ,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C 坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.三、解答题13、【答案】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BEGH为菱形,∴AE=GE=AC=GC= .取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM= .在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>= .∴二面角E﹣AG﹣C的大小为60°.【考点】旋转体(圆柱、圆锥、圆台),直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C 的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG ﹣C的大小.14、【答案】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>= .∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=| |=| |= .解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.【考点】异面直线及其所成的角,平面与平面平行的判定,平面与平面平行的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长.15、【答案】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,设PC=AD=2DC=2CB=2,则C(0,1,0),D(0,0,0),P(1,0,1),E(),A(2,0,0),B(1,1,0),=(),=(1,0,﹣1),=(0,1,﹣1),设平面PAB的法向量=(x,y,z),则,取z=1,得=(1,1,1),∵= =0,CE⊄平面PAB,∴CE∥平面PAB.解:(Ⅱ)=(﹣1,1,﹣1),设平面PBC的法向量=(a,b,c),则,取b=1,得=(0,1,1),设直线CE与平面PBC所成角为θ,则sinθ=|cos<>|= = = .∴直线CE与平面PBC所成角的正弦值为.【考点】直线与平面平行的判定,直线与平面所成的角,向量方法证明线、面的位置关系定理,用空间向量求直线与平面的夹角【解析】【分析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.(Ⅱ)求出平面PBC的法向量和,利用向量法能求出直线CE与平面PBC所成角的正弦值.16、【答案】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z= ,得.取平面PAD的一个法向量为.∴cos<>= = .∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=| |=| |= .【考点】直线与平面平行的性质,平面与平面垂直的性质,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3.)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP 所成角的正弦值.17、【答案】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(Ⅰ)∵cos<>= = .∴异面直线A1B与AC1所成角的余弦值为;(Ⅱ)设平面BA1D的一个法向量为,由,得,取x= ,得;取平面A1AD的一个法向量为.∴cos<>= = .∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A 为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(Ⅱ)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A 的余弦值,进一步得到正弦值.18、【答案】证明:(Ⅰ)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(Ⅱ)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定【解析】【分析】(Ⅰ)利用AB∥EF及线面平行判定定理可得结论;(Ⅱ)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.19、【答案】(Ⅰ)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2,BN= ,MN= ,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ== ,二面角M﹣AB﹣D的余弦值为:= .【考点】直线与平面平行的判定,二面角的平面角及求法【解析】【分析】(Ⅰ)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(Ⅱ)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.20、【答案】(Ⅰ)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B到平面ACE的距离分别为h D,h E.则= .∵平面AEC把四面体ABCD分成体积相等的两部分,∴= = =1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C的余弦值为.【考点】平面与平面垂直的判定,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO= AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.(Ⅱ)设点D,B到平面ACE的距离分别为h D,h E.则= .根据平面AEC把四面体ABCD分成体积相等的两部分,可得= = =1,即点E是BD的中点.建立如图所示的空间直角坐标系.设AB=2.利用法向量的夹角公式即可得出.21、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【考点】平面与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD= .取AD 中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.。
2017-2019全国卷文科立体几何题目归纳
18.(12分)
如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12
AB BC AD ==,90BAD ABC ∠=∠=。
(1) 证明:直线//BC 平面PAD ;
(2) 若PCD ∆的面积为P ABCD -的体积。
19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .
(1)证明:AC ⊥BD ;
(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥
EC ,求四面体ABCE 与四面体ACDE 的体积比.
19.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是弧CD 上异于C,D 的点。
(1)证明:平面AMD ⊥平面BMC ;
(2)在线段上是否存在点P ,使得MC ∥平面PBD ?说明理由。
8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()
A.BM=EN,且直线BM、EN是相交直线
B.BM≠EN,且直线BM,EN是相交直线
C.BM=EN,且直线BM、EN是异面直线
D.BM≠EN,且直线BM,EN是异面直线
19.(12分)
图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的四边形ACGD的面积.。
三年高考(2017-2019)各地文科数学高考真题分类汇总:空间几何体的三视图、表面积和体积
空间几何体的三视图、表面积和体积1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A .158B .162C .182D .328.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A.B .12πC.D .10π9.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.B. C .3 D .210.(2018全国卷Ⅰ)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C所成的角为30︒,则该长方体的体积为 A .8B.C.D.11.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是BA12.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC 体积的最大值为 A.B.C.D.13.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .2B .4C .6D .814.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A .1B .2C .3D .415.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球俯视图正视图俯视图侧(左)视图正(主)视图面上,则该圆柱的体积为 A .π B .34π C .2π D .4π 16.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A .60B .30C .20D .1017.(2017浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A .12π+ B .32π+ C .312π+ D . 332π+ 18.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为俯视图侧视图正视图A .90πB .63πC .42πD .36π19.(2018天津)如图,已知正方体1111ABCD A B C D -的棱长为1,则四棱锥111A BB D D -的体积为__.20.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .21.(2017新课标Ⅰ)已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为________.22.(2017新课标Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .23.(2017天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,D 1C 1B 1A 1D CBA则这个球的体积为 . 24.(2017山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .25.(2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
2017-2019三年高考数学(理科)分类汇编专题06立体几何(解答题)(K12教育文档)
2017-2019三年高考数学(理科)分类汇编专题06立体几何(解答题)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2019三年高考数学(理科)分类汇编专题06立体几何(解答题)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2019三年高考数学(理科)分类汇编专题06立体几何(解答题)(word版可编辑修改)的全部内容。
专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(210【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),3,2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(13,2)A M =--,1(1,0,2)A N =--,(0,3,0)MN =-.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以32040x z z ⎧--=⎪⎨-=⎪⎩,.可取3,1,0)=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n 所以3020q p r ⎧-=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是2315cos ,||525⋅〈〉===⨯‖m n m n m n ,所以二面角1A MA N --10【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题。
2019高考数学(文)真题分类汇编-立体几何含答案
2019高考数学(文)真题分类汇编-立体几何含答案立体几何专题1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是α内有两条相交直线与β平行。
解析:根据面面平行的判定定理,α内有两条相交直线都与β平行是α∥β的充分条件。
又根据面面平行性质定理,若α∥β,则α内任意一条直线都与β平行。
因此,α内两条相交直线都与β平行是α∥β的必要条件。
所以选B。
名师点睛:本题考查了空间两个平面的判定与性质及充要条件,需要运用面面平行的判定定理与性质定理进行判断。
容易犯的错误是记不住定理,凭主观臆断。
2.【2019年高考全国Ⅲ卷文数】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则BM≠EN,且直线BM,EN是相交直线。
解析:连接ON,BD,容易得到直线BM,EN是三角形EBD的中线,是相交直线。
过M作MF⊥OD于F,连接BF,平面CDE⊥平面ABCD,EO⊥CD,EO⊥平面CDE,因此EO⊥平面ABCD,MF⊥平面ABCD,所以△MFB与△EON均为直角三角形。
设正方形边长为2,可以计算出EO=3,ON=1,EN=2,MF=35,BF=22,因此BM=7,BM≠EN,故选B。
名师点睛:本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形。
解答本题时,先利用垂直关系,再结合勾股定理进而解决问题。
3.【2019年高考浙江卷】XXX是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高。
若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是162.解析:根据三视图,可以得到底面为直角梯形,上底为10,下底为18,高为9.因此,底面积S=1/2(10+18)×9=108,高h=9,代入公式V柱体=Sh可得V柱体=108×9=972,单位为cm3,故选B。
2017年高考数学试题分项版—立体几何(解析版)
2017年高考数学试题分项版—立体几何(解析版)一、选择题1.(2017·全国Ⅰ文,6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()1.【答案】A【解析】A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交;B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ;D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB ⊄平面MNQ ,NQ ⊂平面MNQ ,∴AB ∥平面MNQ .故选A.2.(2017·全国Ⅱ文,6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π2.【答案】B【解析】方法一 (割补法)如图所示,由几何体的三视图,可知该几何体是一个圆柱被截去上面虚线部分所得.将圆柱补全,并将圆柱体从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意,知12V 圆柱<V 几何体<V 圆柱. 又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.3.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π43.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.4.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( )A .A 1E ⊥DC 1B .A 1E ⊥BDC .A 1E ⊥BC 1D .A 1E ⊥AC4.【答案】C【解析】方法一 如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1,∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1. 又A 1E ⊂平面CEA 1B 1,∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错.故选C.方法二 (空间向量法)建立如图所示的空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫0,12,0,∴A 1E →=⎝⎛⎭⎫-1,12,-1,DC 1→=(0,1,1),BD →=(-1,-1,0),BC 1→=(-1,0,1),AC →=(-1,1,0),∴A 1E →·DC 1→≠0,A 1E →·BD →≠0,A 1E →·BC 1→=0,A 1E →·AC →≠0,∴A 1E ⊥BC 1.故选C.5.(2017·北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .60B .30C .20D .105.【答案】D【解析】由三视图画出如图所示的三棱锥P -ACD ,过点P 作PB ⊥平面ACD 于点B ,连接BA ,BD ,BC ,根据三视图可知,底面ABCD 是矩形,AD =5,CD =3,PB =4,所以V 三棱锥P ACD =13×12×3×5×4=10. 故选D.6.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .π2+1 B .π2+3 C .3π2+1 D .3π2+3 6.【答案】A【解析】由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是2的等腰直角三角形,高为3的三棱锥的组合体,∴该几何体体积为V =13×12π×12×3+13×12×2×2×3=π2+1. 故选A.7.(2017·浙江,9)如图,已知正四面体DABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CR RA=2,分别记二面角DPRQ ,DPQR ,DQRP 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α7.【答案】B【解析】如图①,作出点D 在底面ABC 上的射影O ,过点O 分别作PR ,PQ ,QR 的垂线OE ,OF ,OG ,连接DE ,DF ,DG ,则α=∠DEO ,β=∠DFO ,γ=∠DGO .由图可知它们的对边都是DO ,∴只需比较EO ,FO ,GO 的大小即可.如图②,在AB 边上取点P ′,使AP ′=2P ′B ,连接OQ ,OR ,则O 为△QRP ′的中心. 设点O 到△QRP ′三边的距离为a ,则OG =a ,OF =OQ ·sin ∠OQF <OQ ·sin ∠OQP ′=a ,OE =OR ·sin ∠ORE >OR ·sin ∠ORP ′=a ,∴OF <OG <OE ,∴OD tan β<OD tan γ<OD tan α, ∴α<γ<β.故选B.8.(2017·全国Ⅰ理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .168.【答案】B【解析】观察三视图可知,该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有两个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这两个梯形的面积之和为2×12×(2+4)×2=12.故选B.9.(2017·全国Ⅱ理,4)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π9.【答案】B【解析】方法一 (割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A 处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.方法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又V 圆柱=π×32×10=90π,∴45π<V 几何体<90π.观察选项可知只有63π符合.故选B.10.(2017·全国Ⅱ理,10)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32 B.155 C.105 D.3310.【答案】C【解析】方法一 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1, 所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1= 3. 又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105. 故选C.方法二 以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=25×2=105. 所以异面直线AB 1与BC 1所成的角的余弦值为105. 故选C.11.(2017·全国Ⅲ理,8)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB.3π4C.π2D.π4 11.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =π×⎝⎛⎭⎫322×1=3π4. 故选B.12.(2017·北京理,7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A .3 2B .2 3C .2 2D .212.【答案】B 【解析】在正方体中还原该四棱锥,如图所示,可知SD 为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD =22+22+22=2 3.故选B.二、填空题1.(2017·全国Ⅰ文,16)已知三棱锥SABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥SABC 的体积为9,则球O 的表面积为________.1.【答案】36π【解析】如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径知,OA ⊥SC ,OB ⊥SC .由平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,OA ⊥SC 知,OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,∴三棱锥S -ABC 的体积V =13×(12SC ·OB )·OA =r 33, 即r 33=9,∴r =3,∴S 球表=4πr 2=36π. 2.(2017·全国Ⅱ文,15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.2.【答案】14π【解析】∵长方体的顶点都在球O 的球面上,∴长方体的体对角线的长度就是其外接球的直径.设球的半径为R ,则2R =32+22+12=14.∴球O 的表面积为S =4πR 2=4π×⎝⎛⎭⎫1422=14π. 3.(2017·天津文,11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.3.【答案】9π2【解析】设正方体的棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32. 故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=9π2. 4.(2017·山东文,13)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为________.4.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个半径为1,高为1的14圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2. 5.(2017·浙江,11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________. 5.【答案】332【解析】作出单位圆的内接正六边形,如图,则OA =OB =AB =1,S 6=6S △OAB =6×12×1×32=332.6.(2017·江苏,6)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.6.【答案】32【解析】设球O 的半径为R ,∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R . ∴V 1V 2=πR 2·2R 43πR 3=32. 7.(2017·全国Ⅰ理,16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.7.【答案】415【解析】如图,连接OD ,交BC 于点G ,由题意知,OD ⊥BC ,OG =36BC . 设OG =x ,x ∈⎝⎛⎭⎫0,52, 则BC =23x ,DG =5-x , 三棱锥的高h =DG 2-OG 2 =25-10x +x 2-x 2=25-10x ,S △ABC =12×23x ×3x =33x 2,则三棱锥的体积V =13S △ABC ·h =3x 2·25-10x =3·25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4. 令f ′(x )=0,得x =2.当x ∈(0,2)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫2,52时,f ′(x )<0,f (x )单调递减,故当x =2时,f (x )取得最大值80,则V ≤3×80=415. 所以三棱锥体积的最大值为415 cm 3.8.(2017·全国Ⅲ理,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 8.【答案】②③【解析】依题意建立如图所示的空间直角坐标系,设等腰直角三角形ABC 的直角边长为1.由题意知,点B 在平面xOy 中形成的轨迹是以C 为圆心,1为半径的圆.设直线a 的方向向量为a =(0,1,0),直线b 的方向向量为b =(1,0,0),CB →以Ox 轴为始边沿逆时针方向旋转的旋转角为θ,θ∈[)0,2π,则B (cos θ,sin θ,0), ∴AB →=(cos θ,sin θ,-1),|AB →|= 2. 设直线AB 与a 所成的夹角为α, 则cos α=|AB →·a ||a ||AB →|=22|sin θ|∈⎣⎡⎦⎤0,22,∴45°≤α≤90°,∴③正确,④错误; 设直线AB 与b 所成的夹角为β, 则cos β=|AB →·b ||b ||AB →|=22|cos θ|.当直线AB 与a 的夹角为60°,即α=60°时, 则|sin θ|=2cos α=2cos 60°=22, ∴|cos θ|=22,∴cos β=22|cos θ|=12. ∵45°≤β≤90°,∴β=60°,即直线AB 与b 的夹角为60°. ∴②正确,①错误.9.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 9.【答案】92π【解析】设正方体棱长为a ,则6a 2=18,∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3,∴R =32.故球的体积V =43πR 3=43π×⎝⎛⎭⎫323=92π.10.(2017·山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.10.【答案】2+π2【解析】该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.三、解答题1.(2017·全国Ⅰ文,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,且四棱锥P ABCD 的体积为83,求该四棱锥的侧面积.1.(1)证明 由已知∠BAP =∠CDP =90°, 得AB ⊥P A ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面P AD . 又AB ⊂平面P AB , 所以平面P AB ⊥平面P AD .(2)解 如图,在平面P AD 内作PE ⊥AD ,垂足为E .由(1)知,AB ⊥平面P AD ,故AB ⊥PE ,AB ⊥AD , 所以PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x , 故四棱锥P ABCD 的体积V P ABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,故x =2.从而结合已知可得P A =PD =AB =DC =2,AD =BC =22,PB =PC =22, 可得四棱锥P ABCD 的侧面积为12P A ·PD +12P A ·AB +12PD ·DC +12BC 2sin 60°=6+2 3. 2.(2017·全国Ⅱ文,18)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.2.(1)证明 在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD , 故BC ∥平面P AD .(2)解 如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM . 设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P ABCD 的体积V =13×2(2+4)2×23=4 3.3.(2017·全国Ⅲ文,19)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.3.(1)证明 如图,取AC 的中点O ,连接DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形, 所以AC ⊥BO . 又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD . (2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°. 由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD .故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.4.(2017·北京文,18)如图,在三棱锥P -ABC 中,P A ⊥AB ,P A ⊥BC ,AB ⊥BC ,P A =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:P A ⊥BD ;(2)求证:平面BDE ⊥平面P AC ;(3)当P A ∥平面BDE 时,求三棱锥E -BCD 的体积. 4.(1)证明 因为P A ⊥AB ,P A ⊥BC ,AB ∩BC =B , 所以P A ⊥平面ABC .又因为BD ⊂平面ABC ,所以P A ⊥BD .(2)证明 因为AB =BC ,D 是AC 的中点,所以BD ⊥AC . 由(1)知,P A ⊥BD , 又P A ∩AC =A , 所以BD ⊥平面P AC . 所以平面BDE ⊥平面P AC .(3)解 因为P A ∥平面BDE ,平面P AC ∩平面BDE =DE ,所以P A ∥DE . 因为D 为AC 的中点,所以DE =12P A =1,BD =DC = 2.由(1)知,P A ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥E -BCD 的体积V =16BD ·DC ·DE =13.5.(2017·天津文,17)如图,在四棱锥P ABCD 中,AD ⊥平面PDC ,AD ∥BC ,PD ⊥PB ,AD =1,BC =3,CD =4,PD =2.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.5.(1)解 由已知AD ∥BC ,故∠DAP 或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得AP =AD 2+PD 2=5, 故cos ∠DAP =AD AP =55.所以异面直线AP 与BC 所成角的余弦值为55. (2)证明 由(1)知AD ⊥PD . 又因为BC ∥AD ,所以PD ⊥BC .又PD ⊥PB ,PB ∩BC =B ,所以PD ⊥平面PBC .(3)解 如图,过点D 作DF ∥AB ,交BC 于点F ,连接PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,所以PF 为DF 在平面PBC 上的射影,所以∠DFP 为直线DF 和平面PBC 所成的角.由于AD ∥BC ,DF ∥AB ,故BF =AD =1. 由已知,得CF =BC -BF =2. 又AD ⊥DC ,所以BC ⊥DC .在Rt △DCF 中,可得DF =CD 2+CF 2=25, 在Rt △DPF 中,可得sin ∠DFP =PD DF =55.所以直线AB 与平面PBC 所成角的正弦值为55. 6.(2017·山东文,18)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1-B 1CD 1后得到的几何体如图所示.四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:A 1O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1. 6.证明 (1)取B 1D 1的中点O 1,连接CO 1,A 1O 1, 由于ABCD -A 1B 1C 1D 1是四棱柱, 所以A 1O 1∥OC ,A 1O 1=OC ,因此四边形A 1OCO 1为平行四边形,所以A 1O ∥O 1C . 又O 1C ⊂平面B 1CD 1,A 1O ⊄平面B 1CD 1, 所以A 1O ∥平面B 1CD 1.(2)因为AC ⊥BD ,E ,M 分别为AD 和OD 的中点, 所以EM ⊥BD .又A 1E ⊥平面ABCD ,BD ⊂平面ABCD , 所以A 1E ⊥BD .因为B 1D 1∥BD ,所以EM ⊥B 1D 1,A 1E ⊥B 1D 1. 又A 1E ,EM ⊂平面A 1EM ,A 1E ∩EM =E ,所以B 1D 1⊥平面A 1EM . 又B 1D 1⊂平面B 1CD 1, 所以平面A 1EM ⊥平面B 1CD 1.7.(2017·浙江,19)如图,已知四棱锥P ABCD ,△P AD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面P AB ;(2)求直线CE 与平面PBC 所成角的正弦值. 7.(1)证明 如图,设P A 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,P A 中点, 所以EF ∥AD 且EF =12AD ,又因为BC ∥AD ,BC =12AD ,所以EF ∥BC 且EF =BC ,所以四边形BCEF 为平行四边形,所以CE ∥BF . 因为BF ⊂平面P AB ,CE ⊄平面P AB , 因此CE ∥平面P AB .(2)解 分别取BC ,AD 的中点为M ,N , 连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,P A ,AD 的中点, 所以Q 为EF 中点,在平行四边形BCEF 中,MQ ∥CE . 由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,BC ∥AD ,BC =12AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN .由BC ∥AD 得BC ⊥平面PBN , 那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,PD =2得CE =2, 在△PBN 中,由PN =BN =1,PB =3得QH =14,在Rt △MQH 中,QH =14,MQ =2,所以sin ∠QMH =28, 所以直线CE 与平面PBC 所成角的正弦值是28. 8.(2017·江苏,15)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .8.证明 (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 则AB ∥EF .又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD ⊥AC .9.(2017·江苏,18)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32 cm ,容器Ⅰ的底面对角线AC 的长为107 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14 cm 和62 cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12 cm.现有一根玻璃棒l ,其长度为40 cm.(容器厚度、玻璃棒粗细均忽略不计).(1)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度;(2)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度. 9.解 (1)由正棱柱的定义,CC 1⊥平面ABCD ,所以平面A 1ACC 1⊥平面ABCD ,CC 1⊥AC ,如图①,记玻璃棒的另一端落在CC 1上点M 处.①因为AC =107,AM =40,所以MC =402-1072=30,从而sin ∠MAC =34. 记AM 与水面的交点为P 1,过P 1作P 1Q 1⊥AC ,Q 1为垂足,则P 1Q 1⊥平面ABCD ,故P 1Q 1=12,从而AP 1=P 1Q 1sin ∠MAC=16. 答 玻璃棒l 没入水中的部分的长度为16 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为24 cm)(2)如图②,O ,O 1是正棱台的两底面中心.②由正棱台的定义,OO 1⊥平面EFGH ,所以平面E 1EGG 1⊥平面EFGH ,O 1O ⊥EG .同理,平面E 1EGG 1⊥平面E 1F 1G 1H 1,O 1O ⊥E 1G 1.记玻璃棒的另一端落在GG 1上点N 处.过G 作GK ⊥E 1G 1,K 为垂足,则GK =OO 1=32.因为EG =14,E 1G 1=62,所以KG 1=62-142=24, 从而GG 1=KG 21+GK 2=242+322=40. 设∠EGG 1=α,∠ENG =β,则sin α=sin ⎝⎛⎭⎫π2+∠KGG 1=cos ∠KGG 1=45. 因为π2<α<π,所以cos α=-35. 在△ENG 中,由正弦定理可得40sin α=14sin β, 解得sin β=725. 因为0<β<π2,所以cos β=2425. 于是sin ∠NEG =sin(π-α-β)=sin(α+β)=sin αcos β+cos αsin β=45×2425+⎝⎛⎭⎫-35×725=35. 记EN 与水面的交点为P 2,过P 2作P 2Q 2⊥EG ,Q 2为垂足,则P 2Q 2⊥平面EFGH ,故P 2Q 2=12,从而EP 2=P 2Q 2sin ∠NEG=20. 答 玻璃棒l 没入水中部分的长度为20 cm.(如果将“没入水中部分”理解为“水面以上部分”,则结果为20 cm)10.(2017·江苏,22)如图,在平行六面体ABCDA 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角BA 1DA 的正弦值.10.解 在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .如图,以{AE →,AD →,AA 1→}为正交基底,建立空间直角坐标系Axyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3). (1)A 1B →=(3,-1,-3),AC 1→=(3,1,3),则cos 〈A 1B →,AC 1→〉=A 1B →·AC 1→|A 1B →||AC 1→|=(3,-1,-3)·(3,1,3)7=-17, 因此异面直线A 1B 与AC 1所成角的余弦值为17. (2)平面A 1DA 的一个法向量为AE →=(3,0,0).设m =(x ,y ,z )为平面BA 1D 的一个法向量,又A 1B →=(3,-1,-3),BD →=(-3,3,0),则⎩⎪⎨⎪⎧ m ·A 1B →=0,m ·BD →=0,即⎩⎨⎧3x -y -3z =0,-3x +3y =0. 不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE →,m 〉=AE →·m |AE →||m |=(3,0,0)·(3,3,2)3×4=34. 设二面角BA 1DA 的大小为θ,则|cos θ|=34. 因为θ∈[0,π],所以sin θ=1-cos 2θ=74. 因此二面角BA 1DA 的正弦值为74. 11.(2017·全国Ⅰ理,18)如图,在四棱锥P ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角APBC 的余弦值.11.(1)证明 由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD ,因为AB ∥CD ,所以AB ⊥PD .又AP ∩DP =P ,所以AB ⊥平面P AD .因为AB ⊂平面P AB ,所以平面P AB ⊥平面P AD .(2)解 在平面P AD 内作PF ⊥AD ,垂足为点F .由(1)可知,AB ⊥平面P AD ,故AB ⊥PF ,可得PF ⊥平面ABCD .以点F 为坐标原点,的方向为x 轴正方向,||为单位长度建立如图所示的空间直角坐标系F -xyz .由(1)及已知可得A ⎝⎛⎭⎫22,0,0,P ⎝⎛⎭⎫0,0,22,B ⎝⎛⎭⎫22,1,0,C ⎝⎛⎭⎫-22,1,0, 所以=⎝⎛⎭⎫-22,1,-22,=(2,0,0),=⎝⎛⎭⎫22,0,-22,=(0,1,0). 设n =(x 1,y 1,z 1)是平面PCB 的一个法向量,则即⎩⎪⎨⎪⎧-22x 1+y 1-22z 1=0,2x 1=0.所以可取n =(0,-1,-2). 设m =(x 2,y 2,z 2)是平面P AB 的一个法向量,则 即⎩⎪⎨⎪⎧22x 2-22z 2=0,y 2=0.所以可取m =(1,0,1),则cos 〈n ,m 〉=n ·m |n ||m |=-23×2=-33. 所以二面角A -PB -C 的余弦值为-33. 12.(2017·全国Ⅱ理,19)如图,四棱锥P ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角MABD 的余弦值.12.(1)证明 取P A 的中点F ,连接EF ,BF .因为E 是PD 的中点,所以EF ∥AD ,EF =12AD . 由∠BAD =∠ABC =90°,得BC ∥AD ,又BC =12AD , 所以EF BC ,四边形BCEF 是平行四边形,CE ∥BF ,又BF ⊂平面P AB ,CE ⊄平面P AB ,故CE ∥平面P AB .(2)解 由已知得BA ⊥AD ,以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长度,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,3),PC →=(1,0,-3),AB →=(1,0,0).设M (x ,y ,z )(0<x <1),则BM →=(x -1,y ,z ),PM →=(x ,y -1,z -3).因为BM 与底面ABCD 所成的角为45°,而n =(0,0,1)是底面ABCD 的法向量,所以|cos 〈BM →,n 〉|=sin 45°, |z |(x -1)2+y 2+z 2=22, 即(x -1)2+y 2-z 2=0.①又M 在棱PC 上,设PM →=λPC →,则x =λ,y =1,z =3-3λ.②由①②解得⎩⎨⎧x =1+22,y =1,z =-62(舍去)或⎩⎨⎧ x =1-22,y =1,z =62, 所以M ⎝⎛⎭⎫1-22,1,62,从而AM →=⎝⎛⎭⎫1-22,1,62. 设m =(x 0,y 0,z 0)是平面ABM 的法向量,则⎩⎪⎨⎪⎧ m ·AM →=0,m ·AB →=0,即⎩⎨⎧(2-2)x 0+2y 0+6z 0=0,x 0=0, 所以可取m =(0,-6,2).于是cos 〈m ,n 〉=m ·n |m ||n|=105. 所以二面角MABD 的余弦值为105.13.(2017·全国Ⅲ理,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角DAEC 的余弦值.13.(1)证明 由题设可得△ABD ≌△CBD .从而AD =CD ,又△ACD 为直角三角形,所以∠ADC =90°,取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC ,所以∠DOB 为二面角DACB 的平面角,在Rt △AOB 中,BO 2+OA 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°,所以平面ACD ⊥平面ABC .(2)解 由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →为x 轴正方向,OB →为y 轴正方向,OD →为z 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A ()1,0,0,D ()0,0,1,B ()0,3,0,C (-1,0,0),由题设知,四面体ABCE的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝⎛⎭⎫0,32,12,故AE →=⎝⎛⎭⎫-1,32,12,AD →=()-1,0,1,OA →=()1,0,0. 设平面AED 的法向量为n 1=(x 1,y 1,z 1),平面AEC 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ AE →·n 1=0,AD →·n 1=0,即⎩⎪⎨⎪⎧-x 1+32y 1+12z 1=0,-x 1+z =0,令x 1=1,则n 1=(1,33,1). ⎩⎪⎨⎪⎧ AE →·n 2=0,OA →·n 2=0,即⎩⎪⎨⎪⎧-x 2+32y 2+12z 1=0,x 2=0,令y 2=-1,则n 2=(0,-1,3),设二面角DAEC 的平面角为θ,易知θ为锐角,则cos θ=|n 1·n 2||n 1||n 2|=77. 14.(2017·北京理,16)如图,在四棱锥P ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1)求证:M 为PB 的中点;(2)求二面角BPDA 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.14.(1)证明:设AC ,BD 交于点E ,连接ME ,如图.因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME ,所以PD ∥ME .因为四边形ABCD 是正方形,所以E 为BD 的中点,所以M 为PB 的中点.(2)解:取AD 的中点O ,连接OP ,OE .因为P A =PD ,所以OP ⊥AD ,又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE .因为四边形ABCD 是正方形,所以OE ⊥AD ,如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·BD →=0,n ·PD →=0,即⎩⎨⎧4x -4y =0,2x -2z =0. 令x =1,则y =1,z = 2.于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0),所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3. (3)解:由题意知M ⎝⎛⎭⎫-1,2,22,C (2,4,0),MC →=⎝⎛⎭⎫3,2,-22. 设直线MC 与平面BDP 所成的角为α,则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269. 所以直线MC 与平面BDP 所成角的正弦值为269. 15.(2017·天津理,17)如图,在三棱锥P ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)求二面角CEMN 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 15.解 如图,以A 为原点,分别以AB →,AC →,AP →方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意,可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明 DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的一个法向量,则⎩⎪⎨⎪⎧ n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1, 可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x 1,y 1,z 1)为平面EMN 的一个法向量,则⎩⎪⎨⎪⎧ n 2·EM →=0,n 2·MN →=0, 因为EM →=(0,-2,-1),MN →=(1,2,-1),所以⎩⎪⎨⎪⎧-2y 1-z 1=0,x 1+2y 1-z 1=0. 不妨设y 1=1,可得n 2=(-4,1,-2).因此cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-421, 于是sin 〈n 1,n 2〉=10521.所以,二面角CEMN 的正弦值为10521. (3)解 依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ), BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 16.(2017·山东理,17)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E —AG —C 的大小.16.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP .又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC =120°,所以∠CBP =30°.(2)方法一 取EC 的中点H ,连接EH ,GH ,CH .因为∠EBC =120°,所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13.取AG 的中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM =1,所以EM =CM =13-1=2 3.在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC =23,因此△EMC 为等边三角形,故所求的角为60°.方法二 在平面EBC 内,作EB ⊥BP 交CE 于点P .以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧ m · AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0. 取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由⎩⎪⎨⎪⎧ n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m ||n |=12.因此所求的角为60°.。
三年高考2017 2019高考数学真题分项汇编专题06立体几何解答题理含解析
立体几何(解答题)专题06BADABCBDAAABCD–A=60°,=2的底面是菱形,1.【2019年高考全国Ⅰ卷理数】如图,直四棱柱,=4,∠11111DANBCBBEM分别是,,,的中点.,11MNCDE;∥平面(1)证明:1A?MA?N的正弦值. 2)求二面角(110. 2)(【答案】1)见解析;(5BCME.1)连结,【解析】(1MEBBBC的中点,,分别为因为,11BCBMECME.=,且所以∥112NAD的中点,为又因为11ADND.所以 =12ABDCBCADMEND,,可得由题设知,故???1111MNDEMNED.为平行四边形,因此四边形∥?EDCMN,平面又1MNCDE.所以∥平面1DEDA.⊥(2)由已知可得DxDxyz,则以为坐标原点,?轴正方向,建立如图所示的空间直角坐标系的方向为DA(1,0,2)NA(2,0,0)2)3,?(?1?(0,0,?,4)AM?AA2)M(1,3,A,(2,,,,0,4),,1112)?(?1,0,AN?3,0)(0,?MN?,.1?0M?m?A?1),zx,ym?(MAA?的法向量,则,设为平面??AAm??1?,1002z?x?3y???3,1,0)?(m?所以可取..?0?4z???,0MN?n??)rq,?(p,n MNA?的法向量,则设为平面1.?0n?AN??1?,?0?3q?1)?n?(2,0,?可取.所以.0r?2?p???152n3m???m cos?,n??于是,5n||m210N?MA?A的正弦值为所以二面角.15求解二面角的关键是能够.【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于.常规题型BEAAEDBABCDACABCD上,在棱的底面2019. 2【年高考全国Ⅱ卷理数】如图,长方体–是正方形,点11111EC⊥.1.CBEEB⊥平面)证明:;(111CBECAEAE=–)若的正弦值.,求二面角–(2113. (2)【答案】(1)证明见解析;2?CBAABBABBA?BE,【解析】(1)由已知得,平面平面,111111?CB BE 故.11EC?BECEB?BE.又,所以平面111EAB Rt?90?△?BEB??Rt△ABE45?AEB≌)知1,.由题设知,所以(2)由(111AB?2AA AB?AE.故,1|DA|xyzDx D–,轴正方向,为单位长,以为坐标原点,的方向为建立如图所示的空间直角坐标系DAC CC?(0,0,2)1,1)?(1,,1CB?(,00)?CE ECB,101),,(),,,010则(,,)(110,012,(,,),,.11x n EBCyx 的法向量为设平面=,,(),则?CB?n?0,x?0,???即?x?y?z?0,0,?CE?n???(0,?1,?1)n.=所以可取ECC mxyz),则(,设平面,的法向量为 =1?CC?m?0,2z?0,??1?即?x?y?z?0.CE?m?0,???m=(1,1,所以可取0).n?m1??cos?n,m??.于是|n||m|23C??ECB的正弦值为.所以,二面角12【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力. ADEBABCBFGCAB=1其中△组成的一个平面图形,和菱形【2019年高考全国Ⅲ卷理数】图1是由矩形,,Rt3.BEBFFBCABBCBEBFDG,如图折起使得=2,∠重合,连结=60°,将其沿与,2.=ACGDABCBCGE;四点共面,且平面,,,⊥平面)证明:图(12中的B?CG?A的大小2)求图2中的二面角.(30. 2)【答案】(1)见解析;(ADCGADCGAADCGBEBECGD,【解析】(,,确定一个平面,从而,,故,所以,1)由已知得四点共面.BCGEABBEABABBC???平面,.,故由已知得?BCGEABCABCAB?平面.,所以平面又因为平面HBCEH?.,垂足为)作2(.?BCGEBCGEABCEHEHABC??.因为平面平面,所以,平面平面EHBHBCGEEBC3. =1由已知,菱形,的边长为2,∠==60°,可求得HxHxyz,的方向为为坐标原点,–轴的正方向,建立如图所示的空间直角坐标系以HCGAC330).,–1,,),=),((2,0,2),=(1,0则0(–1,1,),0(1,0,ACCG zxyACGD n,的法向量为),则=(,设平面??0,n?CG?0,3z?x?????即0.?y?2x?0,?AC?n???n3,–(3,6所以可取).=m BCGE0),,(0又平面,的法向量可取为1=3?mn???cos?n,m.所以2m||n||ABCG––因此二面角的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的.平面角问题,突出考查考生的空间想象能力CDADBCPAPAABCDADCDADABCDP,⊥平面,,⊥=,=2∥年高考北京卷理数】4.【2019如图,在四棱锥–=中,1PF?PCPDFEBC的中点,点.为在上,且.=3 3PC PADCD1()求证:;⊥平面PF––AE(的余弦值;2)求二面角2PG?AEFGAGPB上,且.判断直线在3()设点是否在平面内,说明理由.3PB.3. )见解析2()3;)见解析;【答案】(1(3CDPAPAABCD⊥平面⊥,所以.【解析】(1)因为PADCDADCD⊥⊥平面,所以.又因为MBCAAD作于点的垂线交(2)过.ADPAPAAMPAABCD⊥因为⊥⊥平面,,所以.?PCxyzAABD),00,2,2,0),,0,0),,(2,,10),(如图建立空间直角坐标系(?,则2(0 2).,0,(0EEPD 1).,为1的中点,所以,(0因为2)(0,0,2),AP?PC?(0,1,1),?(2,2,?AE.所以4222212????,PF,PF??PC?,,,AF??AP?.所以????3333333????zxyAEF n,),则设平面的法向量为,=(0,z?y???0,AE?n????即422?0.?y?zx?0,?n?AF???333?1??1,y??x z.=1令,则1,1)1,?n=(?于是.p PAD),,0的法向量为0=(1又因为平面,3p?n??p cos?n,??. 所以3p|‖|n3PAEF为锐角,所以其余弦值为.??由题知,二面角3.AEFAG 3)直线内.在平面(2PG2)1,??(2,??,PB PBG在,因为点上,且3PB2224424????,?PG?,,AG?AP?,PB?PG??,?. 所以????3333333????1,1)??1,n=(AEF. 2由()知,平面的法向量2420????AGn??. 所以333AEFAG.所以直线内在平面 1)由题意利用线面垂直的判定定理即可证得题中的结论;【名师点睛】(PFAE??(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角的余弦值;AGG AEF的方向向量即可判断直线是否在平的坐标,然后结合平面(3)首先求得点的法向量和直线.面内,AB?∥BCAD∥CFAE,AD ABCD?AE,,数天20195.【年高考津卷理】如图,面平2??BCAEAB?AD?1,.ADEBF∥;)求证:平面1(CE BDE与平面所成角的正弦值;(2)求直线1CFFBD??E的余弦值为)若二面角3(,求线段的长.3.84;(3).【答案】(1)见解析;(2)79y xzAEAD,AB,A轴正方向的空轴,【解析】依题意,可以建立以轴,为原点,分别以的方向为(0,0,2)ED(0,1,0)A(0,0,0),B(1,0,0),C(1,2,0),设,图间直角坐标系(如),可得.??h1F,2,)>0?h(h?CF,则.)h(0,2,AB?(1,0,0)BF?ADE,又因为直是平面,可得(1)依题意,的法向量,又0AB?BF??BF ADEBF∥ADE.,所以平面平面线2)2,1,1,0,2),CE?(??BD?(?1,1,0),BE?(?)依题意,.(2?0,?n?BD0,??x?y??)z?(x,y,n1zBDE??即不妨令设为平面的法向量,则,?0,?x?2z?0,n?BE????4nCE?(2,2,1)?n???cos CE,n.因此有可得.9|nCE|||4CEBDE所成角的正弦值为所以,直线.与平面9?0,BD?m?0,y??x???),zx,ym?(BDF?的法向量,则即3()设为平面?0,?y?hz20,??BFm???2???m?1,1,1y?,可得不妨令.??h??2?41|m?n|h8????,?cos mn h?.经检验,符合题意.由题意,有,解得3||||mn74?232h8CF.所以,线段的长为7.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.BCABEBCACAABCBCD分别为6.【2019年高考江苏卷】如图,在直三棱柱-=,.中,的中点,,ECBE(2).⊥1111DECBA∥平面求证:(1);111.2)见解析【答案】(1)见解析;(ACEBCD分别为的中点,【解析】(1)因为,,ABED.∥所以BAABCABABC?∥在直三棱柱,中,11111EDBA.∥所以11DECDECABED,平面?平面又因为,?1111DECAB.∥平面所以111ACBEEABBCAC. (2)因为⊥=,的中点,所以为ABCCABCCABC?. 因为三棱柱⊥平面是直棱柱,所以1111BEABCCCBE.,所以?平面又因为⊥1CACAACACCACCACCCC平面因为?,?,,=平面∩111111.BEAACC.所以⊥平面11CEAACCBECE.,所以?因为平面⊥1111【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.ABC?ABCAACC?ABC?ABC?90?,,,平面.【72019年高考浙江卷】如图,已知三棱柱平面11111?BAC?30?,AA?AC?AC,E,F ACAB的中点,分别是. 1111EF?BC;(1)证明:EFABC所成角的余弦值2)求直线.与平面(13.)见解析;(2)【答案】(15【解析】方法一:ACEEACAEAAAAC(1)连接是,因为⊥的中点,所以=.,1111?ACCAEAACCABCA又平面平面⊥平面,,11111ACACCABCA∩平面平面=,11BCEEABCAA,则⊥平面⊥所以,.11FAABCAFABBC∥,∠又因为.=90°,故⊥11EFBCA⊥平面.所以1BCEF.⊥因此.EGFAEGGFBCG,(2)取是平行四边形.中点,则,连接1EGFAEEGAEABCA⊥⊥平面由于,故为矩形.,所以平行四边形111EGFAABCBCEGFA由(1)得,⊥平面⊥平面,则平面111GABCEFA所以上的射影在直线在平面上.11BCAOEOGEFAGEF,则∠与平面连接于是直线交所成的角(或其补角).11 EGEEGACAA33.=4,则在Rt△不妨设,中,=2=11GA15GAO1???OGEO的中点,故由于为,1222223?OGEGEO??EOG?cos?.所以5?OG2EO3BCAEF所成角的余弦值是因此,直线.与平面15方法二:ACEEACAAAEAAC. 是,因为的中点,所以=⊥1()连接,1111?ACCAAACCABCEA,平面又平面,⊥平面11111ABCACCEABCACAA =,所以,.⊥平面平面∩平面111xyzEAEECEyz.如图,以点为原点,分别以射线,为,轴的正半轴,建立空间直角坐标系–1AC,则=4不妨设333)3,3,2B(CAB3)F(,2,33 0).,,(0(0,1,,2(0,0,),2),,11 22333,1,0)??(BC3)2,,?EF(因此,,.22BCEF?.由得0EF?BC?BCEFA与平面θ2)设直线.所成角为(1)可得.由(1,,?BC0)1,AC=(0,2,?23)=(31,y?z)(x,n ABC的法向量为设平面,1??03x?y??0?BC?n????由,得,0AC?n??0y?3z????1|EF?n|4???|cos=n|EF sin,n,,故取,3?(11),5||nEF|?|3EFABC所成的角的余弦值为因此,直线与平面.15【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.E,FAD,BCABCDDF为分别为8.【2018年高考全国Ⅰ卷理数】如图,四边形的中点,以为正方形,△DFC CPPF?BF. 折痕把的位置,且到达点折起,使点PEF?ABFD;)证明:平面平面(1DPABFD所成角的正弦值.与平面2()求3. )【答案】(1)见解析;(24BFPFBFEF,⊥1)由已知可得,⊥,【解析】方法一:(BFPEF. 所以⊥平面ABFD?BF,平面又.PEFABFD.⊥平面所以平面DEFPPHEFHDH,如图,)在平面,连接中,过于点作⊥(2EFPEFPHEFABCD由于的交线,为平面,和平面⊥DHPHPHABFD.则,故⊥平面⊥PDH?DPABFD. 则所成的角为与平面PHDEFP. -在三棱锥中,可以利用等体积法求DEPFBFPFBFDE且⊥⊥因为,所以∥,FCDFPDPDFCDF≌△∠,所以∠=90°,又△=PDPF⊥所以,PDEPFPDDDE =,则由于,∩⊥平面1SPFV??故,PDEPDE△F?3PEFDABFBF且因为,∥⊥平面PEFDA⊥平面,所以EPDE.所以⊥aDEaPDa,则=2=,设正方形的边长为2,PDE a3PE?,在△中,32aS?,所以PDE△233?Va故,PDEF?612a2?a??Sa,又DEF△2V33PDEF?a??PH所以,22a3PH PHD???PDH sin所以在△中,,4PD3ABFDDP所成角的正弦值为故与平面. 4EFPFBFBF,方法二:(1)由已知可得,⊥⊥,PEFBF. 所以⊥平面ABFD?BF,又平面ABFDPEF.所以平面⊥平面ABFDPHEFHPH.⊥⊥平面,垂足为.由(1(2)作)得,||BF xyzHyH.的方向为?轴正方向,以为单位长,建立如图所示的空间直角坐标系为坐标原点,HFPFDPDEPEPEPFEFPEDE3.=1,所以⊥=2=,,故.又由(1)可得,=1⊥.又,=233?,PH?EH. 可得2233333ABFD(0,0,PH??(1,,),HP(0,0,)(0,0,0),),D(?1,?,0),DP则. 的法向量为平面2222233?DPHP?4ABFDDP. 与平面,则设所成角为??|?sin?|4|DPHP|||33ABFDDP. 所以所成角的正弦值为与平面44?PC?ACPAP?ABC?PB?,,20189.【年高考全国II卷理数】如图,在三棱锥中,2AB?BC?2ACO为的中点.ABCPO?;平面)证明:(1BCM?PA?C30?PC与平面(2为上,且二面角在棱)若点,求所成角的正弦值.PAMM.POACMB3 2.)【答案】(1)见解析;(4ACACOP?CP?AC?4O?AP32OP?)因为,,且为.的中点,所以【解析】(12ABCOB△AC?AB?BC为等腰直角三角形,连结.因为,所以212?OB?AC AC?OB.,且2OBPO?222PBOBOP??由知.ACOP?OP?OB,ABCPO?由.知平面ruuu xxyz?O O(2)如图,以轴正方向,建立空间直角坐标系为坐标原点,的方向为.OBruuu PAC3),2,22?3)(0,P0),(0,2,0),(0,0,,APCA0),O(0,0,B(2,0,0),?(0,2,的法取平面由已知得ruuu(2,0,0)?OB.向量ruuu2)a??,2a,0)(0?M(a,0)aa,4?AM?(,则.设)zyx?n(,,PAM.的法向量为设平面.ruruuuuu?03z?2y?2?)3(a?4),3a,?a n?(0??AP?n0,AM?n?由得,可取,0a)y?ax?(4???ruuu4)?23(a?cos OB,n所以.222a?323(a?4)a?ruuu 3?||cos OB,n由已知可得.234||a?234=?a4?a?.所以(舍去),.解得22223aa?23(a?4)?344383),??n?(,所以.333ruuu ruuu3cos PC,n?3)?(0,2,2PC?.,所以又43PC PAM所成角的正弦值为.所以与平面4ABCD所在的平面与半圆弧的正方形所在平面垂直,如图,边长为210.【2018年高考全国Ⅲ卷理数】CDC,的点.是上异于DMCDBMC; 1)证明:平面平面(⊥AMDM?ABCMCD所成二面角的正弦值.2)当三棱锥体积最大时,求面与面(MAB52. ))见解析;(2【答案】(15CDABCDCMD. ,,【解析】(1)由题设知平面交线为⊥平面?CMDABCDBCBCCDBC, ,因为所以⊥,⊥平面平面DMBC.故⊥DCCMD且为直径,,上异于因为为,的点CD CMDM.⊥所以.CCMBC,=又BMCDM. ⊥平面所以?AMDDM, 平面而BMCAMD.故平面⊥平面xyzDDx.(为坐标原点,的方向为?轴正方向,2)以建立如图所示的空间直角坐标系DAMABCM.体积最大时,的中点?为当三棱锥CD,1)BD(0,0,0),A(2,0,0),(2,2,0),C(0,2,0),M(0,1由题设得,(2,0,0)AM?(?2,1,1),AB??(0,2,0),DA)z,y,n?(x MAB设的法向量,是平面则?0,AM?n?0,?x?y?z2????即?0.?2y0.n?AB????(1,0,2)?n.可取MCD ,是平面因此的法向量DA5n?DA?DA?cos n,,5|DA|n||52?,DA sin n,552MCDMAB所成二面角的正弦值是所以面. 与面5BCABPCABCABABAAQ.【?,中,=,点2018年高考江苏卷】如图,在正三棱柱=2的中点.,分别为11111111BPAC所成角的余弦值;与()求异面直线1 1CCAQC与平面2()求直线所成角的正弦值.11.5103)2.;【答案】(1()520OOACOCOCOOOOOBABCABCAC⊥的中点分别为,【解析】如图,在正三棱柱,?,,则⊥中,设⊥,11111111xyzOBO,以为基底,建立空间直角坐标系.?}{OB,OC,OO1AAAB=,=2因为1.所以)(?1,2),B(3,0,2),C0,1,2()0,A(?1,0),B(3,0,0,C(0,1,0),A0,11113BPA(1)因为的中点,所以为,,2),P(?112213,从而)?,2),AC(0,2,2?BP?(?,122|AC|BP?10||?1?431?||cos BP??,AC故.120||BP||AC?25?21103ACBP所成角的余弦值为因此,异面直线.与13BCQ的中点,所以为,(2)因为,0),Q(2233,.因此120(0,0,2)(0,2,2),CC??AC,0),(?AQ1122n xyzAQC(设=,,)为平面的一个法向量,1?33?0,AQ?n?0,x?y???即则??220,?n?AC???0.y?2z?21?不妨取,1,1)(3,?n??AQCCC,所成角为设直线与平面11|CC?n|25?1?|cos CC,n|?sin??,则15||CC|?|n25?15AQCCC.所以直线所成角的正弦值为与平面ABCD?ABCDAA?AB,AB?BC.中,12.【2018年高考江苏卷】在平行六面体11111111115CBA;求证:(1)平面∥AB11?AABBBCA平面)平面(2.111.)见解析)见解析;(2【答案】(1BADABABCDABC【解析】(1)在平行六面体中,-.∥111111?CABBACAABB,因为,平面平面?111111CABAB∥平面所以.11AABBBCDAABCD中,四边形)在平行六面体-为平行四边形.(2111111AABBAAAB =又因为为菱形,,所以四边形111BAAB因此.⊥11CBCBABBC又因为⊥∥,,11111BCAB⊥.所以1??ABCBCBCBBABBCAA,,平面又因为∩=,平面1111ABABC所以⊥平面.11.ABABBA,平面因为?111ABBAABC.所以平面⊥平面111ABCABCAABBCCABCABC=120°,,∠,,,均垂直于平面13.【2018年高考浙江卷】如图,已知多面体111111AACCABBCBB=2==4,.==1,111CABAB⊥平面(1)证明:;1111ABBAC)求直线所成的角的正弦值.与平面(21139. 2)【答案】(1)见解析;(13AB,BB??2,AA?ABAAAB?2,?4,BB22B?AB?A,得【解析】方法一:(1)由1111111222AA??ABAB.所以1111B?ABA.故111BC?BC,CCBB?1,CCBB?2,?2BC?5?CB由,得,111111?ABC?120?BC?2,?AB32AC?由,得222CBAB?ACCC?AC?AB?BC13?AC.,所以,得由,故111111111?ABCAB.因此平面1111BABDCC?A ADD.(2,连结,交直线于点作)如图,过点111111.ABBAB??ABCABC平面由,平面得平面11111111ABB?BCDCD?A由得平面,11111ABBACCAD?.与平面是所成的角所以1111621AC2,??BC5,AB?2?BA cos?CB?CA?,sin得由,111111*********?CD所以,1DC391?AD sin?C?. 故113AC139ABBAC所成的角的正弦值是与平面. 因此,直线1113yxOOBOCAC轴的正半轴,建立空间直角坐为原点,分别以射线,,为(方法二:1)如图,以的中点xyzO.-标系由题意知各点坐标如下:3,4),B(1,0,2),?(0,,0,0),B?A(0,3,0),(1AC(0,3,1), 111.ruuuuuuuruuuur3),3,?B?(1?(0,2?(1,3,2),A,3,?2),ACAB因此11111ruuuuuuur B?AAB0B?AB?A. 由得111111ruuuuuuur AC?AB0AC?AB?. 得由111111?ABCBA.所以平面1111ABBAC?.与平面所成的角为(2)设直线11ruuuuuuruuur(0,0,2),?,3,0),BB?(0,23,1),AB?(1AC由(1)可知11ABB)y,zn?(x,.设平面的法向量1ruuu??0,?n?AB0,?x?3y??ruuu3,1,0)?n?(?. 即可取由?0,?2z?0,BB?n????1uuuruuur|AC?n|39?1?|cos AC,n|?sin?uuur.所以113|n|?|AC|139ABBAC. 与平面因此,直线所成的角的正弦值是1113【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.ABCCC?AA GEFABCABCD,平面,,,,.14【2018年高考北京卷理数】如图,在三棱柱?分别为中,ACACAB=BC=2.=,,,的中点,=5111111111ACBBAABEFAC;(1)求证:⊥平面C?CDB(?2)求二面角的余弦值;1.FGBCD相交.与平面(3)证明:直线21;(32)见解析). 【答案】(1)见解析;(?21ABCABC中,1)在三棱柱 -【解析】(111CCABC,⊥平面∵1AACC为矩形.∴四边形11EFACAC的中点,分别为又,,11ACEF .∴⊥ABBC.=∵ACBE,⊥∴ACBEF.⊥平面∴ACEFACBEEFCC.⊥,,∥⊥(2)由(1)知1CCABCEFABC.,∴又⊥平面⊥平面1?ABCEFBEBE.∵,∴平面⊥Exyz.如图建立空间直角坐标系 -GFCDB).,2,0,2),1(00(-1,,0),,(10,1),0(,,由题意得(0,20),rruuuuu∴,,=(2CDCB=(1,2,0)1)0,,,,an?(bc)BCD的法向量为,设平面ruuu?0??c2a0CD??n??uur,∴∴,??0b?a?2?0?n?CB??cba =-4=2,则,=-1令,,(24)?n??1,BCD的法向量∴平面,ruu CDC的法向量为又∵平面,,0),2=(0EB1.uuruur n?EB21=?cos?n?EB??ruu.∴21|n||EB|21CBCDBCDC.由图可得二面角-- --为钝角,所以二面角的余弦值为?1121,(2n??1,?4)BCD的法向量为2)知平面(3)由(,GF(0,0,2,2,1)),∵(0,uuur,∴GF1)=(0,?2,uuur∴,2??GF?n uuur n∴与不垂直,GF GFBCDBCD内,与平面∴不平行且不在平面GFBCD相交.∴与平面AD∥BCAD?CDEG∥ADCD∥FG ADADBCEG且=,=2且15.【2018年高考天津卷理数】如图,,,且DG?平面ABCD DACDFGDCDG=2.=2,,==MN∥平面CDE EGMCFN;(1)若的中点,求证:为为的中点,E?BC?F的正弦值;(2)求二面角PDGBPADGEDP的长.在线段所成的角为上,且直线60°,求线段与平面(3)若点310. )3);(【答案】(1)见解析;(2103【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量 13分.解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分zyxD轴的正方向的空间直角轴,的方向为依题意,可以建立以,为原点,分别以,轴,DCDGDA ECBAD),2,0,2(),0,2,0(),0,2,1(),0,0,2(),0,0,0(坐标系(如图),可得3NFGM).(1,0(0,0,2),,(0,2,1,(01,2),),2?,?0n?DC?0CDEyz n x的法向量,则,=(2,02).设,=(为平面,)=(1)依题意(0,2,0),?DCDE0,?0n?DE??0,?02y?3?n,又),可得,1=(1,0,–1).又=(1即不妨令z=–1,可得,0n??MN?MN00,z?02x?22??CDECDEMNMN平面∥平面,所以因为直线.),,0).(2)依题意,可得=(–1,0,=(0,–1,2,?(1?2,2)BEBCCF?,0?x?,n?BC?0??n z n xyzBCE(0,1(,,,1)为平面)的法向量,则即不妨令,=1可得.设==??,?2y?2z?0x,n?BE?0????,?0?x,0m?BC???m BCFzxyz m.,不妨令则即1=1,可得)=设(=(0,,,)为平面2的法向量,??,z?0?y?2,CF?0m????103m?n10?nmnm,.>=cos<,,于是sin<>=因此有10||m||n1010FEBC的正弦值为所以,二面角––.10hhPDPh),可得)设线段3,的长为0(,∈[02]),则点,的坐标为(0.(,(?1h2?,)BP?ADGE,易知,=(02,0)为平面的一个法向量,故DC DC?BP2??cos?BP?DC?,2DCBP5?h233h=∈[0,2].由题意,可得=sin60°=,解得25h?233DP. 所以线段的长为3.AB//CDP?ABCD90??CDP??BAP.16.【2017年高考全国Ⅰ卷理数】如图,在四棱锥,且中,PADPAB(1)证明:平面;⊥平面CPBAPAPDABDC90APD??.=?,2()若的余弦值=,求二面角=?3?. ))见解析;(2【答案】(13?90BAP??CDP??PDABAPCD. ,,得)由已知⊥⊥【解析】(1PADAB//CD ABPD AB. 由于,从而,故⊥平面⊥?PADPABABPAB. ,所以平面平面⊥平面又FADPF?PAD,垂足为内作)在平面(2,ABCD?PFPADAB?AB?PF.,可得由(1)可知,,故平面平面xxyz?F|AB|F.以的方向为为坐标原点,建立如图所示的空间直角坐标系轴正方向,为单位长,FA2222?(,1,0)C,1,0)(P,0,0)A((0,0,)B,,. ,)及已知可得由(12222 2222AB?CB?2,0,0)((0,1,0))??PC(?,1,)(,0,?PA?. 所以,,,2222n?(x,y,z)PCB的法向量,则设是平面?22?0,PC?n???0,x?y?z??222)1,?n?(0,???. 可取即0,??CBn???0,x?2?m?(x,y,z)PAB的法向量,则是平面设?22?0,?m?PA?0,?x?z?(1,0,1)?m?. 即可取?22?ABm?0,???y?0.?n?m3??<n,m>?cos,则|n||m|33C?A?PB?的余弦值为. 所以二面角3ABAPCDPDAB//CDABPAD.进而证.【思路点拨】(1)根据题设条件可以得出而⊥⊥平面,,就可证明出⊥PABPAD.明出平面⊥平面x|AB|AD F为单轴正方向,2()先找出为坐标原点,中点,找出相互垂直的线,建立以的方向为FAn?(x,y,z)m?(x,y,z)PCB是是平面位长的空间直角坐标系,列出所需要的点的坐标,设的法向量,m?(1,0,1)2)??n?(0,1,PAB,利用数量积公式可求出二面平面的法向量,根据垂直关系,求出和角的平面角.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.A?BCD ABADBCBDABDBCDEFE(,平面.17【2017年高考江苏卷】如图,在三棱锥⊥平面,中,⊥,点,⊥ADADBDEFAD.上,且与,不重合)分别在棱,⊥EFABC;求证:(1)∥平面ADAC.⊥)2(..2)见解析【答案】(1)见解析;(ADAB AD?EFABD⊥,内,因为,【解析】(1)在平面AB∥EF.所以?EF ABCABC?AB平面平面,又因为,ABCEF∥平面所以.ABDBDBC?BC?BCDBDBCDABDBCD,,=,平面平面,)因为平面(2平面⊥平面?BC ABD平面所以.ABD?AD,平面因为?BC AD.所以BABBC??BC ABCABADABC?AB平面平面,又⊥,,,ABCAD⊥平面,所以?ABCAC平面又因为,.ADAC⊥所以【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:)证明线面、面面平行,需转化为证明线线平行;(1 2)证明线面垂直,需转化为证明线线垂直;( 3)证明线线垂直,需转化为证明线面垂直.(AAABADABCDCABCD-ABDAA,=年高考江苏卷】如图,在平行六面体18.【2017==2中,⊥平面,,且3111111?120??BAD.ACAB(1)求异面直线所成角的余弦值;与11D-AB-A(2)求二面角的正弦值.1.17);(2.1【答案】()74EBCAABCDAEAD?【解析】在平面于点内,过点作,交.ADABCDAAAAAEAA???,因为,所以.平面111}AEAA,AD,{xyzA如图,以-.为正交基底,建立空间直角坐标系1?120BAD??AAABAD3,=因为.==2,13,1(E(3,?1,0),D(0,2,0),(3,0,0),A,3)(0,0,3),CBA(0,0,0),则.111?3),AC(?3,1,3,3)B?(?A,)1,(11ACA?B13)(3,1,?(3,?1,?3)11????cos AB,AC则.1177|ACAB|||111ACBA所成角的余弦值为.因此异面直线与1173,0,0)?(AE DAA 2)平面.的一个法向量为(1),m?z(x,y DBA设的一个法向量,为平面1??0,m?AB?0,y??3z3x???11??(3,B3),,?BD?(?3,3,0)A??,则又即1m?BD?0,?3x?3y?0.????m?(3,3,2)2?z?y3,BAxD =3不妨取,所以,则为平面的一个法向量,13(3,3,2)?m(3,0,0)?AE??,m?cos AE从而,4|AE||m|3?43??|cos?|ADBA,则-设二面角. -的大小为147??[0,?]2???1?cossin?,所以.因为47ADBA.因此二面角--的正弦值为14【名师点睛】利用法向量求解空间线面角、面面角的关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.ABAC的方向向量,根据向与(1)先根据条件建立空间直角坐标系,进而得相关点的坐标,求出直线11量数量积求出方向向量夹角,最后根据异面直线所成角与方向向量夹角之间相等或互补可得夹角的余弦值;(2)根据建立的空间直角坐标系,得相关点的坐标,求出各半平面的法向量,根据向量数量积求出法向量的夹角,最后根据二面角与法向量夹角之间关系确定二面角的正弦值.ABCDAB边年高考山东卷理数】如图,几何体是圆柱的一部分,它是由矩形【2017(及其内部)以19.120?G是的中点得到的,所在直线为旋转轴旋转. DF?CBPBE?PAP的大小;,求)设(1上的一点,且是CE AB?3E?AG?C2AD?的大小)当(2,时,求二面角.【答案】(1)30°;(2)60°.?ABAP?AABPABAPAP?BEAB?BE,,【解析】(1)因为,,,平面ABPBE?平面所以,ABPBP?又平面,BPBE?所以,??EBC?120,又??CBP?30.因此CHGHEHH. ,(2)解法一:取的中点,,连接EC?120?EBC?因为,BEHC所以四边形为菱形,22. 所以13GE??AC?GC?3??2AEECAGCMEMM. ,,连接取中点,AGCM?EM?AG则,,EMC?.为所求二面角的平面角所以1AM?3CM?13?1?2?EM.又,所以??EBC?120222BEC△12cos120???2?2??2?22EC?中,由于,由余弦定理得在,EMC△3EC?2所以,因此为等边三角形,?60.故所求的角为y xz BABEBPB轴,建立如图所示的空间,,,所在的直线为解法二:以,为坐标原点,分别以直角坐标系.(2,0,0)A(0,0,3)EAG?(1,1,C(?3,0)3,0)3,3)G(1,3)?AE(2,0,?,,,由题意得,,故(2,0,3)?CG,)z,y,m?(x AEG.是平面设的一个法向量1110,??3z2x??0?AE?m??11由可得??0,3y?x??0?AG?m???11AEG2z?2)?3,m?(3,. 的一个法向量,可得平面取1ACG)zx,y,n?(.设的一个法向量是平面222??0?n?AG0,x?3y???22可得由??0,3?z?2x?0?CG?n???222??z ACG2)3,?n?(3,?. 取,可得平面的一个法向量2m?n1??,n cos m.所以|m|?|n|260?.因此所求的角为PABCDPADABCD,-为等边三角形且垂直于底面中,侧面年高考全国Ⅱ理数】如图,四棱锥20.【20171o,90??ABC?BAD,BCAB??AD?EPD的中点.是2∥CE PAB;平面(1)证明:直线o ABCDMPC BM D?M?AB45上,且直线的余弦值.与底面)点(2,求二面角在棱所成角为10).【答案】(1)见解析;(25BFEFPAF【解析】的中点,,连结(1)取.1ADEF?ADEFEPD是,的中点,所以,因为∥2BC90???ABC??BAD AD 由∥得,1ADBC?,又2CEBCEFBF所以,四边形∥是平行四边形,.∥BCEF PAB?PABBF?CE,平面平面又,PAB∥CE.平面故AB xA轴正方向,的方向为为坐标原点,为单位长,(2)由已知得,以ADBA?AB xyzA?建立如图所示的空间直角坐标系,????????1,1,0BAC0,0,01,0,30,1,,,,则,,,(1,0,0)PC?(1,03)?AB??????1xz?0?M,xy,3),y?1,zBM??x?1,y,z,PM?(x,则设,??0,0,1n?ABCDBMABCD是底面所成的角为45°,而因为的法向量,与底面z2?2???sin BM cos45,n?220z1?y??x?,即,所以.①22??22z??y?x1???z1,?y,?x33?PCM?,则又.②上,设在棱PC?PM??22?1?x?x?1??22????1y?y?1??,.(由①②解得舍去)?? 66????zz???22??6262?(1AM?,1,))?,1,M(1,从而.所以2222??0,AM?m?0,2y?6z??(2?2)x????000z,,xy m?ABM??设的法向量,则即是平面0000,x?0,?m?AB????010nm???m,n cos2)?6,(0,?m所以可取.于是,5nm10D?M?AB因此二面角.的余弦值为5)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方(1【名师点睛】程思想进行向量运算,要认真细心、准确计算.mmnmn,|=|cos<>互补或相等,故有|cos )设θ,,分别为平面αβ的法向量,则二面角θ与<,2(n?m n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.mn ABCDABCACDABD=年高考全国Ⅲ理数】如图,四面体是正三角形,△中,△是直角三角形,∠201721.【CBDABBD.∠=,ABCACD)证明:平面;⊥平面(1CDAEABCDBDACEAEC––2()过的平面交分成体积相等的两部分,于点,若平面求二面角把四面体.的余弦值7. ))见解析;(【答案】(127DCAD?CBD△≌△ABD.,从而)由题设可得,1【解析】(.?=90?ADC△ACD. 又是直角三角形,所以AODODOACACODOBO. 取⊥的中点=,连接,,,则ABC △AC?BO. 又由于是正三角形,故B??ACD DOB?. 所以为二面角的平面角AOB△Rt222AB?AO?BO.在中,2?22?2BDAB?BD?DOAB?BO??BOAO?,又,所以90DOB??. 故ABCACD.所以平面⊥平面x OAODOB,OA,O为的方向为两两垂直,以(2)由题设及(1)知,轴正方????????0,0,1?1,0,0AD1,0,0,,B0,3,0,CxyzO?.向,为坐标原点,OA.则单位长,建立如图所示的空间直角坐标系1ABCDEABCEABCDABC的到平面由题设知,四面体,从而的体积为四面体到平面的体积的的距离为2??131,E0,DBE??. 的中点,得为距离的,即??222????3???,,AE?AD???1,0,1,AC1,2,0,0???. 故??22??0,??z?x??,?0ADn?????y,z n=x,DAE??的法向量,则是平面即设130.z?x??y?,0nAE?????22???3,1?n1,??. 可取??3??. ?,0ACm?????m3?1,m?0,AEC?.设的法向量,则是平面同理可取,0?AE?m??7n?m?m?cos n,. 则7nm7CAED的余弦值为-. 所以二面角-7)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用(1【名师点睛】.方程思想进行向量运算时,要认真细心,准确计算nm,nm互补或相等,故有,与分别为平面α2)设,β的法向量,则二面角θ(n?m??cos m,n cos|?|. 求解时一定要注意结合实际图形判断所求角是锐角还是钝角.nm ADABCDPADP ADBC∥,–是以,如图,已知四棱锥△为斜边的等腰直角三角形,201722.【年高考浙江卷】PDCBEPCADDCCDAD =,=2的中点.=2⊥为,PEDAC BPAB∥CE平面;(1)证明:PBCCE与平面所成角的正弦值.(2)求直线2.【答案】(1)见解析;(28【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想. 15分象能力和运算求解能力.满分FBEFPAF1)如图,设,中点为.,连接(PAFEPD,分别为中点,所以因为,1ADEF?,且AD∥EF21AD?BCADBC∥,又因为,所以2.EF∥BCEF?BC,且BCEF为平行四边形,所以即四边形CE∥BF,因此PAB∥CE.平面BCADMNPNEFQMQ.,于点.连接(2)分别取交,的中点为,连接EFNPDPAADQEF中点,的中点,所以,因为,,,为分别是BCEF中,在平行四边形MQ//CE.PAD为等腰直角三角形得由△PNAD.⊥DCADNAD的中点得⊥是,由BNAD.⊥所以ADPBN,⊥平面BCAD得//由BCPBN,⊥平面那么PBCPBN.⊥平面平面QPBHMH.,连接的垂线,垂足为过点作MHMQPBCQMHCEPBC所成的角.是是直线在平面上的射影,所以∠与平面CD=1.设CECDPD=PCDPC=,,在△得中,由=2, =1221QHPBPBNPNBN,得= =1,=在△=中,由341MQQH=MQH在Rt△中,,,=24所以2QMH =∠sin,82PBCCE所以直线与平面所成角的正弦值是.8.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一)是就是利用方法①证明的.另外,本题也可利用空间向量求平面内的直线平行于另一平面.本题(1解线面角.ABCDABCDPADP?ABCD,为正方形,平面⊥平面.【2017年高考北京卷理数】如图,在四棱锥中,底面23ABMACPAPDPBMPD//6 =,点在线段.上,=平面=4,PBM为(1)求证:的中点;APDB)求二面角的大小;??(2BDPMC3)求直线所成角的正弦值.与平面(π62. );(3))见解析;【答案】(1(239BD,ACMEE. 【解析】(1)设交点为,连接MACMAC PDBPD∥ ME因为,平面,平面平面MEPD∥.所以.ABCD是正方形,因为EBD的中点,为所以MPB的中点为所以.OEOOP AD. ,连接的中点(2)取,ADOP?PDPA?.因为,所以?ABCDOP PADPAD?,平面又因为平面平面,且ABCDOP?.所以平面OE??ABCDOPOE. 平面,所以因为AD?ABCDOE.因为是正方形,所以4,0)2,B(?D(2,0,0)xyz?O2)P(0,0,如图建立空间直角坐标系,,则,,4,0)(4,?BD?2)??(2,0,PD.,?0y4?4x??0n?BD???),z(x,yn?BDP??.的法向量为,则,即设平面0??2z2x?0??PDn???1y?1?x2)(1,1,n?. ,则,.令于是2z?1pn??>n,p cos<?(0,1,0)?pPAD,所以的法向量为.平面2|||np|?APD?B?. 由题知二面角为锐角,所以它的大小为322(2,4,0)C?(3,?MC)2,)1,2,?(M,(. ,3)由题意知226|2n?MC|???>|sin??|cos<n,MC MCBDP.所成角为设直线,则与平面9|MC n|||62MC BDP. 与平面所以直线所成角的正弦值为9【名师点睛】本题涉及立体几何中的线面平行与垂直的判定与性质,全面考查立体几何中的证明与求解,意在考查学生的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种常见且有.效的方法,要注意建立适当的空间直角坐标系以及运算的准确性BDAC,MAC∥PDEME根据性质定理,可知线,交点为(1)设,因为线面平行,即,连接平面PBBDMPD∥MEE的中点,可知,再由线平行,即的中点;为为OABCD AD?PAD?PDPA为原点建立空间直角坐标系,平面(的中点2)因为平面,,所以取pn cos n,p,求二面角的大小;,,再根据公式根据向量法先求两平面的法向量|cos MC,n|即可)的结论,直接求.3)根据(2(?BAC?90?DABCPAABCENP分中,,⊥底面2017年高考天津卷理数】如图,在三棱锥.点-,,.【24PAPCBCMADPAACAB=2.别为棱,,=,的中点,=4是线段的中点,MNBDE;∥平面(1)求证:CEMN的正弦值;)求二面角-- (27AHNHBEHPA的长.)已知点3,求线段在棱所成角的余弦值为上,且直线与直线(2118105.)或(;32【答案】(1)证明见解析;()2521zxAy轴正方向建立空间直角坐标轴、方向为轴、【解析】如图,以,为原点,分别以,ACAPAB DPBACE,)2,2,0(,)2,0,0(,)4,0,0(,)0,4,0(,)0,0,2(,)0,0,0(系.依题意可得NM.,0,)(1,2(0,0,1)).=(2,0,,(1)易得=(0,20),2?DBDE?0y?20DE?n???),zn?(x,y BDE,即为平面.设的法向量,则??0z?2x?20DB?n????(1,0,1)?n不妨设,可得.1z?.,2,),可得又=(11?0?MN?nMN∥MN BDEBDE?MN因为平面平面.,所以(1,0,0)?n CEM为平面(2)易知的一个法向量.1?0?n?EM?2),y,z?n(x EMN的法向量,则为平面,设?20n?MN???20y?z??2?,,所以.因为。
2017-2019年高考真题数学(文)分项汇编_专题06 立体几何(解答题)
专题06立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)17. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故17CH =.从而点C 到平面1C DE 的距离为17.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【答案】(1)见解析;(2)见解析;(3)3. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以DN =又DN AN ⊥,在Rt AND △中,sin DN DAN AD ∠==所以,直线AD 与平面P AC【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,22F ,C (0,2,0).因此,33(,22EF =,(BC =. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(02BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩nn ,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP = 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P A B C -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)5.【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =连结OB .因为AB =BC =2AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC ,∠ACB =45°.所以OM =3,CH =sin OC MC ACB OM ⋅⋅∠=5.所以点C 到平面POM 的距离为5. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2;(3. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为26.(3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中,sin 4CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为4.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)13. 【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =, 由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D ,故111sin C D C AD AC ∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1(12),3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(1(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==PB PC ==.可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由A B A P ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD ⊂底面,所以PM ⊥CM .设BC =x ,则CM =x ,CD ,PM ,PC =PD =2x .取CD 的中点N ,连结PN ,则PN ⊥CD ,所以PN x =.因为△PCD 的面积为,所以12x =解得x =−2(舍去),x =2,于是AB =BC =2,AD =4,PM =所以四棱锥P −ABCD 的体积()224132V ⨯+=⨯⨯=【名师点睛】解答本题时,(1)先由平面几何知识得BC ∥AD ,再利用线面平行的判定定理证得结论;(2)取AD 的中点M ,利用线面垂直的判定定理证明PM ⊥底面ABCD ,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 【答案】(1)见解析;(2)1:1【解析】(1)取AC 的中点O ,连结DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(12)见解析;(3 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==故cos AD DAP AP ∠==所以,异面直线AP 与BC(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF ==在Rt △DPF 中,可得sin 5PD DFP DF ∠==.所以,直线AB 与平面PBC 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥ 又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.-中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,21.【2017年高考江苏卷】如图,在三棱锥A BCDF(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC AD∥,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,得CE在△PBN 中,由PN =BN =1,PB QH =14,在Rt △MQH 中,QH=14,MQ , 所以sin ∠QMH =8,所以直线CE 与平面PBC 所成角的正弦值是8.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
2017年高考数学—立体几何(解答+答案)
2017年高考数学—立体几何(解答+答案)1.(17全国1理18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.2.(17全国1文18.(12分))如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45 ,求二面角M AB D --的余弦值4.17全国2文18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=o 。
(1) 证明:直线//BC 平面PAD ; (2) 若PCD ∆的面积为27,求四棱锥P ABCD -的体积。
如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.6.(17全国3文19.(12分))如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.DABCE7.(17北京理(16)(本小题14分))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,//PD 平面,6,4MAC PA PD AB ===(I )求证:M 为PB 的中点; (II )求二面角B PD A --的大小;(III )求直线MC 与平面BDP 所成角的正弦值.8.(17北京文(18)(本小题14分))如图,在三棱锥P ABC -中,,,,2PA AB PA BC AB BC PA AB BC ⊥⊥⊥===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当//PA 平面BDE 时,求三棱锥E BCD -的体积.9.(17山东理17.)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120︒得到的,G 是»DF的中点. (Ⅰ)设P 是»CE上的一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =,求二面角E AG C --的大小.10.(17山东文(18)(本小题满分12分))由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD, (Ⅰ)证明:1A O ∥平面11B CD ;(Ⅱ)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .11.(17天津理(17)(本小题满分13分))如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为7,求线段AH 的长.12.(17天津文(17)(本小题满分13分))如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.14.(17江苏15.(本小题满分14分))-中,AB⊥AD,BC⊥BD,平如图,在三棱锥A BCD面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。
全国卷历年高考立体几何真题归类分析2019(含答案)
全国卷历年高考立体几何真题归类分析2019.7(含答案)类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。
这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,线上动点或存在性等问题,以增加难度。
该类问题的突破点是通过条件建立方程求解,对于线上动点问题,主意共线向量基本定理的应用,只设一个未知数,而不是直接设动点坐标。
1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值.3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN P 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45o ,求二面角M AB D --的余弦值.EM DCBAP6.(2019年全国Ⅱ卷17题)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE=A 1E ,求二面角B –EC –C 1的正弦值.7.(2019年全国Ⅰ卷18题)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN ∥平面C 1DE ;(2)求二面角A-MA 1-N 的正弦值.类型二:证建系(1)——条件中已经给出线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明同一平面内两条直线垂直的定理)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2019高考文数真题分类解析----立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故17CH =.从而点C 到平面1C DE 的距离为17.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC⊥.所以BD⊥平面PAC.(2)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PAB.所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12 AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【答案】(1)见解析;(2)见解析;(3 【解析】(1)连接BD ,易知AC BD H =I ,BH DH =. 又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =I , 所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以DN =又DN AN ⊥,在Rt AND △中,sin DN DAN AD ∠==.所以,直线AD与平面P AC所成角的正弦值为3【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC −A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,22F ,C (0,2,0).因此,3(,22EF =u u u r,(BC =u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(10)=(02BC AC -u u u r u u u r ,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u rn n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u ru u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP = 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)5.【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =连结OB .因为AB =BC =2AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =3,∠ACB =45°.所以OM =3,CH =sin OC MC ACB OM ⋅⋅∠=5.所以点C 到平面POM 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2)26;(3)4. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为26.(3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中,sin 4CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为4.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)13. 【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =, 由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D ,故111sin C D C AD AC ∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1(12),3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(1(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,2PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==PB PC ==.可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+ 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由AB AP ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD ⊂底面,所以PM ⊥CM .设BC =x ,则CM =x ,CD ,PM ,PC =PD =2x .取CD 的中点N ,连结PN ,则PN ⊥CD ,所以PN x =.因为△PCD 的面积为,所以12x =解得x =−2(舍去),x =2,于是AB =BC =2,AD =4,PM =所以四棱锥P −ABCD 的体积()224132V ⨯+=⨯⨯=【名师点睛】解答本题时,(1)先由平面几何知识得BC ∥AD ,再利用线面平行的判定定理证得结论;(2)取AD 的中点M ,利用线面垂直的判定定理证明PM ⊥底面ABCD ,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比. 【答案】(1)见解析;(2)1:1【解析】(1)取AC 的中点O ,连结DO ,BO . 因为AD =CD ,所以AC ⊥DO . 又由于△ABC 是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC I 平面BDE DE =, 所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,BD DC ==由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(12)见解析;(3 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==故cos AD DAP AP ∠==所以,异面直线AP 与BC 所成角的余弦值为5.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF ==在Rt △DPF 中,可得sin PD DFP DF ∠==.所以,直线AB 与平面PBC 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A E EM E =I , 所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.21.【2017年高考江苏卷】如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥, 所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥, 所以BC ⊥平面ABD . 因为AD ⊂平面ABD , 所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC .【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行; (2)证明线面垂直,需转化为证明线线垂直; (3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC AD ∥,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)8. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角. 设CD =1.在△PCD 中,由PC =2,CD =1,得CE在△PBN 中,由PN =BN =1,PB QH =14,在Rt △MQH 中,QH=14,MQ , 所以sin ∠QMH =8,所以直线CE 与平面PBC .【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.31。