频数与频率
频数与频率
【基础知识精讲】1.理解数据的频数、频率及频率分布的意义.2.会就一组数据列出频率分布和画出分布直方图,以及频数分布折线图.【重点难点解析】1.频率分布的意义频率分布反映了样本数据在各个范围内所占的比例.2.求频率分布的步骤要得到一个样本的频率分布情况,可按下列五步进行:(1)计算最大值与最小值的差;(2)决定组距和组数;(3)决定分点;(4)列频率分布表;(5)绘制频率分布直方图.3.频率分布表与频率分布直方图在频率分布表中,可以知道一组数据在各个小组所占的比例大小.在各频率分布直方图中,可将一组数据在各个小组内所占的比例非常直观地、形象地反映出来.4.频率的意义一个小组的频率是指每一小组的频数与数据总数的比值.在频率分布直方图中,各小长方形的面积等于相应各组的频率.5.频数分布直方图与频数分布折线图在频数分布直方图与频数分布折线图中,可将数据所占的多少形象地反映出来.A.重点、难点提示1.掌握频数与频率的的概念、频率分布表的列法、频率直方图的画法.2.理解频率分布的意义,会求一组数据的频率分布.3.难点是在求频率分布时决定组距和组数.(这是重点,要掌握好)B.考点指要本节的考点通常会集在求频率以及绘制频率分布直方图.在建立频率分布表与频率分布直方图的联系时,决定组数的方法是:数据总数目n,当n ≤50时,分为5~8组;当50≤n≤100时,分为8~12组较为合适.决定分点的方法是:若数据为整数,则分点数据减去0.5;若数据为小数点后一位的数,则分点减去0.05,以此类推.画频率分布直方图的方法是:假设频数为1的小长方形的高为h,则频数为k的小长方形的高为kh,从频率分布表中直接看出哪个范围的多少,以及所占的比例.(图是用来反映表的,而表是用来归纳图的,二者相辅相成)【难题巧解点拨】例1 抽样检查20个工件的直径所测得的一组数据:(单位:mm)23.26 23.52 23.43 23.54 23.66 23.31 23.27 23.41 23.55 23.4423.38 23.63 23.54 23.46 23.48 23.50 23.49 23.53 23.46 23.45(1)列出样本的频率分布表,画频率分布直方图;(2)根据频率分布表指出样本数据落在哪个范围内最多. 思路分析本题主要考查频率分布直方图的画法,关键是决定组距和组数,要分组恰当. 解:(1)①最大值-最小值=23.66-23.26=0.4(mm ) ②组距取0.09,组数4.409.04.0≈=,能分成五组;(掌握分组的基本方法) ③决定分点:23.255~23.345,23.345~23.435,23.435~23.525,23.525~23.615,23.615~23.705.④列频率分布表:⑤画频率分布直方图如下:(2)由频率分布表,数据落在23.435~23.525之间的最多,为8个.点评:频数是落在每一小组内的数据个数,频数之和等于数据总数(样本容量);频率是每一小组的频数与数据点数的比值,频率之和等于1.例2 为了解中学生的身高情况,对某中学同年龄的若干名学生的身高进行了测量,将所得的数据整理后,画出频率分布直方图,如图所示.已知图中从左到右五个小组的频率分别是0.017,0.050,0.100,0.133,0.300,第三小组的频数为6.(1)参加这次测试的学生数是多少?(2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少?(3)如果本次测试身高在155cm 以上的为良好,试估计该校学生身高良好率是多少?思路分析本题主要考查频率分布直方图的应用,关键是要明确频率分布直方图的意义. 解:(1)∵第三小组的频数为6,频率为0.1 ∴参加这次测试的学生人数为601.06(人)(利用频率与频数的关系) (2)从频率直方图可以看出,身高在(157.5~160.5)cm 之间的人数最多,共有人数60×0.300=18(人)(所有频率之和为1)(3)身高良好率为1-(0.017+0.050+0.100) ·100%=83.3%例3 为了解某中学初中三年级300名男学生的身体发育情况,从中对20名男学生的身高进行了测量,结果如下:(单位:cm )175 161 171 176 167 181 161 173 171 177 179 172 165 157 173 173 166 177 169 181 下表是根据上述数据填写的频率分布表的一部分:(1)请填写表中未完成的部分;(2)样本数据中,男生身高的众数是多少厘米?(3)根据表中数据整理与计算回答:该校初中三年级男学生身高在171.5~176.5(cm )范围内的人数为多少?思路分析本题主要考查频数、频率的基本概念.解:(1)∵各组频数之和=总频数(样本容量),∴20-3-2-4-5=6.(也可看频率累计,计算该组频数)又∵各组频率之和=1,∴1.00-0.15-0.10-0.20-0.30=0.25.(2)样本数据中,男生身高的众数是173cm.(众数的概念忘了吗?)(3)∵男学生身高在171.5~176.5cm范围的人数是6人,频率是0.30∴300×0.30=90(人)答:300名学生中,身高171.5~176.5cm范围内的人数为90人.【典型热点考题】例1 已知一个样本:25 21 23 25 27 29 25 28 30 2926 24 25 27 26 22 24 25 26 28(1)频数分布表;(2)绘制频数分布直方图;(3)绘制频数分布折线图.解:(1)频数分布表(2)~(3)频数分布直方图与折线图.图5-5例2 如图5-6,是某单位职工年龄(取正整数)的频数分布直观图,根据图形提供的信息,回答下列问题(直接写出答案):图5-6(1)该单位职工共有多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少? (3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人? 解:(1)该单位职工共有:4+7+9+11+10+6+3=50(人).(2)38~44岁之间的职工人数共有9+11+10=30(人),占职工总人数%60%1005030=⨯. (3)年龄在42岁以上的职工(10-4)+6+3=15(人). 例3 某校抽检64个学生的体重如下(单位:k g ): 38 32 39 40 35 45 37 38 40 29 39 41 37 42 39 34 36 39 33 42 36 44 33 29 40 35 39 37 46 39 31 39 36 42 38 41 36 44 38 34 38 38 41 39 39 34 36 48 30 31 37 42 42 45 34 33 48 43 41 35 39 44 43 44列出样本的频率分布表,并绘出频率分布图. 解 (1)计算最大值与最小值的差: 48-29=19 (k g ). (2)决定组据与组数.样本容量是64,最大值与最小值的差是19k g ,如果取组据为2k g :19÷2=9.5. 所以分成10组比较适当. (3)决定分点.第一组起点数为28.5,各组是:28.5~30.5,30.5~32.5,…,46.5~48.5 (4)列频率分布表对各小组作频数累计,然后数频数,算频率,列频率分布表:频率分布表正正正正(5)画频率分布直方图画频率分布直方图时,确定图中各小长方形的高是比较麻烦的,深入分析一下: 数据总和组距频数组距频率小长方形的高⨯==因为数据总和组距⨯1是常数,所以小长方形的高与频数成正比,若频数为1的小长方形的高为h ,那么频数为k 的小长方形的高就为hk ,这在绘制频率分布直方图时是很重要的. 频率分布直方图如下:图5-7在频率分布直方图,由于: 频率组距频率组距小长方形的面积=⨯= 即各小长方形的面积等于相应各组的频率,而各组的频率的和等于1,因此各小长方形的面积的和等于1.。
频数与频率名词解释
频数与频率名词解释频数:是指一定时间内发生的事件,即事件发生的次数。
(一)简述频数与频率的概念1。
关于事件的频数。
第二,频数并不是每个人都有的,所以才把频率称为事件的频数。
2。
频数与频率的区别:频率反映的是事物的次数,如“李华每天上学、放学要走500米”这句话里的“ 500米”就是频数。
而频数则是指事件发生的次数,如某班同学说“今天早上李华迟到了”就是在说“李华迟到了”这一事实,但是李华迟到了几次呢?一次、两次还是五次?我们要用“频数”这个词来表示,即500÷5= 30(次)。
如果单纯地写成“迟到几次”,那么就只能算作频数,而不是频率。
3。
有的名称中没有“频率”一词,例如:成语“事半功倍”的频率。
虽然“倍”和“倍数”这两个词均可表示“增加或增加的次数”,但是“倍数”更加形象化,能给人留下更深刻的印象。
当“事半功倍”四个字摆在我们面前时,它会使我们产生许多联想:( 1)“事”和“倍”究竟是什么关系?( 2)事情做得越多,效果就越好吗?……其实,要回答上面的问题,也不难,只要记住它们的频率就行了。
如:半个月的星期日,按频率排列应该是星期六、星期日和星期一,可是由于工作的关系,星期一被挤掉了,因此,我每个星期的星期一最难熬。
因此,我总盼望着星期六的到来。
我们再看成语“事半功倍”。
如果改成“事半功未倍”,意思就截然相反了。
在一般的交谈中,我们常用“频数”这个词,所以频数也就代替了频率,成了频数=频率,不过我们仍要说频率,以表示事件的次数。
第三,同样一个事件,一年有十二个月,发生的次数叫做频数。
如果按季度来计算的话,就叫做频率,如去年4月份发生了12件事情, 5月份又发生了12件事情,就叫做了6个事件的频数,从以上举例中可知:第一,频数大于频率,如上例, 4月份发生的12件事情的频数,就比5月份发生的12件事情的频数多。
第二,频数小于频率,如上例,去年4月份发生的12件事情的频数,就比5月份发生的12件事情的频数少。
解密数据的分析认识频数与频率
解密数据的分析认识频数与频率解密数据的分析:认识频数与频率数据分析是当今信息时代中不可或缺的一环,它能够帮助我们从大量的数据中提取有用的信息和洞察。
在数据分析的过程中,频数与频率是我们常常使用到的重要概念。
本文将深入探讨频数与频率的概念及其在数据分析中的应用。
一、频数的定义与计算方法在数据分析中,频数指某个数值(或数值范围)在数据集中出现的次数。
频数常常用于描述数据集中的离散变量。
要计算频数,只需要统计数据集中每个数值的出现次数即可。
例如,我们有一个样本数据集,记录了某城市每天的降雨量。
我们可以通过统计每个降雨量数值出现的次数,得到该数值的频数。
二、频率的定义与计算方法频率是相对于样本或总体来说的,它是指某个数值(或数值范围)在数据集中所占的比例或百分比。
频率常常用于描述连续变量,通常以百分比的形式表示。
要计算频率,需要先计算某个数值的频数,然后除以样本或总体的大小,再乘以100%。
例如,在之前的降雨量数据集中,若在一个月的观测期内,降雨量为20毫米的天数有10天,那么降雨量为20毫米的频率可以计算如下:频率 = (频数 / 样本大小) * 100% = (10 / 30) * 100% = 33.33%三、频数与频率的应用频数与频率在数据分析中有着广泛的应用,以下列举几个例子:1. 描述性统计分析:频数与频率可以用来描述数据集的分布情况。
通过统计各个数值的频数与频率,我们可以了解到数据集中的一些基本特征,例如众数(出现频数最高的数值)、中位数等。
2. 数据可视化:频数与频率可以帮助我们选择合适的图表展示数据。
例如,柱状图可以清晰地展示各个数值的频数,而相对频率条形图能够展示出各个数值的频率比例。
3. 假设检验:在统计假设检验中,频数与频率可以帮助我们进行数据的比较与推断。
通过比较不同变量的频数或频率,我们可以判断它们之间是否存在显著差异。
四、如何提高数据分析的精度在数据分析中,我们希望得到准确可靠的结果。
12频数与频率
频数与频率一、一周知识概述1、频数、频率、频数分布表一般我们称落在不同小组中的数据个数为该组的频数.频数与数据总数的比为频率.频率反映各组频数的大小在总数中所占的份量,频率×100%就是百分比.而反映数据分布的统计表叫做频数分布表,也称频数表.2、频数分布直方图用来表示频数分布的基本统计图叫做频数分布直方图,简称直方图.基本步骤为:①计算数据的最大值与最小值的差;②决定组距与组数;③决定分点;④列频数分布表;⑤绘制频数分布直方图.二、重难点知识归纳1、频数、频率、频数分布表的概念.2、频数分布直方图的应用.三、典型例题剖析例1、2002年12月3日22点16秒,从摩纳哥蒙特卡洛举行的国际展览局大会上传来了振奋人心的消息——中国当选为2010年世博会的东道主!选举方式是由国际展览局89个成员国的代表以无记名方式进行投票.在首轮投票中,中国以36票居第一,韩国28票,俄罗斯12票,墨西哥6票,波兰被淘汰.在这轮的投票中,前四名的国家的得票的频数各是多少?频率各是多少,各国所占的百分比又是多少?[解析]例2、已知数据:2521232527292528302926242527262224252628试根据数据绘制频数分布表.[解析]例3、某中学部分同学参加全国初中数学竞赛,取得了优异的成绩.指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如下图所示.(每组含最低分数,但不含最高分数)请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获胜奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他信息,例如该中学没有获得满分的同学等等.请再写出两条信息.[解析]例4、为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题.(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,共抽取_________人的成绩进行统计;(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?[解析]例5、如下图所示,是某单位职工的年龄(取正整数)的频数分布直方图.根据图形提供的信息,回答下列问题:(1)该单位职工共有多少人?(2)不少于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?例一分析:根据频数、频率的概念求解,但应注意这里仅取前四名的国家,其他国家未列入.解:中国、韩国、俄罗斯、墨西哥四国的频数分别为36、28、12、6频率分别为0.404, 0.315, 0. 135, 0.067,各国所占的百分比分别为40.4%、31.5%、13.5%、6.7%.例二分析:绘制频数分布表,根据其基本步骤进行,但根据数据取组距为2较合适.解:(1)计算最大值与最小值的差;最大数据是30,最小数为21,它们的差是30-21=9;(2)取组距为2,由于,∴组数为5;(3)决定分点:20.5~22.5, 22.5~24.5, 24.5~26.5, 26.5~28.5, 28.5~30.5.(4)列频数分布表:例三分析:图中横轴表示分数段,纵轴表示各分数段的人数,由此分析可知每个问题的结论.解:(1)4+6+8+7+5+2=32,所以参加本次数学竞赛的有32名同学;(2).所以该中学的参赛同学获奖率是43.75%;(3)该中学参赛同学的成绩均不低于60分;成绩在80~90分段的人数最多.例四解:(1)由频率分布表可知,抽样调查总数为:4÷0.08=50(人)∴90.5~100.5分数段的人数为50-4-8-10-16=12(人),这一分数段的频率为12÷50=0.24.“合计”中,频数是50,频率是1.00.(2)如图所示.(3)在该问题中,共抽取50人的成绩进行统计.(4)由频率分布表可以看到,80.5~90.5这一分数段的人数最多.(5)成绩在90分以上(不含90分)的占0.24,所以,900×0.24=216(人).∴该校成绩优秀的约为216人.点评:解本题的关键是填充“频率分布表”,在这一问题中,既可以利用某小组的频数和频率,用“频数÷频率=总人数”求出总人数,进而求出90.5~100.5这一分数段的人数,再求出相对应小组和合计的频率.同时,也可以从频率着眼,已知各小组的频率之和为1.00,从而求出90.5~100.5分数段的频率,进而求出这一分数段的频数.注意解题的灵活性.例如:求出90.5~100.5分数段的频率是0.24,是50.5~60.5分数段的频率的3倍,故此,90.5~100.5分数段的频数是4×3=12(人),计算起来比较简便例五解:(1)该单位共有职工50人;(2)不小于38岁但小于44岁的职工人数为30人,占总数的=60%;(3)42岁以上的职工人数为19-4=15(人).在线测试一、选择题1、某单位有职工100名,将他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是()A.0.12 B.0.38C.0.32 D.0.922、有关频数分布表和频数分布直方图的理解,正确的是()A.频数分布表能清楚地反映事物的变化情况B.频数分布直方图能清楚地反映事物的变化情况C.频数分布直方图能清楚地表示出各部分在总体中所占的百分比D.二者均不能清楚地反映变化情况和总体中所占的百分比,但能反映出每个项目的具体数目3、甲、乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图所示)甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只;乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个.现给出下列四个判断:①该县第2年养鸡场产鸡的数量为1.3万只;②该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;③该县这7年养鸡场产鸡的数量逐年增长;④这7年中,第5年该县养鸡场产鸡的数量最多,根据甲、乙两人提供的信息,可知其中正确的判断有()A.2个B.1个C.0个D.3个4、一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,图(1)表示某年12个月中每月的平均气温;图(2)表示某家庭在这年12个月中每月的用电量.根据图中信息得到下列判断:(1)气温最高时,用电量最多;(2)气温最低时,用电量最少;(3)当气温大于某一值时,用电量随气温升高而增加(或降低而减少);(4)当气温小于某一值时,用电量随气温降低而增加(或升高而减少).其中正确的判断有()A.4个B.0个C.2个D.1个5、近年来国内生产总值增长的变化情况如图所示,由图可知,下列结论不正确的是()A.1995~1999年国内生产总值的年增长率逐年减少B.2000年国内生产总值年增长率开始回升C.这7年中,每年的国内生产总值不断增长D.这7年中,每年的国内生产总值有增有减6、我校九年级三班选举班长,通过投票最后统计三名候选人A、B、C的票数分别为25票、17票、8票,则候选人B所得票数的频数为()A.25 B.17C.8 D.507、如图所示的是九年级某班60名同学参加数学毕业会考所得成绩(成绩均为整数)整理后画出的频数分布直方图,根据图示可得出该班及格(不低于60分)的同学的人数为()人.(每组含最低分,不含最高分,但满分100分在最后一组内).()A.45 B.46C.49 D.508、在统计中频数分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值9、一组数据最大值与最小值的差为80,若确定组距为9,则分成的组数为()A.7 B.8C.9 D.1210、某班50名学生期末考试数学成绩(单位:分)的频数分布直方图如下图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段人数与89.5分~100分段的人数相等;(2)从左到右数,第四小组的频率是0.03;(3)成绩在79.5分以上的学生有20人;(4)从左往右数,第三小组的组中值为74.5.其中正确的判断有()A.4个B.3个C.2个D.1个B 卷二、解答题11、为增强学生的身体素质,某校常年坚持全员体能锻炼,并定期进行体能测试,下面将某班学生立定跳远成绩(精确到0.01米)进行整理后,分成5组(含低值不含高值):1.60~1.80, 1.80~2.00, 2.00~2.20, 2.20~2.40, 2.40~2.60,已知前4个小组的频率分别是0.05, 0.15, 0.03, 0.35,第5个小组的频数是9.(1)该班参加这次测试的人数是多少?(2)请画出各组频数的条形图.(3)成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?[答案]12、某校课外活动小组为了解本校初三学生的睡眠时间情况,对学校若干名初三学生的睡眠时间进行了抽查,将所得的数据整理后,画出了频率分布直方图的一部分,如图所示.已知图中从左至右前五个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第二小组的频数为4,请回答下列问题.(1)这次被抽查的学生人数是多少?并补全频率分布直方图;(2)被抽查的学生中,睡眠时间在哪个范围内的人数最多?这一范围内的人数是多少?(3)如果该校有900名初三学生,若合理睡眠时间为7≤t<9,那么请你估计一下这个学校初三学生中睡眠时间在此范围内的人数是多少?[答案]13、某中学同年级40名男生的体重数据如下:(单位:kg)列出频数分布表,绘出频数分布直方图.[答案]14、在一次环保知识测试中,三年一班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频率分布直方图,如图1,图2所示.已知图1从左到右每个小组的频率分别为0.04,0.08,0.24,0.32,0.20,0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1︰2︰4︰7︰6︰3︰2,请结合条件和频率分布直方图回答下列问题.(1)三年一班参加测试的人数为多少?(2)若这次测试成绩80分以上(含80分)为优秀,则优秀率是多少?(3)若这次测试成绩60分以上(含60分)为及格,则及格率是多少?测试结果第1题答案错误! 正确答案为 C第2题答案错误! 正确答案为 D第3题答案错误! 正确答案为 B第4题答案错误! 正确答案为 D第5题答案错误! 正确答案为 D第6题答案错误! 正确答案为 B第7题答案错误! 正确答案为 A第8题答案错误! 正确答案为 C第9题答案错误! 正确答案为 C第10题答案错误! 正确答案为 B提示:1、4、8月份气温最高,用电量并不是最多,1月份气温最低,用电量也不是最少,所以(1)、(2)两种说法都是错的;2月份的气温不是最低,但其用电量最多,所以(4)是错的,只有(3)正确,因为当气温高于25℃时,气温高用电量多.11、答案:(1)第5组的频率为1-0.05-0.15-0.30-0.35=0.15.9÷0.15=60(人),∴该班参加这次考试的人数为60人.(2)图略(3)合格的人数为48人,合格率为.12、解:(1)∵4÷0.08=50(人),∴这次被抽查的学生人数是50人,并补全频率分布直方图如图所示.(2)∵1-0.04-0.08-0.24-0.28-0.24=0.12,∴频率最高的是第四小组,是0.28,50×0.28=14(人).∴被抽查的学生中,睡眠时间在6≤t<7范围内的人数最多,这一范围内的人数是14人.(3)由频率分布直方图可以发现,睡眠时间在7≤t<9范围内的频率是0.24+0.12=0.36=36%.∴睡眠时间在7≤t<9范围内的学生人数占总人数的36%.∴900×36%=324(人).∴估计全校900名初三学生中睡眠时间在合理睡眠范围内的人数约是324人.13、答案:列出频数分布表如下:频数分布直方图如图答所示14、解析:(1)12÷0.24=50(人),∴三年一班参加测试的人数为50人.(2)由图2知,1+2+4+7+6+3+2=25,6+3+2=11,∴11÷25×100%=44%.∴若这次测试成绩80分以上(含80分)为优秀,则优秀率是44%.(3)由图1知,1-0.04=0.96=96%,∴若这次测试成绩60分以上(含60分)为及格,则及格率是96%.。
频数与频率
在6.45~6.95有多少株?
T
(归纳):列频数分布表的一般步骤:
1. 计算最大值与最小值的差
2. 自己确定组距 3. 计算组数
(1)数据在100以内时,通常分成5—12组
极差
(2)一组数据的组数= 组距
的商的整数部分+1
(3) 分点比实际数据多取一位小数
4. 列频数分布表
最喜爱的 文学作品
A
B
C D
学生数
正正正 17 正正正正 20
2
一
1
这种统计表的优点是简单明了,一眼可以看出 哪个最多,哪个最少。
☞ 探究新知
一图知“情”
学生
人数 25
20 20 17
15
这种统计图的优点是直观, 一目了然。不仅可以看出哪 个多、哪个少,还可以比较 出差别是否悬殊很大。
10
5
21
A
4.5 3.6 3.5 3.7 3.7 4.7 2.9
3.2 3.5 3.6 4.8 4.3 3.6
极差为:2
组别(kg) 人数
2.87~5~3.23.15 33..21~5~3.63.55 3.65~5~4.30.95
3、分点怎么取? 组数怎么算?
为了使数据不落在各组的边 界上,在组距不变的情况下, 我们把分点的数取的比实际 数据多一位小数。并把第一
市医院今年10月份出生20名新生婴儿体 重统计表
组别(kg) 划记 人数
2.75~3.15
2
3.15~3.55
7
3.55~3.95
正
6
3.95~4.35
2
4.35~4.75
2
4.75~5.15
1
频数与频率的公式
频数与频率的公式是频率=频数/样本数。
频数是在统计学中,将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数,频率是某个组的频数与样本容量的比值叫做这个组的频率,频率=频数÷样本容量。
频数分布:
我们把各个类别及其相应的频数全部列出来就是频数分布或称次数分布。
将频数分布用表格的形式表现出来就是频数分布表。
调查数据经分类整理后形成频数分布表。
累积频数:
累积频数就是将各类别的频数逐级累加起来。
其方法有两种:
一是从类别顺序的开始一方向类别顺序的最后一方累加频数(定距数据和定比数据则是从变量值小的一方向变量值大的一方累加频数),称为向上累积。
二是从类别顺序的最后一方向类别顺序的开始一方累加频数(定距数据和定比数据则是从变量值大的一方向变量值小的一方累加频数),称为向下累积。
通过累积频数,可以很容易看出某一类别(或数值)以下及某一类别(或数值)以上的频数之和。
初中数学教案理解统计中的频数与频率
初中数学教案理解统计中的频数与频率统计学是数学中一门重要的分支,它研究数据的收集、整理、分析和解释。
在统计学中,频数与频率是两个重要的概念。
本文将介绍频数与频率的定义、计算方法以及在统计分析中的应用。
一、频数的定义和计算方法频数指的是某一特定数值在一组数据中出现的次数,通常用符号n 表示。
在统计学中,频数常用于描述某一现象、性质或特征在给定数据集中的表现。
计算频数的方法很简单,只需要统计某个数值在数据中出现的频率即可。
例如,我们有以下一组数据:5,2,3,6,5,4,5,1,3,5。
这组数据中,数字5出现了4次,所以其频数为4。
二、频率的定义和计算方法频率指的是某一特定数值在一组数据中出现的相对次数,通常用符号f表示。
频率是指频数与总数据量之间的比值,可以用来衡量某一现象在数据中的相对重要性或普遍性。
频率的计算方法是将频数除以总数据量,并将结果以百分比形式表示。
以前述的数据为例,总数据量为10,数字5的频率为4/10=0.4,即40%。
三、频数与频率的应用频数和频率在统计学中有着广泛的应用,特别是在描述和分析数据分布方面。
1. 数据描述频数和频率可用于统计描述数据的集中趋势和离散程度。
通过计算各个数值的频数和频率,我们可以了解数据中哪些数值出现的次数较多,哪些数值出现的次数较少,从而对数据的分布进行初步了解。
2. 数据比较比较不同数据集中的频数和频率可以帮助我们找出数据之间的差异和共性。
通过比较不同组的频数和频率,我们可以判断某一特定现象在不同数据集中的表现是否有所不同,进而推断其影响因素或规律。
3. 数据预测频数和频率还可以用于预测未来的趋势或结果。
通过对历史数据中特定数值的频数和频率进行分析,可以辅助我们预测未来的发展趋势,为决策提供参考依据。
在实际应用中,频数和频率经常与统计图表结合起来使用,以更直观地展示数据的特征和趋势。
常见的统计图表有柱状图、饼图、折线图等,通过这些图表可以更清晰地呈现数据的分布情况,使结果更易理解。
小学教育ppt课件教案,频数与频率的计算
04
CHAPTER
频数与频率的计算实例
理解频数与频率的概念
总结词
频数是数据中某一数值出现的次数,频率则是频数与数据总数的比值。通过具体的数据实例,引导学生理解频数和频率的概念,掌握计算方法。
详细描述
总结词
探究频数与频率的关系
详细描述
通过观察不同数据集的频数和频率,引导学生发现频数越大,频率越高的规律。同时,解释频率的变化受数据分布和数据总数的影响。
小学教育ppt课件教案,频数与频率的计算
目录
引言频数与频率的基本概念频数与频率的应用频数与频率的计算实例总结与回顾
01
CHAPTER
引言
频数是指在一定数量的数据中某事件发生的次数,频率则是指该事件发生的次数与数据总数的比值。
通过公式和实例演示,介绍频数和频率的计算方法,包括直接计数和比例计算。
THANKS
感谢您的观看。
频数与频率的计算方法
频数与频率的概念
03
培养数学思维和严谨态度
通过频数与频率的计算,培养学生的数学思维和严谨态度,提高对数据的敏感性和分析能力。
01
理解频数与频率的概念及计算方法
通过本节课的学习,学生应能够理解频数与频率的基本概念,掌握其计算方法。
02
运用频数与频率解决实际问题
学生能够运用所学知识解决实际生活中与频数和频率相关的问题,提高数据处理和分析能力。
03
CHAPTER
频数与频率的应用
用于统计各类数据出现的次数,帮助我们了解各类数据的分布情况。
频数
用于表示各类数据出现的相对频率,帮助我们了解各类数据的重要程度。
频率
频数
在数据可视化中,频数可以用于制作条形图、饼图等图表,帮助我们直观地了解各类数据的分布情况。
频数与频率PPT课件
(1)该班有多少名学生.
(2)69.5~79.5分这一组 的频数是多少?频率是多 少?
学生人数
20
15
18 16
10
10 8
6
5
2
39.5 49.5 59.5 69.5 79.5 89.5 99.5 成绩/分
谈一谈
1、什么是频数和频率? 2、如何计算频数和频率?
3、频数,频率和数据总量之间存在哪些 关系?
易建联,C代表科比, B A C D A A A C D A
D代表乔丹).
CB A ACCDAA C
A
B
C
D
小明调查了某班50名 同学最喜欢的篮球明 星,结果如表: (其 中A代表姚明,B代表
A A BCDA BA A C BA ACBCAAB C AA B ACDAACD
易建联,C代表科比, B A C D A A A C D A
2.一组数据中共有40个数,其中23出现的频率为 0.3,则这40个数中,23出现的频数为____ 。
3.把50个数据分成六组,其中有一组的频数是14, 有两组的频数是10,有两组的频率是0.14,则另一
组的频数是____ ,频率是____。
4.在对某班的一次测验成绩 进行统计中,各分数段的 人数如图所示(分数取正 整数,满分100分).
D代表乔丹).
CB A ACCDAA C
根据这个结果,你能很快说出该班同学最喜 欢的篮球明星吗?
你认为小明的数据表示方式好不好?你能设 计出一个比较好的表示方式吗?
小明调查了某班50名 同学最喜欢的篮球明 星,结果如表: (其 中A代表姚明,B代表
A A BCDA BA A C BA ACBCAAB C AA B ACDAACD
中考数学必备知识点统计中的频数与频率
中考数学必备知识点统计中的频数与频率中考数学必备知识点-统计中的频数与频率统计是数学中一个重要的分支,通过对数据的搜集、整理和分析,可以帮助我们更好地了解事物的规律和特征。
在统计中,频数和频率是两个基本概念,是我们进行数据分析和描述的重要工具。
一、频数频数(Frequency)指某个数值在给定数据集中出现的次数。
在统计学中,我们通常用频数来描述数据的分布情况,可以帮助我们直观地了解数据的集中程度和分散程度。
例如,下面是某班级30位学生的身高数据(单位:厘米):160, 150, 155, 165, 168, 170, 160, 160, 165, 172, 156,168, 170, 172, 160, 158, 160, 170, 180, 165, 162, 155,150, 160, 165, 170, 180, 165, 158, 160我们可以对这组数据进行频数统计,列出每个数值出现的次数:150出现2次155出现2次156出现1次158出现2次160出现6次162出现1次165出现5次168出现2次170出现4次172出现2次180出现2次通过统计频数,我们可以清晰地看到每个数值在数据集中出现的次数,从而对数据的分布有一个初步的了解。
二、频率频率(Frequency)指某个数值在给定数据集中出现的相对次数,是频数与总数之间的比值。
频率可以帮助我们在不同数据集之间进行比较,并更好地把握数据的分布特点。
频率可以用百分数或小数形式表示。
具体计算公式如下:频率 = 频数 / 总数继续以上述身高数据为例,共有30个数据,我们可以计算出每个数值的频率:150的频率为2 / 30 ≈ 0.067 ≈ 6.7%155的频率为2 / 30 ≈ 0.067 ≈ 6.7%156的频率为1 / 30 ≈ 0.033 ≈ 3.3%158的频率为2 / 30 ≈ 0.067 ≈ 6.7%160的频率为 6 / 30 = 0.2 = 20%162的频率为1 / 30 ≈ 0.033 ≈ 3.3%165的频率为5 / 30 ≈ 0.167 ≈ 16.7%168的频率为2 / 30 ≈ 0.067 ≈ 6.7%170的频率为4 / 30 ≈ 0.133 ≈ 13.3%172的频率为2 / 30 ≈ 0.067 ≈ 6.7%180的频率为2 / 30 ≈ 0.067 ≈ 6.7%通过计算频率,我们可以更直观地比较数据集中不同数值的出现情况,了解每个数值的占比和分布情况。
单样本频率计算公式
单样本频率计算公式
单样本频数与频率的公式是频率=频数/样本数,频数是在统计学中,将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数,频率是某个组的频数与样本容量的比值叫做这个组的频率,频率=频数÷样本容量。
1、频数分布
我们把各个类别及其相应的频数全部列出来就是频数分布或称次数分布。
将频数分布用表格的形式表现出来就是频数分布表。
调查数据经分类整理后形成频数分布表。
2、累积频数
累积频数就是将各类别的频数逐级累加起来。
其方法有两种:一是从类别顺序的开始一方向类别顺序的最后一方累加频数(定距数据和定比数据则是从变量值小的一方向变量值大的一方累加频数),称为向上累积;
二是从类别顺序的最后一方向类别顺序的开始一方累加频数(定距数据和定比数据则是从变量值大的一方向变量值小的一方累加频数),称为向下累积。
通过累积频数,可以很容易看出某一类别(或数值)以下及某一类别(或数值)以上的频数之和。
频数与频率
第三节频数与频率统计方法与数理统计学-频数与频率(二)作为数学学科来说,概率论属于“纯粹数学”,而以概率论为基础的数理统计学则是“应用数学”的重要分支.概率论是在随机现象的一般数学模型的基础上研究事件、概率、随机变数和随机过程的基本规律;而数理统计学则针对实际处理随机现象的任务提出数学模型,研究其规律并提出解决问题的方法.用概率论解决实际问题的方法叫做统计方法.统计方法有两个显着特点,第一个特点是由部分推断全体.被研究对象的全体在统计学中叫做总体(或称母体).从中随机抽取一部分就是样本(或称子样).凡统计方法都是通过对样本的统计分析来推断总体的性态,否则就不能算是统计方法.例如要检验一批灯泡的耐用时间,统计方法就是抽取一个样本.(比如10个灯泡组成的样本)进行检验,从这10个灯泡的耐用时间来推断整批灯泡的情况.如果把整批灯泡挨个检验,那就不是统计方法了(虽然按照日常语言的习惯,全面检验也应是一种“统计”,但作为数学方法来说,这不叫“统计方法”).这个例子也从另一方面表明了使用统计方法的必要性;因为对类如灯泡耐用时间这样的对象,全面检验是行不通的,全面检验就会毁掉全部灯泡.既然是由部分推断总体,那就不可能以百分之百的把握作结论.统计方法的第二个特点就是以接近于1的概率(例如、,但不能等于1)保证所作结论正确.实际上这就是把概率接近于1的随机事件当作必然事件,这叫做“实际推断原理”.其实细想一下,我们在日常生活及生产活动中所说的必然事件,往往都是可能性很大(即概率接近于1)的事件,而不是绝对必然发生的事件.比如我们说乘车必然比步行快,其实若车子出了偶然事故就可能比步行更慢.但车子一般不会出事故,即车子不出事故的概率通常接近于1,因此我们把乘车比步行快当作必然事件.由此可见,概率接近于1的随机事件特别重要,相应地在概率论中有一套极限理论专门研究概率接近于1的规律.广义的数理统计学泛指概率论在实际中的各种应用.狭义的数理统计学则是指统计观察方法的拟定和统计资料的分析,主要包括以下内容:1.数据整理和子样(样本)统计量的研究:这是数理统计学的基础部分.2.统计推断理论:根据子样(样本)来判断母体(总体)的情况叫做统计推断,这是数理统计的核心部分.统计推断理论包括两大方面——参数估计和假设检验.参数估计就是根据样本来估计总体的某些参数(例如平均值等);假设检验就是针对实际问题作出假设,然后利用子样来检验这假设,以接近于1的概率作出正确的推断.3.方差分析4.回归分析5.抽样理论:研究从母体中抽取子样的方法.一个好的抽样方案一方面要求抽取的样本个数尽可能少,另一方面要求作出判断正确的概率尽可能大.6.质量控制7.试验设计统计学——数学的巧妙操作频数与频率)均值、平均数、中位数、百分数、众数、百分点、图表……所有这些都是巧妙处理数据的办法.取两个数6和8,我们可以作出各种比较:如比6∶8;分数3/4;百分率75%等等.一旦人们收集数据并力图描述一种状态时,他就开始步入统计学的领域了.无论是有用的或是容易使人误解的资料,统计学几乎总是具有影响力的.它可用于预示各种现象,诸如:民意测验中的得票率,某次考试中,学习成绩优秀率;经济状态(通胀率、国民经济总量的增长数、失业率、收入的增加或减少);人口统计资料;天气预报;药品效力和有效性分析;赌博的输赢机会;海浪和潮汐的影响范围等等.统计的领域在不断扩大,当我们看到任何统计分析的最终结果时,我们务必要十分谨慎,不要忽略了对资料的说明.要弄清楚样本的大小和取样的方法,看看是否与其他的样本取样相一致.此外样本还须有尽可能大的随机性.例如,对于投票结果的预测,选样最好在一个特定的投票点的出口处进行.设想投票的调查只在具有很大倾向性的邻里间进行,把这样小范围内的结果作为预测的依据,岂不滑稽可笑?假定有一份报纸刊登了以下的消息:“在《每日调查》栏目主持的一次投票中,有75%的投票者今年感染了流行性感冒”.这个报告中近75%的人感染流感的结论会使人吓一跳.《每日调查》并没有指出它的范围,说不定他们只问到他们办公室里的4个人,而其中有3人受到了流感的困扰.没有人会基于一种不知样本大小和样本随机程度的结论.然而,也经常有人在给出统计数据时,不注意交待资料的情况.变更统计的另一种办法是改变样本的组成.由于电子计算机的介入,使得能够很快地收集、分类和分析大量的资料.只要分析处理公平,而不是人为地操纵,那么统计结果和信息将是十分可靠的.统计学的影响和力量是巨大的,它能够用以说服和劝阻个别人.例如,若某些人感到自己的投票将不会改变最终的结果,那么他们就可能不会特别积极去投票,尤其在投票结束前几小时,统计显示投票结果偏于一边的时候.统计学是一门非常有力和非常有说服力的数学工具.人们对于印刷的数字予以充分的信赖.当某种情况用一个特定的数值描述时,那么这个描述的有效性在观察者的心目中便增加了.统计学家的责任就是要让大家知道,在无知者眼中的资料或天真观察者眼中贫乏的资料,都可能像虚假的东西那样欺骗人第三课时●课题§频数与频率(一)●教学目标(一)教学知识点1.掌握频数、频率的概念.2.会求一组数据的频数与频率.(二)能力训练要求1.通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2.培养学生利用图表获取信息的能力,使学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.(三)情感与价值观要求培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.●教学重点频率与频数的概念,选择数据表示方式.●教学难点各种统计图表的绘制,识别各种图表所含的信息,各自优缺点.●教学方法合作探讨法●教具准备投影片●教学过程Ⅰ.导入新课上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性.使所抽取的样本尽可能准确地反映总体的真实情况.本节课我们继续学习统计初步中反映数据出现频繁程度的两个量频数与频率.Ⅱ.讲授新课1.例题讲解[师]我们不仅要学好基础知识,还要强健自己的体魄,长大后才能更好地工作.同学们,你们平时最喜爱的体育运动是什么?[生]乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毽子…….[师]你最喜爱的体育明星是谁?[生]孔令辉、刘国良、邓亚萍、李菊、王楠、贝克汉姆、罗纳尔多、巴乔、迈克尔·乔丹等等.[师]你为什么喜欢他们?[生]我喜欢邓亚萍、刘国良顽强的斗志……[生]我喜欢运动员在比赛时高超的技艺,他们给我们展示的一种拼搏精神风貌……[师]我们在学习和生活中就要有这种不怕困难、勇于挑战的精神,只要大家共同努力,刻苦学习、老师相信你们会越来越出色.[师]下面是小亮调查的八(1)班50位同学喜欢的足球明星,结果如下:(投影片)[师]根据上面结果,你能很快说出该班同学最喜欢的足球明星吗?他的数据表示方式是什么?[生]这些数据没有经过统计、整理,必须把A、B、C、D的个数全部数清,才能比较出哪位球星是该班同学最喜欢的.数据越多越不方便,所以我认为小亮的数据表示方式不太好.[师]你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.[生]我们小组用如下方式表示:(二)[师]此种表示方式的优点是什么?[生]简单明了,一眼可以看出哪个最多、哪个最少.[生]我们小组采用如下方式表示数据.[师]此种表示方式的优点是什么?[生]直观,一目了然.不仅可以很快判断出哪个最多,哪个最少,还可比较出差别是否悬殊很大.[师]从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们出现的频繁程度不同.我们称每个对象出现的次数为频数(absolute,frequency ).而每个对象出现的次数与总次数的比值为频率(relative frequency ).[师]分别计算A 、B 、C 、D 的频数与频率.[生]A 的频数为23,A 的频率为5023. B 的频数为8,B 的频率为254. C 的频数为13,C 的频率为5013. D 的频数为6,D 的频率为253. Ⅲ.课堂练习1.设计一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢?分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原因.(课后完成)[生]列表如下[师]你还能用什么方式表示上表所收集数据的内容.[生]可以用上例中的图(三)表示的形式.[师]这种图叫频数分布直方图.可不可以用频率分布来表示,如何表示.阅读课本P 151页内容.(利用频率绘制的图)(略)2.议一议:(投影片)小明、小亮从同一本书中分别随机抽取了6页,在统计了1页、2页、3页、4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率,并绘制了下图图5-1[师]随着统计页数的增加,这两个字出现的频率是如何变化的?[生]频率在至之间变化的字是“的”字.“了”字的频率在至之间变化.[师]你认为该书中“的”和“了”两个字使用的频率哪个高?[生]我认为是“的”字.3.做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量.结果如下.(单位:厘米)(投影片)158 167 154 159 166 169 159156 166 162 159 156 166 164160 157 156 160 157 161 158158 153 158 164 158 163 158153 157 162 162 159 154 165166 157 151 146 151 158 160165 158 163 162 161 154 163165 162 162 159 157 159 149164 168 159 153[师]我们知道,这组数据的平均数,反映了这些学生的平均身高.但是,有时只知道这一点还不够,还希望知道身高在哪个范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范围内所占的比的大小.(学生填下表)频率分布表落在各个小组内的数据的个数叫做频数.小结:整理数据时,可以按照下面的步骤进行.1.计算最大值与最小值的差.2.决定组距与组数.3.决定分点4.列频率分布表.下节课我们将继续学习对各种数据的统计表的处理.Ⅳ.课时小结本节课主要学习了如下内容.1.频数与频率两个基本概念.2.会求一组数据的频数与频率,并会选择合理的表示方式来表示数据.例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.Ⅴ.课后作业习题 .Ⅵ.活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情.提出问题、探讨解决问题的方法.写一些实习作业,逐步掌握统计里的实习作业的问题如何表述,完成的步骤、实习报告的写法.例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象.在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的估计更加精确,所确定的抽取样本的对象力求具有代表性.例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校.可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)计算和分析数据,写出书面报告.为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误.为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.●板书设计第四课时●课题§频数与频率(二)●教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.●教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.●教学难点1.决定组距与组数.2.数据分布规律.●教学方法交流探讨式●教具准备投影片●教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.Ⅱ.讲授新课[师](出示投影片)这是小丽统计的最近一个星期李大爷平均每天能卖出的A、B、C、D、E五个牌子雪糕的数量.根据上表绘制一张频数分布直方图.(如下)(投影片)图5-2[师]根据小丽的统计结果,请你为李大爷设计一个进货方案.[生]A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.[师]A多进多少?B多进多少?D进多少?如何通过比例确定?[生]A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.[师]如何确定进货的总数,还应考虑哪些因素?[生]还应考虑当天气温情况,天气凉,气温低时少进货.天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化.不能每天都进518支雪糕.[师]这位同学总结得很好.我们不论遇到什么事情,都应多动脑、多思考,不能生搬硬套,应根据实际情况确定合理方案.2.做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位 cm).如下:(投影片)141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145172(表一)[师]填写下表,并将上述数据用适当的统计图表示出来.(表二)[师]同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?[生]我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.[师]这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下 145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2[师]小亮是怎么做的?[生]先分组,再得到相应各组的学生人数.[师]根据上表绘制统计图(如下)(投影片)图5-3当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影片)图5-4[师]比较一下各种统计图各自的优缺点.[生]表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.[生]表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.[生]图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.[师]小结.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.Ⅲ.课堂练习1.储蓄所太多必将增加银行支出,太少又难以满足顾客的需求.为此,银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位 mi n)如下:15 20 18 3 25 34 6 0 17 24 23 30 35 42 37 24 21 1 14 12 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 25 14 22 31 423426142540142411(1)将数据适当分组,并绘制相应的频数分布直方图.(2)这50名顾客的平均等待时间是多少?根据这个数据,你认为应该给银行提什么建议?[师]分析:(1)①先计算最大值与最小值的差.在上面的数据中,最大值为42,最小值为0.∴42-0=42.②决定组距与组数.③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.图5-5(2)50名顾客平均等待时间nx x x x nx +++=Λ1(n =50).解(略)Ⅳ.课时小结本节课学习了如下内容.1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.例如频率分布直方图,以及它的意义.Ⅴ.课后作业习题Ⅵ.活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么?答:每个小组的频数是指落在这个小组的数据的个数.每个小组的频率是指这个小组的频数与数据总数的比值.2.分组时应注意哪些问题?分组的组数不仅与数据的多少有关,还与数据的取值情况有关.先求最大值与最小值的差,再确定组距与组数.当数据较多,且波动较大时,为了便于整理数据,我们可将数据按从小到大的顺序重新排列,这虽然费事,但找数据中的最大值、最小值以及进行频数累计却变得非常简单了.●板书设计3.频数与频率作业导航理解频数、频率的概念,了解频数分布的意义和作用,掌握整理数据的基本方法和步骤,会列频数分布表,会画频数分布直方图,了解频数分布直方图的作用.一、选择题1.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做( )A.组距B.频数C.频率D.样本容量2.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( )A.平均数B.中位数C.众数D.频率分布3.已知样本7,8,10,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,13,11,那么这组样本数据落在~内的频率是( )在频数分布表中,各小组的频数之和( )A.小于数据总数B.等于数据总数C.大于数据总数D.不能确定二、填空题5.已知一组数据共100个,在频数分布表中,某一小组的频数为4,则这一小组的频率为________.6.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,20,5,则第四组的频数和频率分别是________.7.有一块实验田,抽取1000个麦穗,考察它们的长度(单位:厘米),从频数分布表中可以得到样本数据落在 ~之间的频率是,于是可以估计在这块实验田里,长度在~厘米之间的麦穗约占________.8.已知一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28,填写下面的频数分布表:三、解答题9.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表:(分数均为整数,满分为100分)请根据表中提供的信息,解答下列各题:图1(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________;(3)所有参赛同学的平均得分M(分)在什么范围内?答:________;(4)将成绩频数分布直方图补充完整.10.某单位对全体职工的年龄进行了调查统计,结果如下(单位:岁):21 32 44 50 46 55 60 59 38 4919 52 34 35 48 52 39 41 44 4638 43 45 46 24 21 32 30 28 27将数据适当分组,列出频数分布表,绘制相应的频数分布直方图.*11.调查统计你所在居民小区各户的一个月用水量,将数据适当分组,并绘制相应的频数分布直方图.参考答案一、二、, % 8.频数累计从上到下依次为,,正,,,频数从上到下依次为:2,3,8,4,3,20,频率依次为:,,,,,三、9.(1)20 (2)20% (3)77≤M≤86 (4)略10.略 11.略§频数与频率班级:_______ 姓名:_______一、填空请你填一填(1)近几年,人们的环保意识逐渐增强,“白色污染”现象越来越受到人们的重视.下表是李昕同学对自己的家庭某一周内丢弃的塑料袋数目的统计:星期一二三四五六七塑料袋个数5738478请你帮李昕估算一下,照这样下去,李昕家一年大约要丢弃________个塑料袋(一年按365天计算).(2)光明中学环保小组对某区8个餐厅一天的快餐饭盒使用个数做调查,结果如下:125 115 140 270 110 120 100 140①这8个餐厅平均每个餐厅一天使用饭盒________个.②根据样本平均估算,若该区有餐厅62个,则一天共使用饭盒________个.(3)为了迎接2008年奥运会,昌平区某单位举办了英语培训班.100名职工在一个月内参加英语培训的次数如下表所示:次数45678人数1520302015这个月每个职工平均参加英语培训的次数为________.图5—3—1(4)为了了解小学生的素质教育情况,某县在全县各小学共抽取了200名五年级学生进行素质教育调查.将所得数据整理后,画出频率分布直方图(如图5—3—1),已知图中从左到右前4个小组的频率分别为, , ,,则第5小组频率为________.(5)2002年,中国科学技术协会对我国年龄在18岁至69岁的部分公民进行“科学素养”调查,将其中具备科学素养的公民按年龄进行分组.列出频率分布表如下:分组频数频率18~193920~293630~3940~491250~591260~696合计①请你填频率分布表中未完成的4个数据.②在具备科学素养的公民中,年龄的中位数落在________组内.二、选择题(1)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7.若这组数据的众数与平均数恰好相等,则这组数据的中位数为()(2)在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的众数、平均数与中位数分别为(),82,81 ,81,,81,77 ,81,81(3)第十一届全国青年歌手大奖赛的12名评委为某位歌手打分的情况如下(单位:分):,,,,,,,,,,,则下列结论不正确的是()A.这组数据的众数为B.这组数据的中位数为C.这组数据的中位数为和D.去掉一个最高分,去掉一个最低分,这位歌手的最后平均得分为。
频数与频率课件
3 频数与频率
1、理解频数、频率的概念,会求一组数据的频数 、理解频数、频率的概念, 频率。 与 频率。 2、通过收集数据并制成各种图表,能初步将数字 、通过收集数据并制成各种图表, 信息、图形和语言进行相互转化,并作出合理推 信息、图形和语言进行相互转化, 断. 3、通过对数据的收集和整理,感受实事求是的科 、通过对数据的收集和整理, 学态度, 学态度,提高自己的责任心与耐心细致的学习态 度.
领悟新知
☞
做一做
在以下给出的四种色彩中, 在以下给出的四种色彩中,你最喜欢的 是哪一种? 是哪一种?
A
B
C
D
领悟新知
☞
A B A B C
有无捷径 一目了然
A A A A B B A B C A C C A D A D B C A C A C D A C B A A A D A A A C A A B C D A C C D A C
穿插练习 1、学校从400名学生中抽取 名学生的视力情况, 、学校从 名学生中抽取20名学生的视力情况 名学生中抽取 名学生的视力情况, 在得到的频数分布表中有一组的频数为5, 在得到的频数分布表中有一组的频数为 ,那么 这组的频率为( 这组的频率为( )。 分组 频数 频率 18~19 39 0.325 2、2002年,中国科学技术 、 年 20~29 36 协会对我国年龄在18岁至 协会对我国年龄在 岁至 69岁的部分公民进行“科学 30~39 岁的部分公民进行“ 岁的部分公民进行 0.125 素养”调查, 素养”调查,将其中具备科 40~49 12 0.10 学素养的公民按年龄进行 50~59 12 0.10 分组.列出频率分布表如右 列出频率分布表如右, 分组 列出频率分布表如右 60~69 6 0.05 请补充完整右表: 请补充完整右表: 合计
频数与频率(共13张PPT)
频数,频率和总个数之间的公式:
频数 频率= 总次数
频数= 频率 X 总次数
总次数=
频数 频率
第8页,共13页。
练习 :
1.某班60名同学中,身高为1.50米—1.65米的 人数为12人,那么这组数据的频数是___,频率 是____. 2.某班学生参加考试,分数是60-70分的组的人 数20,该组的频率是0.20,则这班有__人.
总体与个体
抽样与样本
A A B C D A B A A C A B 中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
e=__,f=__,g=____. 我们称每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率.
(2)该问题的总体是_______;
第3页,共13页。
☞ 领悟新知 频数与频率
例:初二(1)有学你生5喜0人欢,一次看测足试成球绩如比下表赛: 吗?你喜欢的足球明星
是谁? 练习:为了了解某种小麦麦穗的长度,科技人员抽测实验田麦穗 的长度,列表如下:
中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
第2页,共13页。
☞ 回顾与思考
总体与个体 抽样与样本
为了一定的目的而对考察对象进行全面调查,称为普查,其中所
考察对象的全体称为总体,而组成总体的每一个考察对象称为 个体.
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其 中从总体中抽取部分个体叫做总体的一个样本.
收集数据_随机抽样: 广泛性_被调查的对象不得太少; 代表性_被调查的对象随意抽取的,没有人为的因素; 真实性_调查的数据是真实的.
频数与频率2
6.4频数与频率(2)学习指要一、知识要点1.频率:每一组数据频数与数据总数的比称为这一组数据(或事件)的频率,频率×100%即为百分比。
2.频数与频率之间的关系是:频数总次数=频率。
由此关系可导出另一些关系式:频数频率=总次数,频数=频率×总次数。
二、重要提示1.在对n个数据进行整理的频数分布表中,各组的频数之和为n,频率之和为1.2.在样本容量足够大的情况下,可以用样本的频率分布情况来估计总体的频率情况。
例题指导【例1】车站实施电脑售票后大大缩短了购票者排队等候的时间.一名记者在车站随机访问了25名购票者,了解到他们排队等候的时间分别为(单位:分)1,2,2,2,1,3,4,2,2,2,2,3,1,3,4,5,3,2,1,2,2,3,2,3,2. (1)请填写如下的频数分布表:某车站25位购票者等候购票时间的频数分布表组别(分) 频数频率12345(2)求出等待时间为2分和3分的人数和所占的百分比.解:(1) 4 0.16 12 0.48 6 0.24 2 0.08 1 0.04(2) 72%.【反思】样本容量、频数、频率间的关系:频率=频数样本容量;频数=频率×样本容量;样本容量=频数频率.【例2】某养鱼专业户去年在鱼塘中投放了一批鱼苗,为了了解鱼苗长势,从中捞取20条,测得其长度如下:(单位:cm):18,19,14,17,16,18,15,19,22,21,18,21,16,18,19,23,17,20,20,19.(1)填写表格中的空白栏:鱼的长度x /cm 频数 频率 14≤x <16 16≤x <18 18≤x <20 8 0.4 20≤x <22 22≤x <24 2 0.1 合计(2)由表格可知:①长度不小于18cm 的鱼苗所占的百分比为 .②在这批鱼苗中,有80%的鱼苗长度在大于等于 cm 到小于 cm 之间. ③求这批鱼苗的平均长度(精确到0.1cm),并估计这批鱼苗的平均长度. 解:(1) 2 0.1 4 0.2 4 0.2 20 1 (2) ①70% ②16 22③(18+19+14+17+16+18+15+19+22+21+18+21+16+18+19+23+17+20+20+19)÷20=18.5cm. 【例3】阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率. (2)求表(1)中A B ,的值.(3)该校学生平均每人读多少本课外书?解析:(1)由于扇形图中各部分的百分率之和为1,故八年级所占百分率=1-七年级所占百分率-九年级所占百分率;(2)根据样本容量=频数÷频率可求得样本容量,再根据频率=频数样本容量可求得B 值,根据频数=样本容量×频率可求得A 值; (3)分别求得的课外书籍总数和学生总数,便可求得平均数.解:(1) 1-28%-38%=34%.(2) 8160.342400÷=,2400(840816144)600A =-++=,1(0.340.250.06)0.35B =-++=. ∴A 的值为600,B 的值为0.35.(3) 408341200÷=%,240012002÷=. 答:该校学生平均每人读2本课外书.同步训练 A 组1.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为………………………………………………………( B ) A .150人B .300人C .600人D .900人2.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( C ) A .0.1B .0.2C .0.3D .0.73.从500个数据中用适当的方法抽取50个作为样本进行统计,频数分布表中,126.5—130.5这一组的频率是0.12,那么估计总体数据落在126.5—130.5之间的个数为…………( B ) A.120个 B.60个 C.12个 D.6个4.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组的频率为 .0.45.为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后分成4组,画出频数分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为4,则第四小组的频率是 ,参加这次测试的学生有 人.6. 完成如下统计表:(精确到0.01)答案:0.08 0.08 0.08 0.09 0.0967. 为了解学生的身高情况,抽测了某校17岁的50名男生的身高,数据如下(单位:米):1.57 1.59 1.60 1.62 1.63 1.64 1.65 1.66 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1,77 身高1 12 23 2 1 6 5 8 7 2 3 2 1 2 1 1 人数若将数据分成7组,取组距为0.03米,相应的频率分布表是:请回答下列问题:(1)依据样本数据,估计这所学校17岁的男生中,身高不低于1.65米且不高于1.70米的学生所占的百分比;(2)观察频率分布表,指出该校17岁的男生中,身高在哪个数据范围内的频率最大.`如果该校17岁的男生共有350人,那么在这个身高范围内的人数估计有多少人?解:(1) (1+6+5+8+7)÷50=54%(2) 1.685~1.715内的频率最大,在这个范围内的人有350×0.34=119人.8. 为了解某校初三男生的身高情况,该校从初三随机找来50名男生进行了身高测量,根据测量结果(测量结果均为整数,单位:cm)列出了如下频率分布表.请你阅读该表后,根据表中提供的信息回答下列问题:(1) 在表中,数据在164.5~168.5范围内的频数是_________.(2) 在表中,频率最大的一组数据的范围是________.(3) 估计该校初三男生身高在172cm以上的(不包含172cm)约占百分之_____.答案:(1) 12 (2) 168.5~172.5 (3) 36同步训练B组9.已知样本10,8,6,10,13,8,7,12,10,11,10,11,10,9,12,11,9,9,8,12,那么在频率分布表中,频率为0.2的组是……………………………………………(D )A.5.5~7.5 B.7.5~9.5 C.9.5~11.5 D.11.5~13.510.某中学为了解学生的课外阅读情况.就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1下面是自首届以来各届动漫产品成交金额统计图表(部分未完成):(1)表中m=_________,n=__________;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多? 最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?【解】(1)84,0.33;(2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人);(3)1200×0.33=396(人).11.为了解某地九年级男生的身高情况,从该地的一所中学选取容量为60的样本(60名学12.未成年人思想道德建设越来越受到社会的关注.某青少年研究机构随机调查了某校100名学生寒假花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观,根据调查数据制成了右下所示的频数分布表(部分空格未填).(1)补全某校100名学生寒假花零花钱数量的频数分布表;(2)研究机构认为应对消费在150元以上的学生提出勤俭节约的建议.•试估计应对该校2500学生中约多少名学生提出该项建议?(1)10,25,0.25,1 (2)1225名13.乡镇农技站在永丰村进行某优质高产水稻品种推广实验,在秋收时对所有试验种植户开展了调查.在前30户中有28户的单位面积产量在800kg以上,以后每9户有8户的单位面积产量在800kg 以上.在已调查的种植户中单位面积产量在800kg 以上的频率不小于0.9,试估计种植这种水稻的试验户最多有 户. 解析:设最多有x 户,则28+89(x -30)≥0.9x ,解得x ≤120.答案:12014.为了解“宏亮”中学初四男生身高情况,抽测了该校初四20名男生身高,结果如下(单位:厘米): 165,172,183,179,174,175,181,170,175,171,176,175,169,188,179,172,177,176,182,173. 结合所列出的样本频率分布表回答下列问题: (1) 在这个问题中,样本的容量是 ; (2) 填写表中未完成的部分;(3) 如果该校初四男生共有400人,那么该校初四男生身高不低于175厘米的约有多少人? 解:(1) 20 (2) 6 0.3 1 0.05 (3) 400×(0.40+0.15+0.05)=240人. 数学乐园15. (2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m 3)(1)表中的a =________;d =___________. (2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42% (3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 3。
频数与频率的公式
频数与频率的公式一、频数(Frequency)在统计学中,频数是指某一特定数值在数据集中出现的次数。
频数通常用来描述数据中每个数值的发生情况,帮助我们更好地理解数据的分布情况。
频数的计算通常使用以下公式:\[ f_i = \text{数据集中第i个数值出现的次数} \]其中 \( f_i \) 表示第i个数值的频数。
二、频率(Frequency)频率是指某一特定数值在数据集中出现的相对次数。
频率是频数和总体样本量之间的比例关系,通常用百分比或小数形式表示。
频率的计算通常使用以下公式:\[ f_i = \frac{f_i}{n} \times 100\% \]其中 \( f_i \) 表示第i个数值的频数,n表示样本总数。
频率描述了数据中每个数值在整个数据集中的相对位置和重要性。
三、频数与频率的关系频数和频率是描述数据分布特征的常用方法,它们可以帮助我们了解数据中各个数值的重要程度以及数据集的整体分布情况。
频数和频率之间的关系可以用以下公式表示:\[ f_i = f_i \times f_i \]这个公式表明了频率是频数的标准化表示,通过频率我们可以更直观地理解数据中各个数值在整个数据集中的重要性。
四、实例分析为了更好地理解频数与频率的概念,我们举一个简单的实例。
假设我们有一组数据,如下所示:\[ 2, 3, 5, 2, 4, 1, 3, 4, 2, 5 \]我们可以计算每个数值的频数:•数值1出现的频数为1•数值2出现的频数为3•数值3出现的频数为2•数值4出现的频数为2•数值5出现的频数为2然后计算每个数值的频率:•数值1的频率为10%•数值2的频率为30%•数值3的频率为20%•数值4的频率为20%•数值5的频率为20%通过频数和频率的计算,我们可以清楚地了解数据中各个数值的分布情况,并进一步进行数据分析和决策制定。
结语频数和频率是描述数据分布特征的重要概念,通过对频数和频率的计算,我们可以更好地理解数据集中数值的分布情况,为数据分析和决策提供有力支持。
《统计与概率》第4节频数与频率
频数与频率的表格表示
表格设计
频数与频率通常使用表格进行表 示,表格包括数据值、频数和频
率三列。
数据整理
在整理数据时,需要将数据值进行 排序,并统计每个数据值的频数和 频率。
表格解读
通过观察表格中的频数和频率,我 们可以了解数据分布的特点,如数 据的集中趋势、离散趋势等。
03
频数与频率的应用
在数据分析中的应用
《统计与概率》第4节频数与频率
$number {01}
目 录
• 频数与频率的定义 • 频数与频率的计算方法 • 频数与频率的应用 • 频数与频率的注意事项
01
频数与频率的定义
频数的概念
01
频数:在一组数据中,某一数据值出现的次数 。
02
频数具有可加性,即同一数据值在多个分类中 计算频数时,应将它们加起来。
在科学研究中的应用
实验数据分析
医学诊断
在科学实验中,可以使用频数和频率 分析来了解实验结果中各个结果的分 布情况,进而推断实验的可靠性和准 确性。
在医学诊断中,可以使用频数和频率 分析来了解患者的症状和体征的分布 情况,进而做出准确的诊断和治疗方 案。
自然现象观测
在观测自然现象时,可以使用频数和 频率分析来了解现象的分布特征和变 化规律,进而探究其背后的原因和机 制。
确性。
数据清洗和预处理
对数据进行清洗和预处 理,去除异常值和缺失 值,可以提高频数和频
率的准确性。
THANKS
数据分类问题
对于连续数据或数据分类较多时,频数和频率的 统计量可能无法准确反映数据的分布情况。
异常值影响
在数据中存在异常值的情况下,频数和频率的结 果可能会受到较大影响。
频数与频率优秀教案
频数与频率优秀教案篇1:频数与频率优秀教案频数与频率优秀教案教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的`,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.篇2:频数与频率-频数与频率(第二课时)湖北省丹江口市丹赵路中学设计:王世涛教学内容课题名称频数与频率学科数学总课时数1版本名称湖南教育出版社年级八年级册次上册单元章节名称第四章页码119面执教者陈毅学习目标:1、知识与技能(1)了解频数与频率的概念。
(2)会进行统计活动,并计算频率。
2、过程与方法(1)让学生从现实生活实例中抽象出频数与频率的概念。
(2)让学生经历统计活动的过程,理解整理数据的方法及必要性。
3、情感、态度与价值观通过实践操作、巩固学生对各种图表信息的识别与获取信息的能力,增强学生对生活中所见的统计图表进行数据处理和评判意识。
频数与频率的计算公式
频数与频率的计算公式一、频数(Frequency)频数是指一些数值或一些数值区间在一组数据中出现的次数。
它可以用来统计和描述一组数据的分布情况。
频数的计算公式为:f=∑n其中,f表示频数,n表示一些数值或数值区间出现的次数。
二、频率(Frequency)频率是指一些数值或一些数值区间在一组数据中出现的相对比例。
频率可以用来衡量数据中一些数值或数值区间的重要性或普遍程度。
频率的计算公式为:f=n/N其中,f表示频率,n表示一些数值或数值区间出现的次数,N表示总的数据量。
三、频数与频率的关系f=n/N反之,也可以通过频率和总数据量的乘积来计算频数:n=f*N四、举例说明假设有一组数据表示班级学生的考试成绩:65,70,75,82,78,70,90,78,85,92我们可以计算每个数值的频数和频率。
1.频数计算:-数值65的频数为1-数值70的频数为2-数值75的频数为1-数值78的频数为2-数值82的频数为1-数值85的频数为1-数值90的频数为1-数值92的频数为12.频率计算:先计算各个数值的频率:-数值65的频率为1/10=0.1-数值70的频率为2/10=0.2-数值75的频率为1/10=0.1-数值78的频率为2/10=0.2-数值82的频率为1/10=0.1-数值85的频率为1/10=0.1-数值90的频率为1/10=0.1-数值92的频率为1/10=0.1然后可以计算数值区间的频率。
假设我们将成绩分为以下区间:-60-69:频数为1+2=3,频率为3/10=0.3-70-79:频数为1+2+1=4,频率为4/10=0.4-80-89:频数为1+1=2,频率为2/10=0.2-90-99:频数为1+1+1=3,频率为3/10=0.3通过以上计算,我们可以得到该班级学生考试成绩的频数和频率分布情况。
总结:频数用来描述一些数值或数值区间出现的次数,频率用来描述一些数值或数值区间出现的相对比例。
原题目:频数与频率的计算
原题目:频数与频率的计算频数与频率的计算
频数和频率是统计学中常用的概念,用于描述数据集中不同数值的出现次数和比例。
本文将介绍频数和频率的计算方法。
频数的计算
频数是指某个数值在数据集中出现的次数。
计算频数的步骤如下:
1. 遍历数据集,统计每个数值的出现次数;
2. 记录每个数值的频数。
例如,假设我们有以下数据集:
1, 2, 3, 2, 4, 1, 2, 3, 4, 1
我们可以计算每个数值的频数如下:
- 数值1的频数为3;
- 数值2的频数为3;
- 数值3的频数为2;
- 数值4的频数为2。
频率的计算
频率是指某个数值在数据集中所占的比例。
计算频率的步骤如下:
1. 计算某个数值的频数;
2. 将该数值的频数除以数据集的总数,得到该数值的频率。
例如,假设数据集中共有10个数值,每个数值的频数如上所示。
我们可以计算每个数值的频率如下:
- 数值1的频率为3/10或0.3;
- 数值2的频率为3/10或0.3;
- 数值3的频率为2/10或0.2;
- 数值4的频率为2/10或0.2。
总结
本文介绍了频数和频率的计算方法。
频数表示某个数值在数据
集中出现的次数,而频率表示某个数值在数据集中所占的比例。
通
过计算频数和频率,我们可以更好地理解数据集中数值的分布情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节频数与频率统计方法与数理统计学-5.3.2 频数与频率(二)作为数学学科来说,概率论属于“纯粹数学”,而以概率论为基础的数理统计学则是“应用数学”的重要分支.概率论是在随机现象的一般数学模型的基础上研究事件、概率、随机变数和随机过程的基本规律;而数理统计学则针对实际处理随机现象的任务提出数学模型,研究其规律并提出解决问题的方法.用概率论解决实际问题的方法叫做统计方法.统计方法有两个显著特点,第一个特点是由部分推断全体.被研究对象的全体在统计学中叫做总体(或称母体).从中随机抽取一部分就是样本(或称子样).凡统计方法都是通过对样本的统计分析来推断总体的性态,否则就不能算是统计方法.例如要检验一批灯泡的耐用时间,统计方法就是抽取一个样本.(比如10个灯泡组成的样本)进行检验,从这10个灯泡的耐用时间来推断整批灯泡的情况.如果把整批灯泡挨个检验,那就不是统计方法了(虽然按照日常语言的习惯,全面检验也应是一种“统计”,但作为数学方法来说,这不叫“统计方法”).这个例子也从另一方面表明了使用统计方法的必要性;因为对类如灯泡耐用时间这样的对象,全面检验是行不通的,全面检验就会毁掉全部灯泡.既然是由部分推断总体,那就不可能以百分之百的把握作结论.统计方法的第二个特点就是以接近于1的概率(例如0.95、0.99,但不能等于1)保证所作结论正确.实际上这就是把概率接近于1的随机事件当作必然事件,这叫做“实际推断原理”.其实细想一下,我们在日常生活及生产活动中所说的必然事件,往往都是可能性很大(即概率接近于1)的事件,而不是绝对必然发生的事件.比如我们说乘车必然比步行快,其实若车子出了偶然事故就可能比步行更慢.但车子一般不会出事故,即车子不出事故的概率通常接近于1,因此我们把乘车比步行快当作必然事件.由此可见,概率接近于1的随机事件特别重要,相应地在概率论中有一套极限理论专门研究概率接近于1的规律.广义的数理统计学泛指概率论在实际中的各种应用.狭义的数理统计学则是指统计观察方法的拟定和统计资料的分析,主要包括以下内容:1.数据整理和子样(样本)统计量的研究:这是数理统计学的基础部分.2.统计推断理论:根据子样(样本)来判断母体(总体)的情况叫做统计推断,这是数理统计的核心部分.统计推断理论包括两大方面——参数估计和假设检验.参数估计就是根据样本来估计总体的某些参数(例如平均值等);假设检验就是针对实际问题作出假设,然后利用子样来检验这假设,以接近于1的概率作出正确的推断.3.方差分析4.回归分析5.抽样理论:研究从母体中抽取子样的方法.一个好的抽样方案一方面要求抽取的样本个数尽可能少,另一方面要求作出判断正确的概率尽可能大.6.质量控制7.试验设计统计学——数学的巧妙操作(5.3 频数与频率)均值、平均数、中位数、百分数、众数、百分点、图表……所有这些都是巧妙处理数据的办法.取两个数6和8,我们可以作出各种比较:如比6∶8;分数3/4;百分率75%等等.一旦人们收集数据并力图描述一种状态时,他就开始步入统计学的领域了.无论是有用的或是容易使人误解的资料,统计学几乎总是具有影响力的.它可用于预示各种现象,诸如:民意测验中的得票率,某次考试中,学习成绩优秀率;经济状态(通胀率、国民经济总量的增长数、失业率、收入的增加或减少);人口统计资料;天气预报;药品效力和有效性分析;赌博的输赢机会;海浪和潮汐的影响范围等等.统计的领域在不断扩大,当我们看到任何统计分析的最终结果时,我们务必要十分谨慎,不要忽略了对资料的说明.要弄清楚样本的大小和取样的方法,看看是否与其他的样本取样相一致.此外样本还须有尽可能大的随机性.例如,对于投票结果的预测,选样最好在一个特定的投票点的出口处进行.设想投票的调查只在具有很大倾向性的邻里间进行,把这样小范围内的结果作为预测的依据,岂不滑稽可笑?假定有一份报纸刊登了以下的消息:“在《每日调查》栏目主持的一次投票中,有75%的投票者今年感染了流行性感冒”.这个报告中近75%的人感染流感的结论会使人吓一跳.《每日调查》并没有指出它的范围,说不定他们只问到他们办公室里的4个人,而其中有3人受到了流感的困扰.没有人会基于一种不知样本大小和样本随机程度的结论.然而,也经常有人在给出统计数据时,不注意交待资料的情况.变更统计的另一种办法是改变样本的组成.由于电子计算机的介入,使得能够很快地收集、分类和分析大量的资料.只要分析处理公平,而不是人为地操纵,那么统计结果和信息将是十分可靠的.统计学的影响和力量是巨大的,它能够用以说服和劝阻个别人.例如,若某些人感到自己的投票将不会改变最终的结果,那么他们就可能不会特别积极去投票,尤其在投票结束前几小时,统计显示投票结果偏于一边的时候.统计学是一门非常有力和非常有说服力的数学工具.人们对于印刷的数字予以充分的信赖.当某种情况用一个特定的数值描述时,那么这个描述的有效性在观察者的心目中便增加了.统计学家的责任就是要让大家知道,在无知者眼中的资料或天真观察者眼中贫乏的资料,都可能像虚假的东西那样欺骗人第三课时●课题§5.3.1 频数与频率(一)●教学目标(一)教学知识点1.掌握频数、频率的概念.2.会求一组数据的频数与频率.(二)能力训练要求1.通过统计数据,制成各种图表,增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识.2.培养学生利用图表获取信息的能力,使学生能初步把数字信息、图形和语言之间相互转化,并作出合理推断.(三)情感与价值观要求培养学生实事求是的科学态度,并通过对数据的整理,提高学生的责任心与耐心细致的工作态度.●教学重点频率与频数的概念,选择数据表示方式.●教学难点各种统计图表的绘制,识别各种图表所含的信息,各自优缺点.●教学方法合作探讨法●教具准备投影片●教学过程Ⅰ.导入新课上节课我们主要学习了数据的收集,并探讨了抽样调查时要注意的问题.(1)样本的大小.(2)样本的代表性.(3)样本的广泛性.使所抽取的样本尽可能准确地反映总体的真实情况.本节课我们继续学习统计初步中反映数据出现频繁程度的两个量频数与频率.Ⅱ.讲授新课1.例题讲解[师]我们不仅要学好基础知识,还要强健自己的体魄,长大后才能更好地工作.同学们,你们平时最喜爱的体育运动是什么?[生]乒乓球、篮球、足球、游泳、羽毛球、跳绳、踢毽子…….[师]你最喜爱的体育明星是谁?[生]孔令辉、刘国良、邓亚萍、李菊、王楠、贝克汉姆、罗纳尔多、巴乔、迈克尔·乔丹等等.[师]你为什么喜欢他们?[生]我喜欢邓亚萍、刘国良顽强的斗志……[生]我喜欢运动员在比赛时高超的技艺,他们给我们展示的一种拼搏精神风貌……[师]我们在学习和生活中就要有这种不怕困难、勇于挑战的精神,只要大家共同努力,刻苦学习、老师相信你们会越来越出色.[师]下面是小亮调查的八(1)班50位同学喜欢的足球明星,结果如下:(投影片)[师]根据上面结果,你能很快说出该班同学最喜欢的足球明星吗?他的数据表示方式是什么?[生]这些数据没有经过统计、整理,必须把A、B、C、D的个数全部数清,才能比较出哪位球星是该班同学最喜欢的.数据越多越不方便,所以我认为小亮的数据表示方式不太好.[师]你能设计出一个比较好的表示方式吗?小组相互交流,共同探讨.[生]我们小组用如下方式表示:(二)[师]此种表示方式的优点是什么?[生]简单明了,一眼可以看出哪个最多、哪个最少.[生]我们小组采用如下方式表示数据.[师]此种表示方式的优点是什么?[生]直观,一目了然.不仅可以很快判断出哪个最多,哪个最少,还可比较出差别是否悬殊很大.[师]从上表可以看出,A 、B 、C 、D 出现的次数有的多,有的少,或者说它们出现的频繁程度不同.我们称每个对象出现的次数为频数(absolute,frequency ).而每个对象出现的次数与总次数的比值为频率(relative frequency ).[师]分别计算A 、B 、C 、D 的频数与频率.[生]A 的频数为23,A 的频率为5023. B 的频数为8,B 的频率为254. C 的频数为13,C 的频率为5013.D 的频数为6,D 的频率为253.Ⅲ.课堂练习1.设计一个方案,了解你们班同学最喜欢的科目是哪科,为什么喜欢?分析:先列表,再统计,调查探讨喜欢的原因.调查不爱学的那门科目的原因.(课后完成)[生]列表如下 科目 语文 数学 英语 历史 地理 政治 物理 美体 学生数 频数 频率[生]可以用上例中的图(三)表示的形式. [师]这种图叫频数分布直方图.可不可以用频率分布来表示,如何表示.阅读课本P 151页内容.(利用频率绘制的图)(略)2.议一议:(投影片)小明、小亮从同一本书中分别随机抽取了6页,在统计了1页、2页、3页、4页、5页、6页的“的”和“了”出现的次数后,分别求出了它们出现的频率,并绘制了下图图5-1[师]随着统计页数的增加,这两个字出现的频率是如何变化的?[生]频率在0.05至0.06之间变化的字是“的”字.“了”字的频率在0.005至0.015之间变化.[师]你认为该书中“的”和“了”两个字使用的频率哪个高?[生]我认为是“的”字.3.做一做(1)为了了解中学生的身体发育情况,对某中学同年龄的60名女学生的身高进行了测量.结果如下.(单位:厘米)(投影片)158 167 154 159 166 169 159156 166 162 159 156 166 164160 157 156 160 157 161 158158 153 158 164 158 163 158153 157 162 162 159 154 165166 157 151 146 151 158 160165 158 163 162 161 154 163165 162 162 159 157 159 149164 168 159 153[师]我们知道,这组数据的平均数,反映了这些学生的平均身高.但是,有时只知道这一点还不够,还希望知道身高在哪个范围内的学生多,在哪个小范围内的学生少,也就是说,希望知道这60名女学生的身高数据在各个小范围内所占的比的大小.(学生填下表)频率分布表落在各个小组内的数据的个数叫做频数.小结:整理数据时,可以按照下面的步骤进行.1.计算最大值与最小值的差.2.决定组距与组数.3.决定分点4.列频率分布表.下节课我们将继续学习对各种数据的统计表的处理.Ⅳ.课时小结本节课主要学习了如下内容.1.频数与频率两个基本概念.2.会求一组数据的频数与频率,并会选择合理的表示方式来表示数据.例用频数分布直方图、图表、扇形区域分布图等表示所收集的数据情况.Ⅴ.课后作业习题5.3 1.2.Ⅵ.活动与探究为了提高学生的数学实践能力、提高学生学习数学的兴趣,课堂内、外多让学生去观察分析自己身边的事情.提出问题、探讨解决问题的方法.写一些实习作业,逐步掌握统计里的实习作业的问题如何表述,完成的步骤、实习报告的写法.例如要了解当地初中八年级男生的身高情况.[过程]具体要求包括:(1)如何选取样本、样本容量多大.(2)计算哪些统计量(平均数、中位数、众数、频数、频率等).(3)数据如何整理.(4)如何估计总体情况.[结果]具体步骤包括:(1)确定抽取样本的对象.在统计里,所要了解的情况涉及的范围往往很大,为了使样本对总体的估计更加精确,所确定的抽取样本的对象力求具有代表性.例如想要了解一个城市的初中某年级某门学科的学习情况,如果要选一个学校作为抽取样本的对象,那么这个学校不应是学习成绩较好或较差的学校,而应是成绩较为适中的学校.可见抽取样本对象的确定直接关系到所得结果的可靠程度.(2)确定抽取样本的方法并抽取样本(随机抽样、系统抽样、分层抽样)(3)计算和分析数据,写出书面报告.为了保证所得结论具有参考价值,所以要求数据来源于实际且真实,计算准确无误.为此,必须提高学生的责任心,用高度认真负责的态度对待身边每一个细小的问题,以小见大,逐步提高自身能力.●板书设计第四课时●课题§5.3.2 频数与频率(二)●教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.●教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.●教学难点1.决定组距与组数.2.数据分布规律.●教学方法交流探讨式●教具准备投影片●教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的A、B、C、D、E五个牌子雪糕的数量.Ⅱ.讲授新课[师](出示投影片)这是小丽统计的最近一个星期李大爷平均每天能卖出的A、B、C、D、E五个牌子雪糕的数量.雪糕数量频数频率A 131 131 0.253B 182 182 0.351C 68 68 0.131D 39 39 0.075E 98 98 0.190合计518 518 1.000根据上表绘制一张频数分布直方图.(如下)(投影片)图5-2[师]根据小丽的统计结果,请你为李大爷设计一个进货方案.[生]A、B两种雪糕卖出的较多,可以多进些,D种雪糕卖出的少,可以少进些.[师]A多进多少?B多进多少?D进多少?如何通过比例确定?[生]A占总数的25%,B占总数的35%,C占总数的13%,D占总数的8%,E占总数的19%.[师]如何确定进货的总数,还应考虑哪些因素?[生]还应考虑当天气温情况,天气凉,气温低时少进货.天气热,气温高时多进货,即进雪糕总数应考虑当天气温变化.不能每天都进518支雪糕.[师]这位同学总结得很好.我们不论遇到什么事情,都应多动脑、多思考,不能生搬硬套,应根据实际情况确定合理方案.2.做一做[例]学校要为同学们订制校服,为此小明调查了他们班50名同学的身高,结果(单位cm).如下:(投影片)141 165 144 171 145 145 158150 157 150 154 168 168 155155 169 157 157 157 158 149150 150 160 152 152 159 152159 144 154 155 157 145 160160 160 158 162 155 162 163155 163 148 163 168 155 145172[师]填写下表,并将上述数据用适当的统计图表示出来.(表二)[师]同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?[生]我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.[师]这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.144 cm以下145~149 cm 150~154 cm3 6 9155~159 cm 160~164 cm 165~169 cm16 9 5170 cm以上2[师]小亮是怎么做的?[生]先分组,再得到相应各组的学生人数.[师]根据上表绘制统计图(如下)(投影片)图5-3当收集的数据连续取值时,我们通常将数据分组,然后再绘制频数分布直方图.注:数据越多,分的组数也应越多,当数据在100以内时,通常按照数据的多少,分成5~12组.为了更好地刻画数据的总体规律,我们还可以在得到的频数分布直方图上取点、连线,得到如下的频数分布折线图.(投影片)图5-4[师]比较一下各种统计图各自的优缺点.[生]表一是没有经过整理的数据.数据多,而且数量表示上不简单、不直观.各个数据所占人数多少也没有直接给出,还需要计算.[生]表二,优点:数量表示上确切.即准确表示出各个数据所占的人数.缺点:不能直观反映数据的总体规律.数据也较多.[生]图5-3、图5-4能直观形象地将数据表示出来,而且能刻画出数据的总体规律.中间人数较集中,两边较少.[师]小结.我们在收集到一些数据后,一定要选择合理的表示方式表示所收集的数据.常用表格与图表两种方式.何时用哪种方式,应根据我们研究问题的侧重点来定.具体问题具体分析.不要生搬硬套,应多总结、提炼研究问题的思想和方法.不要一味去模仿.只要多动脑去思考.我相信同学们会创新出更好的方法.Ⅲ.课堂练习 1.储蓄所太多必将增加银行支出,太少又难以满足顾客的需求.为此,银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位 mi n )如下:15 20 18 3 25 34 6 0 17 24 23 30 35 42 37 24 21 1 14 12 34 22 13 34 8 22 31 24 17 33 4 14 23 32 33 28 42 25 14 22 31 42 34 26 14 25 40 14 24 11(1)将数据适当分组,并绘制相应的频数分布直方图.(2)这50名顾客的平均等待时间是多少?根据这个数据,你认为应该给银行提什么建议?[师]分析:(1)①先计算最大值与最小值的差.在上面的数据中,最大值为42,最小值为0.∴42-0=42.②决定组距与组数.③决定分点列表如下.绘制频数分布直方图(如下图)学生完成下图.图5-5(2)50名顾客平均等待时间nx x x x nx +++=Λ1(n =50).解(略) Ⅳ.课时小结本节课学习了如下内容.1.如何整理所收集的数据.2.将数据用适当的统计图表示出来.(1)表格形式.(2)频数分布直方图(3)频数分布折线图.3.各种统计图、表的优缺点.4.根据统计图表信息,提出合理化建议.今后我们还要学习一些统计知识,一些图表的制作.例如频率分布直方图,以及它的意义.Ⅴ.课后作业习题5.3Ⅵ.活动与探究1.将一批数据分组时,每个小组的频数与频率各指什么?答:每个小组的频数是指落在这个小组的数据的个数.每个小组的频率是指这个小组的频数与数据总数的比值.2.分组时应注意哪些问题?分组的组数不仅与数据的多少有关,还与数据的取值情况有关.先求最大值与最小值的差,再确定组距与组数.当数据较多,且波动较大时,为了便于整理数据,我们可将数据按从小到大的顺序重新排列,这虽然费事,但找数据中的最大值、最小值以及进行频数累计却变得非常简单了.●板书设计3.频数与频率作业导航理解频数、频率的概念,了解频数分布的意义和作用,掌握整理数据的基本方法和步骤,会列频数分布表,会画频数分布直方图,了解频数分布直方图的作用.一、选择题1.列一组数据的频数分布表时,落在各个小组内的数据的个数叫做( )A.组距B.频数C.频率D.样本容量2.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( )A.平均数B.中位数C.众数D.频率分布3.已知样本7,8,10,14,9,7,12,11,10,8,13,10,8,11,10,9,12,9,13,11,那么这组样本数据落在8.5~11.5内的频率是( )A.0.4B.0.6C.0.5D.0.654.在频数分布表中,各小组的频数之和( )A.小于数据总数B.等于数据总数C.大于数据总数D.不能确定二、填空题5.已知一组数据共100个,在频数分布表中,某一小组的频数为4,则这一小组的频率为________.6.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别为2,8,15,20,5,则第四组的频数和频率分别是________.7.有一块实验田,抽取1000个麦穗,考察它们的长度(单位:厘米),从频数分布表中可以得到样本数据落在 5.75~6.05之间的频率是0.36,于是可以估计在这块实验田里,长度在5.75~6.05厘米之间的麦穗约占________.8.已知一组数据:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,9.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表:(分数均为整数,满分为100分)图1(1)参加这次演讲比赛的同学共有________人;(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________;(3)所有参赛同学的平均得分M(分)在什么范围内?答:________;(4)将成绩频数分布直方图补充完整.10.某单位对全体职工的年龄进行了调查统计,结果如下(单位:岁):21 32 44 50 46 55 60 59 38 4919 52 34 35 48 52 39 41 44 4638 43 45 46 24 21 32 30 28 27将数据适当分组,列出频数分布表,绘制相应的频数分布直方图.*11.调查统计你所在居民小区各户的一个月用水量,将数据适当分组,并绘制相应的频数分布直方图.参考答案一、1.B 2.D 3.C 4.B二、5.0.04 6.20,0.4 7.36% 8.频数累计从上到下依次为,,正,,,频数从上到下依次为:2,3,8,4,3,20,频率依次为:0.10,0.15,0.40,0.20,0.15,1.00三、9.(1)20 (2)20% (3)77≤M≤86 (4)略10.略11.略§5.3 频数与频率班级:_______ 姓名:_______一、填空请你填一填(1)近几年,人们的环保意识逐渐增强,“白色污染”现象越来越受到人们的重视.星期一二三四五六七塑料袋个数 5 7 3 8 4 7 8按365天计算).(2)光明中学环保小组对某区8个餐厅一天的快餐饭盒使用个数做调查,结果如下:125 115 140 270 110 120 100 140①这8个餐厅平均每个餐厅一天使用饭盒________个.②根据样本平均估算,若该区有餐厅62个,则一天共使用饭盒________个.(3)为了迎接2008年奥运会,昌平区某单位举办了英语培训班.100名职工在一个月次数 4 5 6 7 8人数15 20 30 20 15这个月每个职工平均参加英语培训的次数为________.图5—3—1(4)为了了解小学生的素质教育情况,某县在全县各小学共抽取了200名五年级学生进行素质教育调查.将所得数据整理后,画出频率分布直方图(如图5—3—1),已知图中从左到右前4个小组的频率分别为0.04, 0.12, 0.16,0.4,则第5小组频率为________.(5)2002年,中国科学技术协会对我国年龄在18岁至69岁的部分公民进行“科学素养”调查,将其中具备科学素养的公民按年龄进行分组.列出频率分布表如下:分组频数频率18~19 39 0.32520~29 3630~39 0.12540~49 12 0.1050~59 12 0.1060~69 6 0.05合计①请你填频率分布表中未完成的4个数据.②在具备科学素养的公民中,年龄的中位数落在________组内.二、选择题(1)甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为:9,9,x,7.若这组数据的众数与平均数恰好相等,则这组数据的中位数为()A.10B.9C.8D.7(2)在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的众数、平均数与中位数分别为()A.81,82,81B.81,81,76.5C.83,81,77D.81,81,81(3)第十一届全国青年歌手大奖赛的12名评委为某位歌手打分的情况如下(单位:分):96.5,97.5,97.6,97.8,97.8,98.1,98.3,98.5,98.5,98.5,98.6,99.2则下列结论不正确的是()。