勾股定理综合性难题习题
勾股定理中考难题(有答案详解)
勾股定理中考难题(有答案详解)勾股定理中考难题2、如图,在平⾯直⾓坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C的坐标为(,0),点P 为斜边OB 上的⼀个动点,则PA+PC 的最⼩值为()3、如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找⼀点M,在直线b 上找⼀点N ,满⾜MN ⊥a 且AM+MN+NB 的长度和最短,则此时4、已知:如图在△ABC ,△ADE中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同⼀条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE2=2(AD 2+AB 2),1题 2题 3题 4题 6题 6、如图,有两颗树,⼀颗⾼10⽶,另⼀颗⾼4⽶,两树相距8⽶.⼀只鸟从⼀颗树的树梢飞到另⼀颗树的树梢,问⼩鸟⾄少飞⾏() A .8⽶ B .10⽶ C .12⽶ D .14⽶7、如图,若∠A =60°,AC =20m ,则BC ⼤约是(结果精确到0.1m)( ) A .34.64m B .34.6m C .28.3m D .17.3m8、如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,AE=16,则BE 的长度为何?()A .10B .11C .12D .139、如图,圆柱形容器中,⾼为1.2m ,底⾯周长为1m ,在容器内壁..离容器底部0.3m 的点ACB第7题图B处有⼀蚊⼦,此时⼀只壁虎正好在容器外壁..的点A处,则壁虎捕捉蚊⼦的..,离容器上沿0.3m与蚊⼦相对最短距离为 m(容器厚度忽略不计).10、(2013?滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为.11、(2013⼭西,1,2分)如图,在矩形纸⽚ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对⾓线BD上的点A′处,则AE的长为______.12、(2013?黄冈)已知△ABC为等边三⾓形,BD为中线,延长BC⾄E,使CE=CD=1,连接DE,则DE= .13、(2013?张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;⼜过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= .14、(2013?包头)如图,点E是正⽅形ABCD内的⼀点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.15、(2013?巴中)若直⾓三⾓形的两直⾓边长为a、b,且满⾜,则该直⾓三⾓形的斜边长为.16、(2013?雅安)在平⾯直⾓坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满⾜条件的所有点C的坐标.17、(2013哈尔滨)在△ABC中,AB=,BC=1,∠ ABC=450,以AB为⼀边作等腰直⾓三⾓形ABD,使∠ABD=900,连接CD,则线段CD的长为.18、(2013哈尔滨)如图。
(完整版)《勾股定理》历年中考难题
(完整版)《勾股定理》历年中考难题勾股定理1. 直角三角形的三边为a-b ,a ,a+b 且a 、b 都为正整数,则三角形其中一边长可能为( )A 、61B 、71C 、81D 、912.在平面直角坐标系中,已知点A (-4,0),B (2,0),若点C 在一次函数y=-21x+2的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A 、1个 B 、2个 C 、3个 D 、4个3.如图,△P 1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1,P 2在函数xy 4 (x >0)的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是 ( )4、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 ____________.5、如图,EF 为正方形ABCD 的对角线,将∠A 沿DK 折叠,使它的顶点A 落在EF 上的G 点,则∠DKG=_______.6、以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是( )A 、2×(22)10厘米 B 、2×(21)9厘米 C 、2×(23)10厘米 D 、2×(23)9厘米 7、在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为_____________.8、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm,正方形B 的边长为5cm ,正方形C 的边长为5cm,则正方形D 的面积是_______cm 2.9、如图,直线l 上有三个正方形a,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为___________.10、如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD+PE+PF 等于( )A 、3B 、23C 、43D 、无法确定11、如图Rt △ABC 中,AB=BC=4,D 为BC 的中点,在AC 边上存在一点E ,连接ED ,EB ,则△BDE 周长的最小值为( )A 、25B 、23C 、25+2D 、23+2。
勾股定理单元 易错题难题综合模拟测评学能测试试卷
一、选择题1.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DGQM的值为( )A .32B .53C .45D .31-2.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .103.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为( )A.0.8米B.2米C.2.2米D.2.7米4.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是()A.4 B.5 C.7 D.65.下列四组数中不能构成直角三角形的一组是()A.1,2,6B.3,5,4 C.5,12,13 D.3,2,13 6.如图,△ABC中,AB=10,BC=12,AC=213,则△ABC的面积是().A.36 B.1013C.60 D.12137.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C.245D.108.如图,已知数轴上点P表示的数为1-,点A表示的数为1,过点A作直线l垂直于PA,在l上取点B,使1AB=,以点P为圆心,以PB为半径作弧,弧与数轴的交点C 所表示的数为()A5B51C51D.51-9.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( ) A .B .C .D .10.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .10二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.13.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.14.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.15.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.16.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.17.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.18.如图,长方体纸箱的长、宽、高分别为50cm 、30cm 、60cm ,一只蚂蚁从点A 处沿着纸箱的表面爬到点B 处.蚂蚁爬行的最短路程为_______cm.19.四边形ABCD 中AB =8,BC =6,∠B =90°,AD =CD =52,四边形ABCD 的面积是_______.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.22.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE .(1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.23.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.25.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示) 28.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.(2)已知△PMN中,PM=17,MN=25,NP=13.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.29.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.30.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用已知条件利用SAS 的三角形全等的判定定理证出△EAB ≌△CAM ,之后利用全等三角形的性质定理分别可得30EBA CMA ==︒∠∠,60BPQ APM ==︒∠∠,12PQ PB =,然后设1AP =,继而可分别求出2PM =,31PQ -=,所以33QM QP PM +=+=;易证Rt △ACB ≌Rt △DCG (HL ),从而得3DG AB ==然后代入所求数据即可得DGQM的值.【详解】解:∵在△EAB 和△CAM 中 ,AE AC EAB CAM AB AM =⎧⎪=⎨⎪=⎩∠∠, ∴△EAB ≌△CAM (SAS ), ∴30EBA CMA ==︒∠∠, ∴60BPQ APM ==︒∠∠, ∴90BQP ∠=︒,12PQ PB =,设1AP =,则AM =2PM =,1PB =,12PQ =,∴2QM QP PM =+=+=; ∵ 在Rt △ACB 和Rt △DCG 中,CG BCAC CD =⎧⎨=⎩, Rt △ACB ≌Rt △DCG (HL ),∴DG AB ==∴1DGGM==. 故选D . 【点睛】本题主要考查了勾股定理,三角形全等的判定定理和性质定理等知识.2.C解析:C 【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案. 【详解】 ∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值, 设AH ⊥BC ,∵56AB AC BC ===, ∴BH=3,∴4AH ==,∵1122ABCS BC AH AC BP =⋅=⋅, ∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8, 故选:C.【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解++时点P的位置是解题的关键.AP BP CP3.D解析:D【分析】先根据勾股定理求出梯子的长,进而根据勾股定理可得出小巷的宽度.【详解】解:如图,由题意可得:AD2=0.72+2.42=6.25,在Rt△ABC中,∵∠ABC=90°,BC=1.5米,BC2+AB2=AC2,AD=AC,∴AB2+1.52=6.25,∴AB=±2,∵AB>0,∴AB=2米,∴小巷的宽度为:0.7+2=2.7(米).故选:D.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4.D解析:D【解析】【分析】先利用勾股定理计算BC的长度,然后阴影部分的面积=以AB为直径的半圆面积+以BC为直径的半圆面积+-以AC为直径的半圆面积.【详解】解:在中 ∵,, ∴,∴BC=3, ∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】 本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 5.A解析:A【解析】A. 12+22≠(6)2,不能构成直角三角形,故此选项符合题意;B. 32+42=52,能构成直角三角形,故此选项不符合题意;C. 52+122=132,能构成直角三角形,故此选项不符合题意;D. 32+22=(13)2,能构成直角三角形,故此选项不符合题意;故选A.6.A解析:A【分析】作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解.【详解】如图,作AD BC ⊥于点D设BD x =,则12CD BC x x =-=-∴222AB BD AD -=,222AC CD AD -=∴2222AB BD AC CD -=-∵AB=10,AC=213∴(()22221021312x x -=-- ∴8x =∴6 AD===∴△ABC的面积1112636 22BC AD=⨯=⨯⨯=故选:A.【点睛】本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.7.C解析:C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=12AB⋅AC=12BC⋅AD,∴AD=245.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.8.B解析:B【分析】由数轴上点P表示的数为1-,点A表示的数为1,得PA=2,根据勾股定理得PB而即可得到答案.【详解】∵数轴上点P表示的数为1-,点A表示的数为1,∴PA=2,又∵l⊥PA,1AB=,∴PB=∵∴数轴上点C1.故选B.【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.9.B解析:B【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题主要考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.10.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=, 22CD ∴=. 故选A . 【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.二、填空题11.8【解析】如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于的最小值作交于,则为所求; 设,,由,,h+5=8,即BM+MN 的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M 点与N 点的位置是解题的关键.12.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.13.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,222264213BD BE DE=++=,∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.14.4【分析】根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可【详解】∵AC的垂直平分线FG,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE )2=AE 2+32,∴AE=3(负值舍去)即CE=3,同理在Rt △CEF 中,∠C=30°,CF=2EF ,(2EF )2=EF 2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.15.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =,∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=, AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥,1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴AD =故答案为【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.16.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△DCE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,22"BC BA -22106-∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.17355【详解】四边形DEFA是正方形,面积是4;△ABF,△ACD的面积相等,且都是×1×2=1.△BCE的面积是:12×1×1=12.则△ABC的面积是:4﹣1﹣1﹣12=32.在直角△ADC中根据勾股定理得到:AC=222+1=5.设AC边上的高线长是x.则12AC•x=52x=32,解得:x=355.故答案为35 5.18.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB==10cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB==10cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.19.49【解析】连接AC,在Rt△ABC中,∵AB=8,BC=6,∠B=90°,∴AC22AB BC10.在△ADC中,∵AD=CD=52AD2+CD2=(522+(522=100.∵AC2=102=100,∴AD2+CD2=AC2,∴∠ADC=90°,∴S四边形ABCD =S△ABC+S△ACD=12AB•BC+12AD•DC=12×8×6+12×525224+25=49.点睛:本题考查的是勾股定理及勾股定理的逆定理,不规则几何图形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.22.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE⊥DE,是一道中等难度的中考常考题.23.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+3)2∴DE2=(EB+12AD)2+3)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =216;(3)BC=2OC=273,AB=10.【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23,再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中, AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB 2222126AB AO -=-3∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72,②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64, 所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以22228373AC OA +=+所以73在Rt △BCD 中,()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.25.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C 作CE ⊥AB 于点E ,则D′E=BE ,设D′E=BE=x ,在Rt △CEB 中,CE 2=CB 2-BE 2=102-x 2,在Rt △CEA 中,CE 2=AC 2-AE 2=172-(9+x )2.∴102-x 2=172-(9+x )2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B 不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.26.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;(3)根据三角形ACB的面积可得11 2AC CB m=+,进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.【详解】(1)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)13,17,10,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=2213+=10,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112, 故答案为13,17,10,112. (2)△PMN 如图所示.S △PMN =4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.29.(1)①BC =DC +EC ,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD ≌△CAE ,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90°,根据勾股定理计算即可;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≌△CAE ,得到BD =CE =9,根据勾股定理计算即可.【详解】(1)①解:BC =DC +EC ,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.【点睛】本題是四边形综合题目,考查的是全等三角形的判定和性质、等直角三角形的性质、勾股定理、直角三角形的判定等知识:本题综合性强,熟练掌握等腰直角三角形的性质,证明三角形全等是解题的关键.30.(1)∠BGD =120°;(2)见解析;(3)S 四边形ABCD =263.【解析】【分析】(1)只要证明△DAE ≌△BDF ,推出∠ADE=∠DBF ,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;(2)如图3中,延长GE 到M ,使得GM=GB ,连接BD 、CG .由△MBD ≌△GBC ,推出DM=GC ,∠M=∠CGB=60°,由CH ⊥BG ,推出∠GCH=30°,推出CG=2GH ,由CG=DM=DG+GM=DG+GB ,即可证明2GH=DG+GB ;(3)解直角三角形求出BC 即可解决问题;【详解】(1)解:如图1﹣1中,∵四边形ABCD 是菱形,∴AD =AB ,∵∠A =60°,∴△ABD 是等边三角形,∴AB =DB ,∠A =∠FDB =60°,在△DAE 和△BDF 中,AD BD A BDF AE DF =⎧⎪∠=∠⎨⎪=⎩,∴△DAE ≌△BDF ,∴∠ADE =∠DBF ,∵∠EGB =∠GDB+∠GBD =∠GDB+∠ADE =60°,∴∠BGD =180°﹣∠BGE =120°.(2)证明:如图1﹣2中,延长GE 到M ,使得GM =GB ,连接CG .∵∠MGB =60°,GM =GB ,∴△GMB 是等边三角形,∴∠MBG =∠DBC =60°,∴∠MBD =∠GBC ,在△MBD 和△GBC 中,MB GB MBD GBC BD BC =⎧⎪∠=∠⎨⎪=⎩,∴△MBD ≌△GBC ,∴DM =GC ,∠M =∠CGB =60°,∵CH ⊥BG ,∴∠GCH =30°,∴CG =2GH ,∵CG =DM =DG+GM =DG+GB ,∴2GH =DG+GB .(3)如图1﹣2中,由(2)可知,在Rt △CGH 中,CH =3GCH =30°, ∴tan30°=GH CH, ∴GH =4,∵BG =6,∴BH =2,在Rt △BCH 中,BC 22213BH CH +=∵△ABD ,△BDC 都是等边三角形,∴S 四边形ABCD =2•S △BCD =3×(2132=3. 【点睛】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
勾股定理题目初二难题
勾股定理题目初二难题
勾股定理是解决直角三角形问题的重要定理,它的应用广泛且具有实用性。
下面我向大家提出一道初二难度的勾股定理题目,希望能够展示一下大家的数学能力。
题目:
小明正在建造一个长方形花坛,他想要确定花坛两侧边的长度,以确保它是一个正方形。
他已经测量了花坛两条对角线的长度,分别为12米和16米。
请问,花坛两侧边的长度各是多少米?
解题思路:
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
在这个问题中,我们可以将花坛的两条对角线看作是直角三角形的两条直角边,而花坛两侧边则是斜边。
设花坛两侧边的长度分别为x米和y米。
根据勾股定理,我们可以得到以下两个方程:
x + y = 12 (方程1)
x + y = 16 (方程2)
我们可以使用这两个方程来求解x和y的值。
首先,我们可以将方程1和方程2相减,得到:
16 - 12 = x + y - (x + y)
简化后得到:
256 - 144 = 0
这个方程显然是错误的,说明我们的假设存在问题。
实际上,无法通过已知的对角线长度来确定花坛两侧边的具体长度,因为对角线长度并不能唯一地确定一个长方形。
所以,这个问题的答案是无解。
当我们只知道一个长方形的对角线长度时,无法准确地确定其两侧边的长度。
总结:
这道题目通过勾股定理展示了对角线长度不足以唯一确定长方形的两侧边长度。
勾股定理的应用需要考虑到问题的具体条件,避免出现错误的假设。
在实际问题中,我们经常会遇到需要使用勾股定理来解决的情况,因此加深对勾股定理的理解和运用是非常重要的。
勾股定理难题50道
勾股定理难题50道1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对3.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留)π4.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表:若a b c m +-=,则观察上表我们可以猜想出Sl= (用含m 的代数式表示) 6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 . (2)错误的原因是 . (3)本题正确的结论是 .8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积AE=;则正方形EFGH的面积=.16=,19.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.10.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为2cm.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC∆中BC边上的高是.∆,则ABC13.如图,在ABC∠=︒,分别以BC、AB、AC为边向外作正方形,面积分∆中,90ABC别记为1S 、2S 、3S ,若24S =,36S =,则1S = .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 米.16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 .17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于 .18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD = .19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是cm .(结果保留根号)20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =,6DE =,则EB = .21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为m.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为尺.23.如图是一个长8m、宽6m、高5m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎、点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为m.24.如图,Rt ABC∆的斜边AC为一直角边,另一直角∆的两直角边分别为1,2,以Rt ABC边为1画第二个ACD∆;在以ACD∆的斜边AD为一直角边,另一直角边长为1画第三个∆;⋯,依此类推,第n个直角三角形的斜边长是.ADE25.如图所示的长方体是某种饮料的纸质包装盒,规格为5610cm,在上盖中⨯⨯(单位:)开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:2 1.4≈.≈,3 1.7≈,5 2.2)26.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).评卷人得分三.解答题(共24小题)27.已知ABC∆中,AB AC=.(1)如图1,在ADE∆中,若AD AE=,且DAE BAC∠=∠,求证:CD BE=;(2)如图2,在ADE∆中,若60DAE BAC∠=∠=︒,且CD垂直平分AE,3AD=,4CD=,求BD的长;(3)如图3,在ADE∆中,当BD垂直平分AE于H,且2BAC ADB∠=∠时,试探究2CD,2BD,2AH之间的数量关系,并证明.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是11(91),(91)22-+;勾是五时,股和弦的算式分别是11(251),(251)22-+.根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含(n n为奇数,且3)n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m为偶数,且4)m>的代数式来表示股和弦.29.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为1h 、2h .(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线,动点D 在直线AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连接BE . (1)填空:ACB ∠= 度;(2)当点D 在线段AM 上(点D 不运动到点)A 时,试求出ADBE的值; (3)若8AB =,以点C 为圆心,以5为半径作C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.31.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题, 请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长 . (1) 如图 1 ,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;(2) 如图 2 ,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处;(3) 如图 3 ,圆锥的母线长为4cm ,圆锥的侧面展开图如图 4 所示, 且1120AOA ∠=︒,一只蚂蚁欲从圆锥的底面上的点A 出发, 沿圆锥侧面爬行一周回到点A .32.在学习勾股定理时,我们学会运用图()I 验证它的正确性;图中大正方形的面积可表示为:2()a b +,也可表示为:214()2c ab +,即221()4()2a b c ab +=+由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图()(2002II 年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用()III 提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++; (3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++.33.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,如图①,在盒子的内部我们先取棱1BB 的中点E ,再连接AE 、1EC .虫乙如果沿路径1A E C --爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)34.在ABC ∆中,BC a =,AC b =,AB c =,设c 为最长边,当222a b c +=时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(2)猜想,当22a b + 2c 时,ABC ∆为锐角三角形;当22a b + 2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围. 35.一、阅读理解:在ABC ∆中,BC a =,CA b =,AB c =; (1)若C ∠为直角,则222a b c +=;(2)若C ∠为锐角,则22a b +与2c 的关系为:222a b c +> 证明:如图过A 作AD BC ⊥于D ,则BD BC CD a CD =-=- 在ABD ∆中:222AD AB BD =- 在ACD ∆中:222AD AC CD =- 2222AB BD AC CD -=-2222()c a CD b CD --=- 2222a b c a CD ∴+-= 0a >,0CD >2220a b c ∴+->,所以:222a b c +>(3)若C ∠为钝角,试推导22a b +与2c 的关系.二、探究问题:在ABC ∆中,3BC a ==,4CA b ==,AB c =;若ABC ∆是钝角三角形,求第三边c 的取值范围.36.已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,试判断ABC ∆的形状.阅读下面解题过程:解:由422422a b c b a c +=+得: 442222a b a c b c -=-①2222222()()()a b a b c a b +-=-② 即222a b c +=③ABC ∴∆为Rt △. ④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号) 错误原因是 本题的结论应为 .37.如图a ,90EBF ∠=︒,请按下列要求准确画图:1:在射线BE 、BF 上分别取点A 、C ,使2BC AB BC <<,连接AC 得直角ABC ∆; 2:在AB 边上取一点M ,使AM BC =,在射线CB 边上取一点N ,使CN BM =,直线AN 、CM 相交于点P .(1)请用量角器度量APM ∠的度数为 ;(精确到1)︒ (2)请用说理的方法求出APM ∠的度数;(3)若将①中的条件“2BC AB BC <<”改为“2AB BC >”,其他条件不变,你能自己在图b 中画出图形,求出APM ∠的度数吗?38.如图,D 、E 分别是ABC ∆的边BC 和AB 上的点,ABD ∆与ACD ∆的周长相等,CAE ∆与CBE ∆的周长相等.设BC a =,AC b =,AB c =. (1)求AE 和BD 的长;(2)若90BAC ∠=︒,ABC ∆的面积为S ,求证:S AE BD =.39.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小强计算这块菜地的面积.(结果保留根号)40.ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.41.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 ⋯ a221-231-241-251-⋯ b46 810 ⋯ c221+ 231+241+251+⋯(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数(1)n n >的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.42.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算1(91)2-、1(91)2+与1(251)2-、1(251)2+,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用(n n 为奇数且3)n 的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m 为偶数且4)m >的代数式来表示他们的股和弦.43.如图,梯子AB 斜靠在墙上,90ACB ∠=︒,5AB =米,4BC =米,当点B 下滑到点B '时,点A 向左平移到点A '.设BB x '=米(04)x <<,AA y '=米. (1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?(3)请你对x 再取几个值,计算出对应的y 值,并比较对应的y 值与x 值的大小(y 值可以用精确到0.01的近似数表示,也可用无理数表示).(4)根据第(1)~(3)题的计算,还可以结合画图、观察,推测y 与x 的大小关系及对应的x 的取值范围.44.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量90A ∠=︒,3AB m =,12BC m =,13CD m =,4DA m =,若每平方米草皮需要200元,问要多少投入?45.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,在图①画出一条路径,使昆虫乙从顶点A 沿这条路径爬行,可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲静止不动,昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(3)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1)s 19 4.4≈21 4.6.46.在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD 长20米,在楼梯水平长度()BC 不发生改变的前提下,楼梯的倾斜角由30︒增大到45︒,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732)≈47.如图,小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30︒,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角60ACE ∠=︒.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.48.在ABC ∆中,AC BC =,90ACB ∠=︒,D 、E 是直线AB 上两点.45DCE ∠=︒ (1)当CE AB ⊥时,点D 与点A 重合,显然222DE AD BE =+(不必证明); (2)如图,当点D 不与点A 重合时,求证:222DE AD BE =+;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.49.如图,四边形ABCD 中,AB BC ⊥,AD AB ⊥,1AB =,2BC CD ==.求四边形ABCD 的周长和面积.50.定义: 三边长和面积都是整数的三角形称为“整数三角形” .数学学习小组的同学从 32 根等长的火柴棒 (每 根长度记为 1 个单位) 中取出若干根, 首尾依次相接组成三角形, 进行探究活动 . 小亮用 12 根火柴棒, 摆成如图所示的“整数三角形”; 小颖分别用 24 根和 30 根火柴棒摆出直角“整数三角形”;小辉受到小亮、 小颖的启发, 分别摆出三个不同的等腰“整数三角形” . (1) 请你画出小颖和小辉摆出的“整数三角形”的示意图;(2) 你能否也从中取出若干根, 按下列要求摆出“整数三角形”, 如果能, 请画出示意图;如果不能, 请说明理由 . ①摆出等边“整数三角形”;②摆出一个非特殊 (既 非直角三角形, 也非等腰三角形) “整数三角形” .勾股定理难题50道参考答案与试题解析一.选择题(共2小题)1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形【解答】解:依题意可知,1133BP BF DH==,2233CQ CG DH==,又////PB CQ DH,APB AQC AHD∴∆∆∆∽∽,A∴、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选:B.2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对【解答】解:在直角三角形ABD中,根据勾股定理,得15BD=;在直角三角形ACD中,根据勾股定理,得6CD=.当AD在三角形的内部时,15621BC=+=;当AD在三角形的外部时,1569BC=-=.则BC的长是21或9.故选:D .二.填空题(共24小题)3.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 231π+ cm .(结果保留)π【解答】解:如图所示,无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.523AB cm ππ=⨯=,3BC cm =,由勾股定理得:22229931AC AB BC cm ππ=+=+=+. 故答案为:231π+.4.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 10 cm .【解答】解:将长方体展开,连接A 、B ',13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=. 故答案为:10.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、ca b c +- l S /S l345 2 12 6 1/26810 4 24 24 1 51213 4 30 30 1 81517 6 40 60 3/2121620848962⋯ ⋯ ⋯ ⋯ ⋯若a b c m +-=,则观察上表我们可以猜想出S l =4m(用含m 的代数式表示) 【解答】解:3452m a b c =+-=+-=时,1224S l ==; 6810512134m a b c =+-=+-=+-=时,414S l ==; 815176m a b c =+-=+-=时,3624S l ==; 1216208m a b c =+-=+-=时,824S l ==; ⋯∴我们可以猜想出4S ml =. 故答案为4m.6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 7或25 秒.【解答】解:如图,作AD BC ⊥,交BC 于点D , 8BC cm =,142BD CD BC cm ∴===, 223AD AB BD ∴=-=,分两种情况:当点P 运动t 秒后有PA AC ⊥时,22222AP PD AD PC AC =+=-,2222PD AD PC AC ∴+=-,22223(4)5 2.25PD PD PD ∴+=+-∴=, 4 2.25 1.750.25BP t ∴=-==, 7t ∴=秒,当点P 运动t 秒后有PA AB ⊥时,同理可证得 2.25PD =, 4 2.25 6.250.25BP t ∴=+==, 25t ∴=秒,∴点P 运动的时间为7秒或25秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 ③ . (2)错误的原因是 . (3)本题正确的结论是 .【解答】解:2222222()()()c a b a b a b -=-+∴应有2222222()()()0c a b a b a b ---+=得到22222()[()]0a b c a b --+=,22()0a b ∴-=或222[()]0c a b -+=,即a b =或222a b c +=,∴根据等腰三角形得定义和勾股定理的逆定理,三角形为等腰三角形或直角三角形.故填③,不能确定22a b -是否为0,等腰三角形或直角三角形.8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积16=,1AE =;则正方形EFGH 的面积= 10 .【解答】解:四边形EFGH 是正方形,EH FE ∴=,90FEH ∠=︒,90AEF AFE ∠+∠=︒,90AEF DEH ∠+∠=︒,AFE DEH ∴∠=∠,在AEF ∆和DHE ∆中, A D AFE DEH EF HE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF DHE ∴∆≅∆, AF DE ∴=,正方形ABCD 的面积为16, 4AB BC CD DE ∴====, 413AF DE AD AE ∴==-=-=,在Rt AEF ∆中,2210EF AE AF + 故正方形EFGH 的面积101010=.故答案为:10.9.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树 4 米才是安全的. 【解答】解:如图,BC 即为大树折断处4m 减去小孩的高1m ,则413BC m =-=,945AB m =-=,在Rt ABC ∆中,2222534AC AB BC =-=-=米. 即小孩至少离开这棵树4米才是安全的. 故答案为:4.10.如图,长方体的底面是边长为1cm 的正方形,高为3cm .如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要73 cm .【解答】解:如图所示,从点A 开始经过4个侧面缠绕2圈到达点B ,∴展开后188AC cm cm =⨯=,3BC cm =,由勾股定理得:2273AB AC BC cm =+.故答案为:73.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm ,则A 、B 、C 、D 四个小正方形的面积之和为 144 2cm .【解答】解:如右图所示, 根据勾股定理可知,231S S S +=正方形正方形正方形, 2C D S S S +=正方形正方形正方形, 3A B S S S +=正方形正方形正方形,2112144C D A B S S S S S ∴+++===正方形正方形正方形正方形正方形.故答案是144.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ∆,则ABC ∆中BC 边上的高是322.【解答】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,ABC AEB BFC CDA AEFD S S S S S ∆∆∆∆=---正方形 11122121112222=⨯-⨯⨯-⨯⨯-⨯⨯,32=. 22112BC =+=.ABC ∴∆中BC 边上的高是3322222⨯÷=. 故答案为:322.13.如图,在ABC ∆中,90ABC ∠=︒,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S = 2 .【解答】解:ABC ∆中,90ABC ∠=︒, 222AB BC AC ∴+=, 222BC AC AB ∴=-,21BC S =、224AB S ==,236AC S ==, 132642S S S ∴=-=-=.故答案为:2.14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=, 所以21043S x y =+=, 故答案为:103. 15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 5 米.【解答】解:将圆柱表面切开展开呈长方形, 则有螺旋线长为三个长方形并排后的长方形的对角线长 圆柱高4米,底面周长1米222(13)491625x =⨯+=+= 所以,花圈长至少是5m .16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 4或25或10 .【解答】解:①以A 为直角顶点,向外作等腰直角三角形DAC ,90DAC ∠=︒,且AD AC =,224BD BA AD ∴=+=+=;②以C 为直角顶点,向外作等腰直角三角形ACD ,连接BD ,过点D 作DE BC ⊥,交BC 的延长线于E . ABC ∆是等腰直角三角形,90ACD ∠=︒, 45DCE ∴∠=︒,又DE CE ⊥,90DEC ∴∠=︒, 45CDE ∴∠=︒,222CE DE ∴=== 在Rt BAC ∆中,222222BC +=,2222(222)(2)25BD BE DE ∴=+=++=; ③以AC 为斜边,向外作等腰直角三角形ADC ,90ADC ∠=︒,AD DC =,且2AC =,2sin 45222AD DC AC ∴==︒=⨯=, 又ABC ∆、ADC ∆是等腰直角三角形, 45ACB ACD ∴∠=∠=︒, 90BCD ∴∠=︒,又在Rt ABC ∆中,222222BC =+=,2222(22)(2)10BD BC CD ∴=+=+=. 故BD 的长等于4或25或10.17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于27133+ .【解答】解: 延长BA 交QR 于点M ,连接AR ,AP .AC GC =,BC FC =,ACB GCF ∠=∠, ABC GFC ∴∆≅∆,30CGF BAC ∴∠=∠=︒,60HGQ ∴∠=︒,90HAC BAD ∠=∠=︒, 180BAC DAH ∴∠+∠=︒, 又//AD QR ,180RHA DAH ∴∠+∠=︒, 30RHA BAC ∴∠=∠=︒,60QHG ∴∠=︒,60Q QHG QGH ∴∠=∠=∠=︒, QHG ∴∆是等边三角形 .3cos304232AC AB =︒=⨯=. 则23QH HA HG AC ====.在直角HMA ∆中,3sin 602332HM AH =︒=⨯=.cos 603AM HA =︒=. 在直角AMR ∆中,4MR AD AB ===.2334723QR ∴=++=+. 21443QP QR ∴==+. 3736PR QR==+.PQR ∴∆的周长等于27133RP QP QR ++=+.故答案为:27133+.18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD =75.【解答】解:设AC x =,CD y =,由勾股定理得: 2222(5)6425x y x y ⎧++=⎨+=⎩, 消去x ,得:22(5)39y y +-=, 整理,得: 1014y =,即75y =, 故CD 的长为75. 19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是 42cm .(结果保留根号)【解答】解:将圆柱体展开,连接A 、B ,根据两点之间线段最短,224442AB cm =+=.20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =6DE =,则EB =334 .【解答】解:在Rt ABC ∆中,42AB =,45A ∠=︒,24242BC ∴=⨯= 在Rt EDC ∆中,60EDC ∠=︒,6DE =,3sin 6332CE DE EDC ∴=∠=⨯= 334BE CE BC ∴=-=-.故填空答案:334-.21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20489+或40165+或4085+ m .【解答】解:(1)当20是等腰三角形的底边时,根据面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线,即底边的一半10BD =, 根据勾股定理即可求得其腰长22100256289AB AD BD =++,此时三角形的周长是20489+;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况. 根据面积求得腰上的高是16;①当高在三角形的外部时,在RT ADC ∆中,2212AD AC CD =-=,从而可得32BD =,进一步根据勾股定理求得其底边是22221632165BC CD BD =+=+=,此时三角形的周长是40165+;②当高在三角形的内部时,根据勾股定理求得2212AD AC CD =-=,8BD AB AD =-=, 在RT CDB ∆中,22BC CD BD =+2216885+=,此时三角形的周长是4085+; 故本题答案为:20489+或40165+或4085+.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun 一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为 10.1 尺.【解答】解:设单门的宽度是x 米,根据勾股定理,得221(0.1)x x =+-, 5.05x =,则210.1x =尺.23.如图是一个长8m 、宽6m 、高5m 的仓库,在其内壁的点A (长的四等分点)处有一只壁虎、点B (宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为 85 .。
勾股定理难题(二)竞赛题-2
勾股定理(二)定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍例1、如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.例2 、如图所示.已知:在正方形ABCD中,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G.求证:AB2=2FG2.证:因为AE是∠FAB的平分线,EF⊥AF,又AE是△AFE与△ABE的公共边,所以Rt△AFE≌Rt△ABE(AAS),所以 AF=AB.①在Rt△AGF中,因为∠FAG=45°,所以AG=FG,AF2=AG2+FG2=2FG2.②由①,②得: AB2=2FG2.例3、如图所示.AM是△ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2).证:过A引AD⊥BC于D(不妨设D落在边BC内).由广勾股定理,在△ABM中,AB2=AM2+BM2+2BM·MD.①在△ACM中,AC2=AM2+MC2-2MC·MD.②①+②,并注意到MB=MC,所以AB2+AC2=2(AM2+BM2).③如果设△ABC三边长分别为a,b,c,它们对应边上的中线长分别为m a,m b,m c,由上述结论不难推出关于三角形三条中线长的公式.推论△ABC的中线长公式:例4 、如图所示.已知△ABC中,∠C=90°,D,E分别是BC,AC上的任意一点.求证:AD2+BE2=AB2+DE2.证 AD2=AC2+CD2,BE2=BC2+CE2,所以AD2+BE2=(AC2+BC2)+(CD2+CE2)=AB2+DE2例5 、求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍.已知:如图所示.设直角三角形ABC中,∠C=90°,AM,BN分别是BC,AC边上的中线.求证:4(AM2+BN2)=5AB2.证:连接MN,利用例4的结论,我们有AM2+BN2=AB2+MN2,所以 4(AM2+BN2)=4AB2+4MN2.①由于M,N是BC,AC的中点,所以所以 4MN2=AB2.②由①,② 4(AM2+BN2)=5AB2.例6、由△ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F.求证:AF2+BD2+CE2=FB2+DC2+EA2.例7、如图所示.在四边形ADBC 中,对角线AB ⊥CD .求证:AC 2+BD 2=AD 2+BC 2.它的逆定理是否成立?证明你的结论.例8、如图所示.从锐角三角形ABC 的顶点B ,C 分别向对边作垂线BE ,CF .求证: BC 2=AB ·BF+AC ·CE .例9、已知,在Rt △ABC 中,BC=AC,P 为△ABC 内一点,且PA=3,PC=2,求∠BPC 的度数。
勾股定理难题
5.在△ABC 中,AB=15,AC=13,高AD=12,求△ABC 的周长6.小波家买了一部新彩电,小波量了电视机的屏幕后,发现屏幕长58厘米和宽46厘米,就问妈妈彩电是多少英寸,妈妈告诉他: “我们平常所说的电视机多少英寸指的是屏幕对角线的长度,1英寸等于2.54厘米,利用你所学的知识算一下电视机是多少英寸的?”练习2.求下列阴影部分的面积: (1) 阴影部分是正方形;(2) 阴影部分是长方形;(3) 阴影部分是半圆练习4,飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶上方4000米处,在男孩一直未动的情况下,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?12.如图所示,长方形ABCD 中,C 与点A 重合,求折痕EF 的长。
13.如图,在四边形ABCD 中,∠BAD=90°,AD=4,AB=3,BC=12,求正方形DCEF 面积。
1、如图,四边形ABCD 中,∠ACB=90O ,CD ⊥AB 于点D ,若AD=8,BD=2,求CD 的长度。
2.如图,P是等边三角形ABC ∆内的一点,连结PA 、PB 、PC ,以BP 为边作 60=∠PBQ ,且BQ=BP ,连结CQ 、PQ ,若PA:PB:PC=3:4:5,试判断PQC ∆的形状。
3.如图,ADC ∆和BCE ∆都是等边三角形, 30=∠ABC ,试说明:222BC AB BD +=4.在等腰直角三角形中,AB=AC ,点D 是斜边BC 的中点,点E 、F 分别为AB 、AC 边上的点,且DE ⊥DF 。
(1)说明:222EF CF BE =+(2)若BE=12,CF=5,试求DEF ∆的面积。
5.为了美化环境,计划在某小区用草地铺设一个等腰三角形,使它的面积为30平方米且有一边长为10米,求另外两条边。
A BC FDE A CBED例1、如图1—1,在钝角ABC 中,CB=9,AB=17,AC=10,AD ⊥BC 于D ,求AD 的长。
勾股定理专题训练试题精选(一)附答案
勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。
勾股定理综合性难题(习题)
勾股定理复习1、直角三角形的面积为S ,斜边上的中线长为d ,那么这个三角形周长为〔 〕〔A 〕22d S d ++ 〔B 〕2d S d -- 〔C 〕222d S d ++ 〔D 〕22d S d ++2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
3.△ABC 中,BC a =,AC b =,AB c =,假设∠C=90°,如图〔1〕,根据勾股定理,那么222c b a =+,假设△ABC 不是直角三角形,如图〔2〕和图〔3〕,请你类比勾股定理,试猜测22b a +与2c 的关系,并证明你的结论.4.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. 〔1〕A 市是否会受到台风的影响?写出你的结论并给予说明; 〔2〕如果A 市受这次台风影响,那么受台风影响的时间有多长?课堂练习:1、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如下图,设筷子露在杯子外面的长度为hcm,那么h的取值范围是〔〕.A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm2 如图,:,,于P. 求证:.3 :如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
4.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如下图,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米〔卡车宽度一半〕在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9〔米〕>2.5〔米〕.因此高度上有0.4米的余量,所以卡车能通过厂门.5、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
勾股定理单元 易错题难题检测试题
一、选择题1.如图,ABC 是等边三角形,点D .E 分别为边BC .AC 上的点,且CD AE =,点F 是BE 和AD 的交点,BG AD ⊥,垂足为点G ,已知75∠=︒BEC ,1FG =,则2AB 为( )A .4B .5C .6D .72.图中不能证明勾股定理的是( )A .B .C .D .3.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .245B .365C .12D .154.如图,在矩形ABCD 中,AB =3,BC =4,在矩形内部有一动点P 满足S △PAB =3S △PCD ,则动点P 到点A ,B 两点距离之和PA +PB 的最小值为( )A .5B .35C .332+D .2135.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .96.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①BC=2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个B .2个C .3个D .4个 7.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或34 8.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32πC .2πD .129.如图,是一张直角三角形的纸片,两直角边6,8AC BC ==,现将ABC 折叠,使点B 点A 重合,折痕为DE ,则BD 的长为( )A.7 B.254C.6 D.11210.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为x,则210x x+=()A.12 B.16 C.20 D.24二、填空题11.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___.12.如图,在△ABC中,OA=4,OB=3,C点与A点关于直线OB对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,OP的长度是_____.13.在△ABC中,AB=6,AC=5,BC边上的高AD=4,则△ABC的周长为__________. 14.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________15.如图,△ABC中,∠ACB=90°,AB=2,BC=AC,D为AB的中点,E为BC上一点,将△BDE沿DE翻折,得到△FDE,EF交AC于点G,则△ECG的周长是___________.16.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.17.如图,Rt △ABC 中,∠C =90°,AB =5,BC =4,斜边AB 的垂直平分线DE 交边BC 于点D ,连接AD ,线段CD 的长为_________.18.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.19.已知,在△ABC 中,BC=3,∠A=22.5°,将△ABC 翻折使得点B 与点A 重合,折痕与边AC 交于点P ,如果AP=4,那么AC 的长为_______20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想;(3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.24.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.25.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).26.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.27.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .28.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .(1)若OA =2,求点B 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 122),P 2(2,2),P 3(2,22),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】结合等边三角形得性质易证△ABE≌△CAD,可得∠FBG=30°,BF=2FG=2,再求解∠ABE =15°,进而两次利用勾股定理可求解.【详解】∵△ABC为等边三角形∴∠BAE=∠C=60°,AB=AC,CD=AE∴△ABE≌△CAD(SAS)∴∠ABE=∠CAD∴∠BFD =∠ABE+∠BAD =∠CAD+∠BAF =∠BAC =60°,∵BG ⊥AD ,∴∠BGF =90°,∴∠FBG =30°,∵FG =1,∴BF =2FG =2,∵∠BEC =75°,∠BAE =60°,∴∠ABE =∠BEC ﹣∠BAE =15°,∴∠ABG =45°,∵BG ⊥AD ,∴∠AGB =90°,∴=AB 2=AG 2+BG 22)2=6.故选C .【点睛】本题考查全等三角形的判定与性质,等边三角形的性质,勾股定理,证明△ABG 为等腰直角三角形是解题关键.2.A解析:A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项.【详解】解:A 选项不能证明勾股定理;B 选项,通过大正方形面积的不同表示方法,可以列式()22142a b ab c +=⨯+,可得222+=a b c ;C 选项,通过梯形的面积的不同表示方法,可以列式()22112222a b ab c +=⨯+,可得222+=a b c ; D 选项,通过这个不规则图象的面积的不同表示方法,可以列式222112222c ab a b ab +⨯=++⨯,可得222+=a b c . 故选:A .【点睛】本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.3.B解析:B【分析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,根据勾股定理可求出AB 的长度,再根据EQ ⊥AC 、∠ACB=90°即可得出EQ ∥BC ,进而可得出AE EQ AB BC=,代入数据即可得出EQ 的长度,此题得解. 【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,∴2215AB AC BC +=,∵AD 是∠BAC 的平分线,∴∠CAD=∠EAD ,在△ACD 和△AED 中,90CAD EAD ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴AE=AC=9.∵EQ ⊥AC ,∠ACB=90°,∴EQ ∥BC ,AE EQ AB BC ∴=, ∴91512EQ =, 653EQ ∴=. 故选B.【点睛】本题考查了勾股定理、轴对称中的最短路线问题以及平行线的性质,找出点C 的对称点E ,及通过点E 找到点P 、Q 的位置是解题的关键.4.B解析:B【分析】首先由PAB PCD S =3S △△,得知动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,则BE 的长就是所求的最短距离,然后在直角三角形ABE 中,由勾股定理求得BE 的值,即PA+PB 的最小值.【详解】解:∵PAB PCD S =3S △△, 设点P 到CD 的距离为h ,则点P 到AB 的距离为(4-h ), 则11AB (4-h)=3CD h 22⋅⋅⨯⋅⋅,解得:h=1,∴点P 到CD 的距离1,到AB 的距离为3, ∴如下图所示,动点P 在与AB 平行且与AB 的距离为3的直线l 上,作点A 关于直线l 的对称点E ,连接AE 、BE ,且两点之间线段最短,∴PA+PB 的最小值即为BE 的长度,AE=6,AB=3,∠BAE=90°,根据勾股定理:22222BE =AE AB =63=35++故选:B .【点睛】本题考查了轴对称—最短路线问题(两点之间线段最短),勾股定理,得出动点P 所在的位置是解题的关键.5.B解析:B【分析】设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.【详解】设AB=c ,AC=b ,BC=a ,由题意得'A BC 的面积=13102a a ⋅=, 'AB C △的面积=1342b ⋅= ∴24033a = 21633b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2, ∴c 2=a 2-b 24016338333=∴'ABC △的面积=21224c c c ⋅⋅==64= 故此题选B【点睛】 此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积6.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AC=BC=4,则AE=3=DE ,由勾股定理可得, ①正确;1>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确;△DCE 的周长,△BDF 的周长+4-4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.7.D解析:D【解析】试题解析:当3和5当5.故选D .8.A解析:A【分析】分别求出以AB 、AC 、BC 为直径的半圆及△ABC 的面积,再根据S 阴影=S 1+S 2+S △ABC -S 3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm,AC=3cm,BC=5cm,∴以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(cm2);S△ABC=6(cm2);∴S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.B解析:B【分析】由折叠的性质得出AD=BD,设BD=x,则CD=8-x,在Rt△ACD中根据勾股定理列方程即可得出答案.【详解】解:∵将△ABC折叠,使点B与点A重合,折痕为DE,∴AD=BD,设BD=x,则CD=8-x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8-x)2=x2,解得x= 25 4∴BD=254.故选:B.【点睛】本题考查了翻折变换的性质、勾股定理等知识,熟练掌握方程的思想方法是解题的关键.10.D解析:D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.5【详解】解:如图,延长AE 交BC 于点F ,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5.12.1或78【分析】分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.13.1425+或825+ 【分析】 分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.【详解】解:分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253+, ∴△ABC 的周长为:652531425+++=+;如图2所示,此时△ABC 为钝角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253-, ∴△ABC 的周长为:65253825++-=+;综合上述,△ABC 的周长为:1425+或825+;故答案为:1425+或825+.【点睛】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 14.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE和直角△CDE,是解题的关键.152【分析】连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,【详解】解:(1)如图,连接CD、CF.∵Rt △ABC 中,∠ACB=90°,AC=BC ,D 为AB 边的中点,∴BD=CD=1.2 ,∵由翻折可知BD=DF ,∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,∴∠DCF=∠DFC ,∴∠DCF-∠DCA=∠DFC-∠DFE ,即∠GCF=∠GFC ,∴GC=GF ,∴EG+CG=EG+GF=EF=BE ,∴△ECG 的周长2, 2.【点睛】本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键..16.106232【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 223332+=;当x=9时,x 、y 2293310+=;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-. 故答案为:310232【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.17.78. 【解析】∵∠C =90°,AB =5,BC =4,∴AC .∵AB 的垂直平分线DE 交边BC 于点D ,∴BD =AD .设CD =x ,则AD =BD =4-x ,在Rt △ACD 中,2223(4)x x +=- ,解得:78x =.故答案为:78. 18.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,13AC ===13CE AB AC ==∴= 由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-=故答案为:49 13.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.19.522,322++【分析】过B作BF⊥CA于F,构造直角三角形,分两种情况讨论,利用勾股定理以及等腰直角三角形的性质,即可得到AC的长.【详解】分两种情况:①当∠C为锐角时,如图所示,过B作BF⊥AC于F,由折叠可得,折痕PE垂直平分AB,∴AP=BP=4,∴∠BPC=2∠A=45°,∴△BFP是等腰直角三角形,∴BF=DF=22,又∵BC=3,∴Rt△BFC中,CF=221BC BF-=,∴AC=AP+PF+CF=5+22;②当∠ACB为钝角时,如图所示,过B作BF⊥AC于F,同理可得,△BFP 是等腰直角三角形,∴BF=FP=又∵BC=3,∴Rt △BCF 中,1=,∴AC=AF-CF=3+故答案为:5+3+【点睛】本题主要考查了折叠问题以及勾股定理的运用,解决问题的关键是分两种情况画出图形进行求解.解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20【分析】依次求出在Rt △OAB 中,OA 1=2;在Rt △OA 1B 1中,OA 2=2OA 1=(2)2;依此类推:在Rt △OA 5B 5中,OA 6)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6OA 5)6= OB 666A B OB 6=8故△OA 6B 6+2×(2)6+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米. 答:梯子底端将向左滑动了8米.22.(1)132)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,222246213()PQ BQ BP cm +=+=;(2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =;即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6∴=÷=秒.t由上可知,当t为5.5秒或6秒或6.6秒时,∆为等腰三角形.BCQ【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.24.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c 88a a --|c ﹣17|+b 2﹣30b +225, 2881||7(15)a a c b --+-=﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】 此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.25.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452α︒-,或α=45°时45°<∠BAC <90°.【分析】(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;(2)可以画出∠A=35°的三角形;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.【详解】解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;故答案为:20°;(2)如图所示:∠BAC=35°;(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.当∠A =90°时,△ABC 存在二分分割线;当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时1809014522A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°, 综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.【点睛】本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.26.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E ,F 的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案; (3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23; (2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴DG=224DE EG-=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE的解析式为:y=kx+b,把D(1,3),E(5,0)代入y=kx+b,得350k bk b+=⎧⎨+=⎩,解得:34154kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线DE的解析式为:y=34-x+154;(3)∵MN∥DE,∴直线直线MN的解析式为:34y x b =-+,令y=3,代入34y x b=-+,解得:x=443b-,∴M(443b-,3).①当点M在线段DB上时,BM=6-(443b-)=4103b-+,∴1143(10)223S BM AB b=⋅=⨯⨯-+=215b-+,②当点M在DB的延长线上时,BM=443b--6=4103b-,∴1143(10)223S BM AB b=⋅=⨯⨯-=215b-,综上所述:1515215()4215215()2b bSb b⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.27.作图见解析,325【分析】 作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.【详解】如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.连接AN ,在Rt △ABC 中,AC=4,AB=8,∴2222AB AC =84=45++∵11AB AC=BC AH 22⋅⋅ ∴8545∵CA ⊥AB ,A 'M ⊥AB ,∴CA ∥A 'M∴∠C=∠A 'NH ,由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,AA'=2AH=1655,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭x ∴()2221654=16-+-⎝⎭x x解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.28.(1)(5,0);(2)见解析;(3)①P (4,2),②满足△ACP 与△BDC 全等的点是P 1、P 2,P 3.理由见解析【分析】(1)由题意可以假设A (a ,a )(a >0),根据AB 2+OB 2=OA 2,构建方程即可解决问题; (2)由角平分线的性质定理证明CH=CF ,CG=CF 即可解决问题;(3)①如图3中,在BC 的延长线上取点P ,使得CP=DB ,连接AP .只要证明△ACP ≌△CDB (SAS ),△ABP 是等腰直角三角形即可解决问题;②根据SAS 即可判断满足△ACP 与△BDC 全等的点是P 1、P 2,P 3;【详解】解:(1)∵点A 在射线y =x (x ≥0)上,故可以假设A (a ,a )(a >0),∵AB ⊥x 轴,∴AB =OB =a ,即△ABO 是等腰直角三角形,∴AB 2+OB 2=OA 2,∴a 2+a 2=(52)2,解得a =5,∴点B 坐标为(5,0).(2)如图2中,作CF ⊥x 轴于F .∵OC 平分∠AOB ,CH ⊥OE ,∴CH =CF ,∵△AOB 是等腰直角三角形,∴∠AOB =45°,∵BC ∥OE ,∴∠CBG =∠AOB =45°,得到BC 平分∠ABF ,∵CG⊥BA,CF⊥BF,∴CG=CF,∴CG=CH.(3)①如图3中,在BC的延长线上取点P,使得CP=DB,连接AP.由(2)可知AC平分∠DAE,∴∠DAC=12∠DAE=12(180°﹣45°)=67.5°,由OC平分∠AOB得到∠DOB=12∠AOB=22.5°,∴∠ADC=∠ODB=90°﹣22.5°=67.5°,∴∠ADC=∠DAC=67.5°,∴AC=DC,∠BDC=∠OBD+∠DOB=90°+22.5°=112.5°,∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣67.5°﹣67.5°=45°,∠OCB=45°﹣22.5°=22.5°,∠ACP=180°﹣∠ACD﹣∠OCB=180°﹣45°﹣22.5°=112.5°,在△ACP和△CDB中,AC ADACP DB CP DB=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△CDB(SAS),∴∠CAP=∠DCB=22.5°,∴∠BAP=∠CAP+∠DAC=22.5°+67.5°=90°,∴△ABP是等腰直角三角形,∴AP=AB=OB=2,∴P(4,2).②满足△ACP与△BDC全等的点是P1、P2,P3.理由:如图4中,由题意:AP1=BD,AC=CD,∠CAP1=∠CDB,根据SAS可得△CAP1≌△CDB;AP2=BD,AC=CD,∠CAP2=∠CDB,根据SAS可得△CAP2≌△CDB;AC=CD,∠ACP3=∠BDC,BD=CP3根据SAS可得△CAP3≌△DCB;故答案为P1、P2,P3.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理、角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.,理由见解析. 29.(1)45°;(2)GF=AG+CF,证明见解析;(3)①6;②s ab【解析】【分析】(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE.∵四边形ABCD是正方形,∴CD=CB,∠ECD=∠ECB=45°,∵EC=EC,∴△ECB≌△ECD(SAS),∴EB=ED,∠EBC=∠EDC,∵∠DEF=∠DCF=90°,∴∠EFC+∠EDC=180°,∵∠EFB+∠EFC=180°,∴∠EFB=∠EDC,∴∠EBF=∠EFB,∴EB=EF,∴DE=EF,∵∠DEF=90°,∴∠EDF=45°故答案为45°.(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,∵∠DAC=90°,∴∠DAC+∠DAH=180°,∴H、A、G三点共线,∴GH=AG+AH=AG+CF,∵∠EDF=45°,∴∠CDF+∠ADG=45°,∴∠ADH+∠ADG=45°∴∠GDH=∠EDF=45°又∵DG=DG∴△GDH≌△GDF(SAS)∴GH=GF,∴GF=AG+CF.(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,则有(3+x)2=(6-x)2+32,解得x=2∴S△BFG=1•BF•BG=6.2②设正方形边长为x,。
勾股定理综合难题附答案(超好打印版)
练习题1如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底 面上与A 点相对的B 点处,需要爬行的最短路程是多少?2如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形.现有一小虫从顶点A 出发,沿长方 体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=53、一只蚂蚁从棱长为1的正方体纸箱的B'点沿纸箱爬到4、如图,小红用一张长方形纸片 ABCD 进行折纸,已知该纸片宽AB 为8cm,?长BC?为10cm .当 小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长? ?&如图,在矩形ABCD 中,AB =6,将矩形ABCD 折叠,使 点B 与点D 重合,C 落在C 处,若AE : BE^1:2,则折 痕EF 的长为9、如图,已知:点 E 是正方形ABCD 的BC 边上的点,现将 DC落在对角线DB 上,贝U EB : CE = __________ .O|BD 点,那么它所行的最短路线的长是5.如图,将一个边长分别为 使C 点与A 点重合,则 4、8的长方形纸片ABCD 折叠,EB 的长是( C .5).6.已知:如图,在△ ABC 中,/ C=90o ,/ 垂直平分线交BC 于D ,垂足为E ,D=4cm . 求AC 的长.7、如图,有一个直角三角形纸片,两直角边 AC=6,BC=8, 现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且 与AE 重合,贝U CD 的长为△ DCE 沿折痕DE 向上翻折,使D10、如图,AD 是厶ABC 的中线,/ ADC = 45°,把厶ADC 沿AD 对折,点C 落在C'的位置,若 BC = 2,贝U BC = _______________ .16、如图,每个小方格的边长都为 1 •求图中格点四边形ABCD 的面积题5图1,有一块直角三角形纸片,两直角边 11. 如图 AD 折叠,使它落在斜边AB 上,且与AE 重合,A.2cmB.3 cmC.4 cmAC = 6cm , BC = 8cm ,现将直角边 AC 沿直线则CD 等于( ) D.5 cm 12、有一个直角三角形纸片,两直角边 AC=6cm,BC=8cm,现将直角边AC 沿/ CAB 的角平分线 AD 折叠,使它落在斜边 AB 上,且与AE 重合,你能求出CD 的长吗?O —13、如图,在△ ABC 中,/ B=90, AB=BC=6,把E△ ABC 进行折叠,使点 A 与点D 重合,BD:DC=1:2,折痕为EF , 点E 在AB 上,点F 在AC 上,求EC 的长。
《勾股定理》难题(含答案)
第一章勾股定理(难度题)1、如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的(B)A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定2、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.【解】∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.3、(潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解】如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.4、如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A、25B、23C、25+2D、23+25、如图,EF为正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则∠DKG=_______.6、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________7、如图,点E 在DBC ∆的边DB 上,点A 在DBC ∆内部,90DAE BAC ∠=∠=,AD AE =,AB AC =.给出下列结论:①BD CE =;②45ABD ECB ∠+∠=;③BD CE ⊥;④22222BE AD AB CD =+()﹣.其中正确的有( )A .1个B .2个C .3个D .4个8、如图,在矩形ABCD中,AB=3,BC=4,对角线AC、BD相交于点O,过A 作AE⊥BD交BD于点E,将△ABE沿AE折叠,点B恰好落在线段OD的F点处,则DF的长为(C)A.B.C.D.【解】∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴BD==5,∵AE⊥BD,∴△ABD的面积=AB•AD=BD•AE,∴AE==,∴BE==,由翻折变换的性质得:EF=BE=,∴DF=BD﹣BE﹣EF=5﹣﹣=.故选:C.9、如图,正方形ABCD的边长为6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=135°.其中正确的个数是()A.5 B.4 C.3 D.2 【解】:由题意可求得DE=2,CE=4,AB=BC=AD=6,∵将△ADE沿AE对折至△AFE,∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB,EF=DE=2在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∴BG=GF,∠BGA=∠FGA,设BG=GF=x,若BG=CG=x,在Rt△EGC中,EG=x+2,CG=x,CE=4,由勾股定理可得(x+2)2=x2+42,解得x=3,此时BG=CG=3,BG+CG=6,满足条件,∴②正确;∵GC=GF,∴∠GFC=∠GCF,且∠BGF=∠GFC+∠GCF=2∠GCF,∴2∠AGB=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,∴③正确;∵S△EGC=GC•CE=×3×4=6,S△AFE=AF•EF=×6×2=6,∴S△EGC=S△AFE,∴④正确;在五边形ABGED中,∠BGE+∠GED=540°﹣90°﹣90°﹣90°=270°,即2∠AGB+2∠AED=270°,∴∠AGB+∠AED=135°,∴⑤正确;∴正确的有五个,故选:A.10、如图,P是矩形ABCD内一点,PA=1,PB=5,PC=7,则PD=_________. 解:过点P作MN∥AD交AB于点M,交CD于点N,则AM=DN,BM=CN∵∠PMA=∠PMB=90°, ∴PA 2-PM 2=AM 2,PB 2-PM 2=BM 2.∴PA 2-PB 2=AM 2-BM 2.同理,PD 2-PC 2=DN 2-CN 2.∴PA 2-PB 2=PD 2-PC 2.又PA=1,PB=5,PC=7, ∴PD 2=PA 2-PB 2+PC 2=12-52+72,PD=511、如图, 已知正方形ABCD 的边长为2,△ BPC 是等边三角形,则PD 的长是( D )A .347- B .32- C .23- D .348-12、如图,在△ABC 中,AD =15,AC =12,DC =9,点B 是CD 延长线上一点,连接AB .若AB =20,求△ABD 的面积.【解】:在△ADC 中,∵AD =15,AC =12,DC =9,∴AC 2+DC 2=122+92=152=AD 2,∴△ADC 是直角三角形.在Rt △ABC 中,AC 2+BC 2=AB 2,∵AB =20,∴BC =16,∴BD =BC -DC =16-9=7,∴S △ABD =12BD ×AC =12×7×12=42.13、如图,∠xoy =60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2,它到oy 的距离MB 为11,求OM 的长。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)
欢迎阅读初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C .D .2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2BC.在D.在3.AB,则ABA.4A.105A.﹣﹣.﹣6A.7A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…13…14.a15AB=CB=,CD=(216,的三角形,请你17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km 到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A?B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格(1(2三边的长分别为、、(3ABC究EP(4别为21.(三边的长分别为、如图ABC(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n>0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24C (a,(1(2(325.“棵高26.((2)已知,求代数式((3②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,着名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证,∠点出其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1、(2若Rt2,则第三边的长为(33432=4+(1(2(335A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A 处时测得台风中心移到位于点A正南方的B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的着作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(40AO1A.2A. B.3A..﹣45.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析1.(A.6==1313=.故选2.(ABC.在D.在可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春?临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.4.(尺,A.10故选5.(A.﹣﹣O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春?蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在∴B′C=∴故选两条7.(MN A.2=13又∵∴∴故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春?重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.9.(∴在Rt∴AB==17所以10.(C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春?高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt12.(…7第2第3第4∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春?武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c=85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在b=c=14.(得:(即:(由非负数的性质可得:,解得∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋?永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB 于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△∴AB2又∵,∴∵CD=∴CD2∴AC2∴∠(2∴S△=,=,∵AB=CB=,∴S△而S∴S四边形ABCD【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春?邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春?平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴=∴A、AC 18.((1(230°(2∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(AB、B→C(1(2(3(2(3为∴=2(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋?江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△(1(2三边的长分别为、、(3ABC究EP(4别为(2(3(4)PQ,然后解无理方程求出h,从而求出△PQR的面积,再根据六边形被分成的四个三角形的面积相等,总面积等于各部分的面积之和列式计算即可得解.【解答】解:(1)△ABC的面积=3×3﹣×2×1﹣×3×1﹣×2×3,=9﹣1﹣1.5﹣3,=9﹣5.5,=3.5;(2)△DEF如图2所示;面积=2×4﹣×1×2﹣×2×2﹣×1×4,=8﹣1﹣2﹣2,=8﹣5,=3;(3)∵△ABE是等腰直角三角形,∴AB=AE,∠BAE=90°,∴∠PAE+∠BAG=180°﹣90°=90°,又∵∠AEP+∠PAE=90°,∴∠在△∴△∴(4在Rt PH==,在Rt QH==,∴PQ=+=6﹣,整理得,=2,两边平方得,13﹣h2=4,解得h=3,∴S=×6×3=9,△PQR∴六边形花坛ABCDEF的面积=25+13+36+4×9=74+36=110m2.故答案为:(1)3.5;(2)3;(4)110.【点评】本题考查了勾股定理,构图法求三角形的面积,全等三角形的判定与性质,读懂题目信息,理解构图法的操作方法是解题的关键.21.(2016春?周口期中)(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上 3.5.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.(3三边的长分别为(n),如图(2(3×(2)如图2,△ABC的面积=3a×4a﹣×3a×2a﹣×a×4a﹣×2a×2a=5a2;(3)如图3,△ABC的面积=4m×4n﹣×m×4n﹣×3m×n﹣×4m×3n=6.5mn.【点评】本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.22.(2015春?罗田县期中)有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答.【解答】解:如图,由题意知AB=3,CD=14﹣1=13,BD=24.过A作AE⊥CD于E.则CE=13﹣3=10,AE=24,∴在Rt△AEC中,AC2=CE2+AE2=102+242.∴AC=26,26÷5=5.2(s).【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23.(2014春?镇原县校级期中)(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题问题2).问题S′=a S″=b则S′+S″=探究S′=a S″=b S=则S′+S″=探究πa S″=S=则S′+S″=π24.(且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.【分析】(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,F为垂足,有CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,列出关于x的方程,求得x=,再在Rt△CEF中,根据勾股定理求得CF=,然后由三角形的面积公式即可求解.【解答】(1)证明:过C点、D点向x轴、y轴作垂线,垂足分别为M、N.∵C(a,b),D(b,﹣a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠∵OC=OD=∴△∴∠(2在△∴△∴∵∴CD=.∵AD∴AD∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)解:作CF⊥OA,F为垂足,由勾股定理得CF2=CE2﹣EF2,CF2=CA2﹣AF2=CA2﹣(AE+EF)2,设EF=x,可得52﹣x2=72﹣(3+x)2,解得x=.在Rt△CEF中,得CF==,∴OF=CF=,∴△OCA的面积===.【点评】本题考查了全等三角形、等腰直角三角形的判定与性质,勾股定理及其逆定理,三角形的面积,有一定难度.准确作出辅助线是解题的关键.25.(2015春?定州市期中)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只设EC在Rt又∵∴x2+x=20答:这条鱼出现的地方离比较高的棕榈树的树根20肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.26.(2009秋?曲阜市校级期中)(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.【分析】(1)(2)根据化简整式的方法,化简方程式;(3)=,所以画的线段,让其成为直角三角形的斜边即可,该直角三角形一条直角边为2,一条直角边为4,根据题意解题.【解答】解:(1)x(x﹣2)﹣(x+1)(x﹣1)=x2﹣2x﹣(x2﹣1)=x2﹣2x﹣x2+1=﹣2x+1,代入(2)=x2+=x2﹣代入x=原式==3+1=7﹣(3AB==,∵∠∴AC=BC=.关键.27.(2015春?新泰市期中)[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,着名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即BC<AD∴.【分析】(1)根据勾股定理用文字及符号语言叙述;(2)利用SAS可证△ABE≌△ECD,可得对应角相等,结合90°的角,可证∠AED=90°,利用梯(3AD=.(2∵Rt∴∠∴∠∴∠S梯形==(a2=ab+ab(3)∵AD=c,BC<AD,∴a+b<c,即<.故答案为:;BC<AD【点评】考查了勾股定理的证明,本题利用了全等三角形的判定和性质、面积分割法、勾股定理等知识.28.(2015秋?贵阳校级期中)观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式(a+b)2=a2+2ab+b2;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.【分析】(1)由大正方形面积的两种计算方法即可得出结果;(2)由全等三角形的性质得出∠BAC=∠DCE,再由角的互余关系得出∠ACB+∠DCE=90°,即可得出结论;(3)先证明四边形ABDE是梯形,由四边形ABDE的面积的两种计算方法即可得出结论.【解答】(1)解:这个公式是完全平方公式:(a+b)2=a2+2ab+b2;理由如下:∵大正方形的边长为a+b,∴(a(2∴∠∵∠∴∠∴∠(3∴∠B∴AB=(=c熟练掌握完全平方公式和四边形面积的计算方法是解决问题的关键.29.(2016春?平定县期中)超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)【分析】首先利用两个直角三角形求得AB的长,然后除以时间即可得到速度.【解答】解:由题意知:PO=100米,∠APO=60°,∠BPO=45°,在直角三角形BPO中,∵∠BPO=45°,∴BO=PO=100m在直角三角形APO中,∵∠APO=60°,∴AO=PO?tan60°=100m,∴AB=AO﹣BO=(100﹣100)≈73(米),∵从A处行驶到B处所用的时间为3秒,∴速度为73÷3≈24.3米/秒=87.6千米/时>80千米/时,30.(图,(1(2A点与B(2海里、(2∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45﹣x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.【点评】本题考查了线段的垂直平分线的性质以及勾股定理的应用,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.31.(2015秋?南京期中)在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.b∴以a,b,c为边长的三角形一定为直角三角形.【点评】本题考查的是勾股定理的逆定理,掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.32.(2016秋?盐城期中)如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.【分析】(1)根据点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位可知,当t=6秒时,DP=6,AQ=3即可画出线段PQ;(2)设时间为t,则在t秒钟,P运动了t个单位,Q运动了t个单位,由题意得PQ=BQ,然后根据勾股定理列出关于t的方程,解得t即可.【解答】解:(1)如图所示,由勾股定理得PQ==5;(2)设时间为t,则在t秒钟,P运动了t格,Q运动了t格,由题意得PQ=BQ,即(t﹣t)2+42=(8﹣t)2,解得t=6(秒).33.((1、、(2若Rt2::(3(2角形的定义;(3)结合(2)提出问题即可.【解答】解:(1)①设等边三角形的一边为a,则a2+a2=2a2,∴符合“奇异三角形”的定义.∴“等边三角形一定是奇异三角形”,正确;故答案为:是;②∵12+()2=8=2×22,∴若某三角形的三边长分别为1、、2,则该三角形是奇异三角形;故答案为:是;(2)分两种情况:①当2为斜边时,第三边长==2,∵22+(2)2≠2×22,∴不是奇异三角形;②当2为直角边长时,第三边长==2,∵22+(2)2=2×(2)2,∴是奇异三角形;:(()(),(),【分析】认真观察三个数之间的关系可得出规律:第n组数为(2n+1),由此规律解决问题.【解答】解:(1)112=b+c,这是第5个式子,故112=+=60+61;故答案为:60,61;(2)(2n+1)2=()+();故答案为:(2n+1)2=()+();(3)由已知各式中的勾股数特征,[]2﹣[]2=[+][﹣]=(2n+1)2×1=(2n+1)2.所以得证.【点评】本题考查了勾股定理的知识及数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能有一般得出特殊规律.35.(线m,∴∠∵∴故36.(,【分析】首先证明△ADC≌△CEB,根据全等三角形的性质可得DC=BE=7cm,再利用勾股定理计算出AC长,然后利用三角形的面积公式计算出该零件的面积即可.【解答】解:∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE=7cm,∴AC===(cm),∴BC=2,∴该零件的面积为:××=37(cm2).37.(5厘)到A,∴5而AB∵∴5而DC∴Q在AB边上,且BQ=4厘米,如图.在△BPQ中,∵BQ=4厘米,PQ=3厘米,BP=5厘米,∴BQ2+PQ2=BP2,∴△BPQ为直角三角形,∠BQP=90°,∴∠AQP=180°﹣∠BQP=90°,∴△APQ为直角三角形.【点评】本题考查了勾股定理的逆定理,行程问题中路程、速度、时间的关系,邻补角定义,难度适中.利用数形结合思想确定5秒时P、Q的位置是解题的关键.38.(2015春?嵊州市校级期中)一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,。
勾股定理难题精选
勾股定理难题精选勾股定理一、选择题1、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )A 、6厘米B 、8厘米 C、厘米 D 、厘米2、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为( )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 23、Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A 、121B 、120C 、132D 、不能确定解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边由勾股定理知:,即:112+b 2 = c 2所以(b+c )(c -b )=121因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。
又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。
所以b=60,c=61评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。
4、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .1013801360222a b c +=5、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或3310、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A 、450a 元B 、225a 元C 、150a 元D 、300a 元11.已知,如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、6cm2B 、8cm2C 、10cm2D 、12cm212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A 、25海里B 、30海里C 、35海里D 、40海里8、直角三角形的一条直角边长为12,另外两条边长均为自然数,则其周长可以为( )A .36B .28C .56D .不能确定9、已知a 、b 、c 是三角形的三边长,如果满足,则三角形的形状是( )A .底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形10、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么的值为( ).A .13 B .19 C .25 D .169二、填空题15、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
勾股定理难题50道
勾股定理难题50道1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对3.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留)π4.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表:若a b c m +-=,则观察上表我们可以猜想出Sl= (用含m 的代数式表示) 6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 . (2)错误的原因是 . (3)本题正确的结论是 .8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积AE=;则正方形EFGH的面积=.16=,19.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.10.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为2cm.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC∆中BC边上的高是.∆,则ABC13.如图,在ABC∠=︒,分别以BC、AB、AC为边向外作正方形,面积分∆中,90ABC别记为1S 、2S 、3S ,若24S =,36S =,则1S = .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 米.16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 .17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于 .18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD = .19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是cm .(结果保留根号)20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =,6DE =,则EB = .21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为m.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为尺.23.如图是一个长8m、宽6m、高5m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎、点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为m.24.如图,Rt ABC∆的斜边AC为一直角边,另一直角∆的两直角边分别为1,2,以Rt ABC边为1画第二个ACD∆;在以ACD∆的斜边AD为一直角边,另一直角边长为1画第三个∆;⋯,依此类推,第n个直角三角形的斜边长是.ADE25.如图所示的长方体是某种饮料的纸质包装盒,规格为5610cm,在上盖中⨯⨯(单位:)开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:2 1.4≈.≈,3 1.7≈,5 2.2)26.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).评卷人得分三.解答题(共24小题)27.已知ABC∆中,AB AC=.(1)如图1,在ADE∆中,若AD AE=,且DAE BAC∠=∠,求证:CD BE=;(2)如图2,在ADE∆中,若60DAE BAC∠=∠=︒,且CD垂直平分AE,3AD=,4CD=,求BD的长;(3)如图3,在ADE∆中,当BD垂直平分AE于H,且2BAC ADB∠=∠时,试探究2CD,2BD,2AH之间的数量关系,并证明.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是11(91),(91)22-+;勾是五时,股和弦的算式分别是11(251),(251)22-+.根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含(n n为奇数,且3)n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m为偶数,且4)m>的代数式来表示股和弦.29.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为1h 、2h .(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线,动点D 在直线AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连接BE . (1)填空:ACB ∠= 度;(2)当点D 在线段AM 上(点D 不运动到点)A 时,试求出ADBE的值; (3)若8AB =,以点C 为圆心,以5为半径作C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.31.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题, 请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长 . (1) 如图 1 ,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;(2) 如图 2 ,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处;(3) 如图 3 ,圆锥的母线长为4cm ,圆锥的侧面展开图如图 4 所示, 且1120AOA ∠=︒,一只蚂蚁欲从圆锥的底面上的点A 出发, 沿圆锥侧面爬行一周回到点A .32.在学习勾股定理时,我们学会运用图()I 验证它的正确性;图中大正方形的面积可表示为:2()a b +,也可表示为:214()2c ab +,即221()4()2a b c ab +=+由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图()(2002II 年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用()III 提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++; (3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++.33.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,如图①,在盒子的内部我们先取棱1BB 的中点E ,再连接AE 、1EC .虫乙如果沿路径1A E C --爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)34.在ABC ∆中,BC a =,AC b =,AB c =,设c 为最长边,当222a b c +=时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(2)猜想,当22a b + 2c 时,ABC ∆为锐角三角形;当22a b + 2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围. 35.一、阅读理解:在ABC ∆中,BC a =,CA b =,AB c =; (1)若C ∠为直角,则222a b c +=;(2)若C ∠为锐角,则22a b +与2c 的关系为:222a b c +> 证明:如图过A 作AD BC ⊥于D ,则BD BC CD a CD =-=- 在ABD ∆中:222AD AB BD =- 在ACD ∆中:222AD AC CD =- 2222AB BD AC CD -=-2222()c a CD b CD --=- 2222a b c a CD ∴+-= 0a >,0CD >2220a b c ∴+->,所以:222a b c +>(3)若C ∠为钝角,试推导22a b +与2c 的关系.二、探究问题:在ABC ∆中,3BC a ==,4CA b ==,AB c =;若ABC ∆是钝角三角形,求第三边c 的取值范围.36.已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,试判断ABC ∆的形状.阅读下面解题过程:解:由422422a b c b a c +=+得: 442222a b a c b c -=-①2222222()()()a b a b c a b +-=-② 即222a b c +=③ABC ∴∆为Rt △. ④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号) 错误原因是 本题的结论应为 .37.如图a ,90EBF ∠=︒,请按下列要求准确画图:1:在射线BE 、BF 上分别取点A 、C ,使2BC AB BC <<,连接AC 得直角ABC ∆; 2:在AB 边上取一点M ,使AM BC =,在射线CB 边上取一点N ,使CN BM =,直线AN 、CM 相交于点P .(1)请用量角器度量APM ∠的度数为 ;(精确到1)︒ (2)请用说理的方法求出APM ∠的度数;(3)若将①中的条件“2BC AB BC <<”改为“2AB BC >”,其他条件不变,你能自己在图b 中画出图形,求出APM ∠的度数吗?38.如图,D 、E 分别是ABC ∆的边BC 和AB 上的点,ABD ∆与ACD ∆的周长相等,CAE ∆与CBE ∆的周长相等.设BC a =,AC b =,AB c =. (1)求AE 和BD 的长;(2)若90BAC ∠=︒,ABC ∆的面积为S ,求证:S AE BD =.39.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小强计算这块菜地的面积.(结果保留根号)40.ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.41.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 ⋯ a221-231-241-251-⋯ b46 810 ⋯ c221+ 231+241+251+⋯(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数(1)n n >的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.42.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算1(91)2-、1(91)2+与1(251)2-、1(251)2+,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用(n n 为奇数且3)n 的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m 为偶数且4)m >的代数式来表示他们的股和弦.43.如图,梯子AB 斜靠在墙上,90ACB ∠=︒,5AB =米,4BC =米,当点B 下滑到点B '时,点A 向左平移到点A '.设BB x '=米(04)x <<,AA y '=米. (1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?(3)请你对x 再取几个值,计算出对应的y 值,并比较对应的y 值与x 值的大小(y 值可以用精确到0.01的近似数表示,也可用无理数表示).(4)根据第(1)~(3)题的计算,还可以结合画图、观察,推测y 与x 的大小关系及对应的x 的取值范围.44.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量90A ∠=︒,3AB m =,12BC m =,13CD m =,4DA m =,若每平方米草皮需要200元,问要多少投入?45.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,在图①画出一条路径,使昆虫乙从顶点A 沿这条路径爬行,可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲静止不动,昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(3)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1)s 19 4.4≈21 4.6.46.在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD 长20米,在楼梯水平长度()BC 不发生改变的前提下,楼梯的倾斜角由30︒增大到45︒,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732)≈47.如图,小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30︒,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角60ACE ∠=︒.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.48.在ABC ∆中,AC BC =,90ACB ∠=︒,D 、E 是直线AB 上两点.45DCE ∠=︒ (1)当CE AB ⊥时,点D 与点A 重合,显然222DE AD BE =+(不必证明); (2)如图,当点D 不与点A 重合时,求证:222DE AD BE =+;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.49.如图,四边形ABCD 中,AB BC ⊥,AD AB ⊥,1AB =,2BC CD ==.求四边形ABCD 的周长和面积.50.定义: 三边长和面积都是整数的三角形称为“整数三角形” .数学学习小组的同学从 32 根等长的火柴棒 (每 根长度记为 1 个单位) 中取出若干根, 首尾依次相接组成三角形, 进行探究活动 . 小亮用 12 根火柴棒, 摆成如图所示的“整数三角形”; 小颖分别用 24 根和 30 根火柴棒摆出直角“整数三角形”;小辉受到小亮、 小颖的启发, 分别摆出三个不同的等腰“整数三角形” . (1) 请你画出小颖和小辉摆出的“整数三角形”的示意图;(2) 你能否也从中取出若干根, 按下列要求摆出“整数三角形”, 如果能, 请画出示意图;如果不能, 请说明理由 . ①摆出等边“整数三角形”;②摆出一个非特殊 (既 非直角三角形, 也非等腰三角形) “整数三角形” .勾股定理难题50道参考答案与试题解析一.选择题(共2小题)1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形【解答】解:依题意可知,1133BP BF DH==,2233CQ CG DH==,又////PB CQ DH,APB AQC AHD∴∆∆∆∽∽,A∴、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选:B.2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对【解答】解:在直角三角形ABD中,根据勾股定理,得15BD=;在直角三角形ACD中,根据勾股定理,得6CD=.当AD在三角形的内部时,15621BC=+=;当AD在三角形的外部时,1569BC=-=.则BC的长是21或9.故选:D .二.填空题(共24小题)3.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 231π+ cm .(结果保留)π【解答】解:如图所示,无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.523AB cm ππ=⨯=,3BC cm =,由勾股定理得:22229931AC AB BC cm ππ=+=+=+. 故答案为:231π+.4.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 10 cm .【解答】解:将长方体展开,连接A 、B ',13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=. 故答案为:10.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、ca b c +- l S /S l345 2 12 6 1/26810 4 24 24 1 51213 4 30 30 1 81517 6 40 60 3/2121620848962⋯ ⋯ ⋯ ⋯ ⋯若a b c m +-=,则观察上表我们可以猜想出S l =4m(用含m 的代数式表示) 【解答】解:3452m a b c =+-=+-=时,1224S l ==; 6810512134m a b c =+-=+-=+-=时,414S l ==; 815176m a b c =+-=+-=时,3624S l ==; 1216208m a b c =+-=+-=时,824S l ==; ⋯∴我们可以猜想出4S ml =. 故答案为4m.6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 7或25 秒.【解答】解:如图,作AD BC ⊥,交BC 于点D , 8BC cm =,142BD CD BC cm ∴===, 223AD AB BD ∴=-=,分两种情况:当点P 运动t 秒后有PA AC ⊥时,22222AP PD AD PC AC =+=-,2222PD AD PC AC ∴+=-,22223(4)5 2.25PD PD PD ∴+=+-∴=, 4 2.25 1.750.25BP t ∴=-==, 7t ∴=秒,当点P 运动t 秒后有PA AB ⊥时,同理可证得 2.25PD =, 4 2.25 6.250.25BP t ∴=+==, 25t ∴=秒,∴点P 运动的时间为7秒或25秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 ③ . (2)错误的原因是 . (3)本题正确的结论是 .【解答】解:2222222()()()c a b a b a b -=-+∴应有2222222()()()0c a b a b a b ---+=得到22222()[()]0a b c a b --+=,22()0a b ∴-=或222[()]0c a b -+=,即a b =或222a b c +=,∴根据等腰三角形得定义和勾股定理的逆定理,三角形为等腰三角形或直角三角形.故填③,不能确定22a b -是否为0,等腰三角形或直角三角形.8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积16=,1AE =;则正方形EFGH 的面积= 10 .【解答】解:四边形EFGH 是正方形,EH FE ∴=,90FEH ∠=︒,90AEF AFE ∠+∠=︒,90AEF DEH ∠+∠=︒,AFE DEH ∴∠=∠,在AEF ∆和DHE ∆中, A D AFE DEH EF HE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF DHE ∴∆≅∆, AF DE ∴=,正方形ABCD 的面积为16, 4AB BC CD DE ∴====, 413AF DE AD AE ∴==-=-=,在Rt AEF ∆中,2210EF AE AF + 故正方形EFGH 的面积101010=.故答案为:10.9.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树 4 米才是安全的. 【解答】解:如图,BC 即为大树折断处4m 减去小孩的高1m ,则413BC m =-=,945AB m =-=,在Rt ABC ∆中,2222534AC AB BC =-=-=米. 即小孩至少离开这棵树4米才是安全的. 故答案为:4.10.如图,长方体的底面是边长为1cm 的正方形,高为3cm .如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要73 cm .【解答】解:如图所示,从点A 开始经过4个侧面缠绕2圈到达点B ,∴展开后188AC cm cm =⨯=,3BC cm =,由勾股定理得:2273AB AC BC cm =+.故答案为:73.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm ,则A 、B 、C 、D 四个小正方形的面积之和为 144 2cm .【解答】解:如右图所示, 根据勾股定理可知,231S S S +=正方形正方形正方形, 2C D S S S +=正方形正方形正方形, 3A B S S S +=正方形正方形正方形,2112144C D A B S S S S S ∴+++===正方形正方形正方形正方形正方形.故答案是144.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ∆,则ABC ∆中BC 边上的高是322.【解答】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,ABC AEB BFC CDA AEFD S S S S S ∆∆∆∆=---正方形 11122121112222=⨯-⨯⨯-⨯⨯-⨯⨯,32=. 22112BC =+=.ABC ∴∆中BC 边上的高是3322222⨯÷=. 故答案为:322.13.如图,在ABC ∆中,90ABC ∠=︒,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S = 2 .【解答】解:ABC ∆中,90ABC ∠=︒, 222AB BC AC ∴+=, 222BC AC AB ∴=-,21BC S =、224AB S ==,236AC S ==, 132642S S S ∴=-=-=.故答案为:2.14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=, 所以21043S x y =+=, 故答案为:103. 15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 5 米.【解答】解:将圆柱表面切开展开呈长方形, 则有螺旋线长为三个长方形并排后的长方形的对角线长 圆柱高4米,底面周长1米222(13)491625x =⨯+=+= 所以,花圈长至少是5m .16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 4或25或10 .【解答】解:①以A 为直角顶点,向外作等腰直角三角形DAC ,90DAC ∠=︒,且AD AC =,224BD BA AD ∴=+=+=;②以C 为直角顶点,向外作等腰直角三角形ACD ,连接BD ,过点D 作DE BC ⊥,交BC 的延长线于E . ABC ∆是等腰直角三角形,90ACD ∠=︒, 45DCE ∴∠=︒,又DE CE ⊥,90DEC ∴∠=︒, 45CDE ∴∠=︒,222CE DE ∴=== 在Rt BAC ∆中,222222BC +=,2222(222)(2)25BD BE DE ∴=+=++=; ③以AC 为斜边,向外作等腰直角三角形ADC ,90ADC ∠=︒,AD DC =,且2AC =,2sin 45222AD DC AC ∴==︒=⨯=, 又ABC ∆、ADC ∆是等腰直角三角形, 45ACB ACD ∴∠=∠=︒, 90BCD ∴∠=︒,又在Rt ABC ∆中,222222BC =+=,2222(22)(2)10BD BC CD ∴=+=+=. 故BD 的长等于4或25或10.17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于27133+ .【解答】解: 延长BA 交QR 于点M ,连接AR ,AP .AC GC =,BC FC =,ACB GCF ∠=∠, ABC GFC ∴∆≅∆,30CGF BAC ∴∠=∠=︒,60HGQ ∴∠=︒,90HAC BAD ∠=∠=︒, 180BAC DAH ∴∠+∠=︒, 又//AD QR ,180RHA DAH ∴∠+∠=︒, 30RHA BAC ∴∠=∠=︒,60QHG ∴∠=︒,60Q QHG QGH ∴∠=∠=∠=︒, QHG ∴∆是等边三角形 .3cos304232AC AB =︒=⨯=. 则23QH HA HG AC ====.在直角HMA ∆中,3sin 602332HM AH =︒=⨯=.cos 603AM HA =︒=. 在直角AMR ∆中,4MR AD AB ===.2334723QR ∴=++=+. 21443QP QR ∴==+. 3736PR QR==+.PQR ∴∆的周长等于27133RP QP QR ++=+.故答案为:27133+.18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD =75.【解答】解:设AC x =,CD y =,由勾股定理得: 2222(5)6425x y x y ⎧++=⎨+=⎩, 消去x ,得:22(5)39y y +-=, 整理,得: 1014y =,即75y =, 故CD 的长为75. 19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是 42cm .(结果保留根号)【解答】解:将圆柱体展开,连接A 、B ,根据两点之间线段最短,224442AB cm =+=.20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =6DE =,则EB =334 .【解答】解:在Rt ABC ∆中,42AB =,45A ∠=︒,24242BC ∴=⨯= 在Rt EDC ∆中,60EDC ∠=︒,6DE =,3sin 6332CE DE EDC ∴=∠=⨯= 334BE CE BC ∴=-=-.故填空答案:334-.21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20489+或40165+或4085+ m .【解答】解:(1)当20是等腰三角形的底边时,根据面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线,即底边的一半10BD =, 根据勾股定理即可求得其腰长22100256289AB AD BD =++,此时三角形的周长是20489+;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况. 根据面积求得腰上的高是16;①当高在三角形的外部时,在RT ADC ∆中,2212AD AC CD =-=,从而可得32BD =,进一步根据勾股定理求得其底边是22221632165BC CD BD =+=+=,此时三角形的周长是40165+;②当高在三角形的内部时,根据勾股定理求得2212AD AC CD =-=,8BD AB AD =-=, 在RT CDB ∆中,22BC CD BD =+2216885+=,此时三角形的周长是4085+; 故本题答案为:20489+或40165+或4085+.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun 一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为 10.1 尺.【解答】解:设单门的宽度是x 米,根据勾股定理,得221(0.1)x x =+-, 5.05x =,则210.1x =尺.23.如图是一个长8m 、宽6m 、高5m 的仓库,在其内壁的点A (长的四等分点)处有一只壁虎、点B (宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为 85 .。
西北工业大学附属中学数学初中九年级勾股定理选择题易错题压轴难题综合练习
西北工业大学附属中学数学初中九年级勾股定理选择题易错题压轴难题综合练习一、易错易错压轴选择题精选:勾股定理选择题1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为()A.12 B.10C.8 D.62.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A.0B.1C.3D.23.一艘渔船从港口A沿北偏东60°方向航行至C处时突然发生故障,在C处等待救援.有一救援艇位于港口A正东方向20(3﹣1)海里的B处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C处救援.则救援艇到达C处所用的时间为()A.3小时B.23小时C.223小时D.232小时4.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .65.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .986.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是( )①DC '平分BDE ∠;②BC 长为()22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.A .①②③B .②④C .②③④D .③④7.如图,在Rt ABC ∆中,90, 5 ,3ACB AB cm AC cm ︒∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当∆ABP 为等腰三角形时,t 的值不可能为( )A .5B .8C .254D .2588.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ).A .1个B .2个C .3个D .4个9.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)10.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .21511.若△ABC 中,AB=AC=25,BC=4,则△ABC 的面积为( ) A .4B .8C .16D .512.已知直角三角形纸片ABC 的两直角边长分别为6,8,现将ABC 按如图所示的方式折叠,使点A 与点B 重合,则BE 的长是( )A .72B .74C .254D .15413.下列以线段a 、b 、c 的长为边的三角形中,不能构成直角三角形的是( ) A .9,41,40a b c === B .5,5,52a b c === C .::3:4:5a b c =D .11,12,13a b c ===14.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF 的长是( )A .14B .13C .143D .142 15.有一个直角三角形的两边长分别为3和4,则第三边的长为( ) A .5B .7C .5D .5或716.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )A .12cmB .14cmC .20cmD .24cm17.如图,已知AB AC =,则数轴上C 点所表示的数为( )A .3-B .5-C .13-D .15-18.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .619.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( ) A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =20.在四边形ABCD 中,AB ∥CD ,∠A =90°,AB =1,BD ⊥BC ,BD =BC ,CF 平分∠BCD 交BD 、AD 于E 、F ,则EDC 的面积为( )A .2 2B .2 2C .22D 21【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题 1.B 解析:B 【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F D F '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'D F B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+, 解得:3x =,835CF CD FD ∴=-=-=,1102AFC S AF BC ∴=⋅⋅=△.故选:B . 【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.2.D解析:D 【分析】先确定黑、白两个甲壳虫各爬行完第2017条棱分别停止的点,再根据停止点确定它们之间的距离. 【详解】根据题意可知黑甲壳虫爬行一圈的路线是AA 1→A 1D 1→D 1C 1→C 1C→CB→BA ,回到起点. 乙甲壳虫爬行一圈的路线是AB→BB 1→B 1C 1→C 1D 1→D 1A 1→A 1A .因此可以判断两个甲壳虫爬行一圈都是6条棱,因为2017÷6=336…1,所以黑、白两个甲壳虫各爬行完第2017条棱分别停止的点都是A1,B.所以它们之间的距离是2,故选D.【点睛】此题考查了立体图形的有关知识.注意找到规律:黑、白甲壳虫每爬行6条边后又重复原来的路径是解此题的关键.3.C解析:C【解析】【分析】过点C作CD垂直AB延长线于D,根据题意得∠CDB=45°,∠CAD=30°,设BD=x则CD=BD=x,BC=2x,由∠CAD=30°可知tan∠CAD=3CDAD=即3320(31)x=-+,解方程求出BD的长,从而可知BC的长,进而求出救援艇到达C处所用的时间即可.【详解】如图:过点C作CD垂直AB延长线于D,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x,救援艇到达C处所用的时间为t,∵tan∠CAD=3CDAD=,AD=AB+BD,∴320(31)x=-+,得x=20(海里),∴BC=2BD=202(海里),∴t=20230=223(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键.4.D解析:D 【解析】 【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积.【详解】 解:在中 ∵,,∴,∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D.【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积.5.C解析:C 【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+……2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴== 79x y ∴+=故选C 【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.6.B解析:B 【分析】根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系. 【详解】解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形, ∴90BDE ∠<︒,45C DE ∠'=︒,∴12C DE BDE ∠'≠∠∴DC '不能平分BDE ∠①错误;45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,2CD DC a ='=,2AC a a ∴=+,2(22)BC AC a ==+,∴②正确;2ABC DBC ∠=∠, 22.5DBC ∴∠=︒, 45DCB ∠=︒, 112.5BDC ∴∠=︒,BCD ∴∆不是等腰三角形,故③错误;CED ∴∆的周长()222CE DE CD a a a a BC =++=++=+=,故④正确. 故选:B . 【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.7.C解析:C 【分析】根据ABP △为等腰三角形,分三种情况进行讨论,分别求出BP 的长度,从而求出t 值即可. 【详解】在Rt ABC 中,222225316BC AB AC =-=-=,4BC cm ∴=,①如图,当AB BP =时, 5 ,5BP cm t ==;②如图,当AB AP =时, ∵AC BP ⊥,∴28 BP BC cm ==,8t =;③如图,当BP AP =时,设AP BP xcm ==,则4,3( )CP x cm AC cm =-=,∵在Rt ACP 中,222AP AC CP =+,∴()22234x x =+-,解得:258x =, ∴258t =, 综上所述,当ABP △为等腰三角形时,5t =或8t =或258t =. 故选:C . 【点睛】本题考查了勾股定理,等腰三角形的性质,注意分类讨论.8.B解析:B 【分析】在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,分三种情况分析:AP BP =、AB BP =、AB AP =;根据等腰三角形的性质分别对三种情况逐个分析,即可得到答案. 【详解】根据题意,使得ABP △成为等腰三角形,分AP BP =、AB BP =、AB AP =三种情况分析:当AP BP =时,点P 位置再分两种情况分析: 第1种:点P 在点O 右侧,AO BC ⊥于点O∴22172AO AB BC ⎛⎫=-= ⎪⎝⎭设OP x = ∴2227AP AO OP x =+=+∵4AB AC ==∴132BO BC == ∴3BP BO OP x =+=+∴27=3x x ++ ∴2x =-,不符合题意;第2种:点P 在点O 左侧,AO BC ⊥于点O设OP x = ∴2227AP AO OP x +=+∴3BP BO OP x =-=- 273x x +-∴2x =,点P 存在,即1BP =;当AB BP =时,4BP AB ==,点P 存在;当AB AP =时,4AP AB ==,即点P 和点C 重合,不符合题意; ∴符合题意的点P 共有:2个 故选:B . 【点睛】本题考查了等腰三角形、勾股定理、一元一次方程的知识;解题的关键是熟练掌握等腰三角形、勾股定理、一元一次方程的性质,从而完成求解.9.B解析:B 【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=3A(-2,-3,故选B.10.C解析:C【分析】设EC=x ,DC=y ,则直角△BCE 中,x 2+4y 2=BE 2=16,在直角△ADC 中,4x 2+y 2=AD 2=49,由方程组可求得x 2+y 2,在直角△ABC 中,2244AB x y 【详解】解:设EC=x ,DC=y ,∠ACB=90°,∵D 、E 分别是BC 、AC 的中点,∴AC=2EC=2x ,BC=2DC=2y ,∴在直角△BCE 中,CE 2+BC 2=x 2+4y 2=BE 2=16在直角△ADC 中,AC 2+CD 2=4x 2+y 2=AD 2=49,∴2255164965x y ,即2213x y +=,在直角△ABC 中,2244413213ABx y . 故选:C .【点睛】本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE 和直角△ADC 求得22x y +的值是解题的关键.11.B解析:B【分析】作AD ⊥BC ,则D 为BC 的中点,即BD=DC=2,根据勾股定理可以求得AD ,则根据S=12×BC×AD 可以求得△ABC 的面积. 【详解】解:作AD ⊥BC ,则D 为BC 的中点,则BD=DC=2,∵AB=2522AB BD -,∴△ABC 的面积为S=12×BC×AD=12×4×4=8, 故选:B .本题考查了勾股定理的运用,三角形面积的计算,本题中正确的运用勾股定理求AD 是解题的关键.12.C解析:C【分析】根据图形翻折变换的性质可知,AE=BE ,设AE=x ,则BE=x ,CE=8-x ,再在Rt △BCE 中利用勾股定理即可求出BE 的长度.【详解】解:∵△ADE 翻折后与△BDE 完全重合,∴AE =BE ,设AE =x ,则BE =x ,CE =8﹣x ,在Rt △BCE 中,BE 2=BC 2+CE 2,即x 2=62+(8﹣x )2,解得,x =254, ∴BE =254. 故选:C .【点睛】本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.13.D解析:D【分析】根据直角三角形的判定,符合a 2+b 2=c 2即可;反之不符合的不能构成直角三角形.【详解】解:A 、因为92+402=412,故能构成直角三角形;B 、因为52+52=(2,故能构成直角三角形;C 、因为()()()222345x x x +=,故能构成直角三角形;D 、因为112+122≠152,故不能构成直角三角形;故选:D .【点睛】本题考查的是勾股定理的逆定理,当三角形中三边满足222a b c +=关系时,则三角形为直角三角形.14.D解析:D24和10为两条直角边长时,求出小正方形的边长14,即可利用勾股定理得出EF 的长.【详解】解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24-10=14,∴EF=221414142+=.故选D .【点睛】本题考查了勾股定理、正方形的性质;熟练掌握勾股定理是解决问题的关键.15.D解析:D【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边=2234+=5,当4是斜边时,另一条直角边=22473-=,故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 16.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:12=cm∴则该圆柱底面周长为24cm.故选:D.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.17.D解析:D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,AB===∴AC AB∵点A表示的数是1∴点C表示的数是1故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.18.C解析:C【详解】如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.考点:勾股定理的证明.19.C解析:C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A 、由222b a c =-得a 2=b 2+c 2,符合勾股定理的逆定理,能够判定△ABC 为直角三角形,不符合题意;B 、由C A B ∠=∠-∠得∠C +∠B=∠A ,此时∠A 是直角,能够判定△ABC 是直角三角形,不符合题意;C 、∠A :∠B :∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC 不是直角三角形,故此选项符合题意;D 、a :b :c=5:12:13,此时c 2=b 2+ a 2,符合勾股定理的逆定理,△ABC 是直角三角形,不符合题意;故选:C .【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.20.C解析:C【分析】先过点E 作EG ⊥CD 于G ,再判定△BCD 、△ABD 都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG 的长,进而得到△EDC 的面积.【详解】解:过点E 作EG ⊥CD 于G ,又∵CF 平分∠BCD ,BD ⊥BC ,∴BE =GE ,在Rt △BCE 和Rt △GCE 中CE CE BE GE =⎧⎨=⎩, ∴Rt △BCE ≌Rt △GCE ,∴BC =GC ,∵BD ⊥BC ,BD =BC ,∴△BCD 是等腰直角三角形,∴∠BDC =45°,∵AB//CD ,∴∠ABD =45°,又∵∠A =90°,AB =1,∴等腰直角三角形ABD 中,BDBC ,∴Rt △BDC 中,CD 2,∴DG =DC ﹣GC =2∵△DEG 是等腰直角三角形,∴EG =DG =2∴△EDC的面积=12×DC×EG=12×2×(2﹣2)=2﹣2.故选:C.【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质与判定,全等三角形的判定与性质,以及勾股定理等知识,解决问题的关键是作辅助线,构造直角三角形EDG进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理复习1、直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A )22d S d ++ (B )2d S d -- (C )222d S d ++ (D )22d S d ++2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
3.△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则222c b a =+,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22b a +与2c 的关系,并证明你的结论.4.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A 市受这次台风影响,那么受台风影响的时间有多长?课堂练习:1、将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm2 如图,已知:,,于P. 求证:.3 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
4.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.5、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度。
(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。
因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。
解析:作AB⊥MN,垂足为B。
在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160,∴ AB=AP=80。
(在直角三角形中,30°所对的直角边等于斜边的一半)∵点 A到直线MN的距离小于100m,∴这所中学会受到噪声的影响。
如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m),由勾股定理得: BC2=1002-802=3600,∴ BC=60。
同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m),∴CD=120(m)。
拖拉机行驶的速度为 : 18km/h=5m/st=120m÷5m/s=24s。
答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒。
6、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,不妨先连接AD.解:连接AD.因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线,所以AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).所以AE=FC=5.同理:AF=BE=12.在Rt△AEF中,根据勾股定理得:,所以EF=13。
总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识。
通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解。
7 如图,在等腰△ABC中,∠ACB=90°,D、E为斜边AB上的点,且∠DCE=45°。
求证:DE2=AD2+BE2。
分析:利用全等三角形的旋转变换,进行边角的全等变换,将边转移到一个三角形中,并构造直角三角形。
8 如图,长方形ABCD 中,AB=8,BC=4,将长方形沿AC 折叠,点D 落在点E 处,则重叠部分△AFC 的面积是 。
设EF=x ,那么AF=CF=8-x ,AE^2+EF^2=AF^2,所以4^2+x^2=(8-x)^2,解得x=3,S=4*8/2-3*4/2=10答案:109. 一只蚂蚁在一块长方形的一个顶点A 处,一只苍蝇在这个长方形上和蜘蛛相对的顶点C1处,如图,已知长方形长6cm ,宽5 cm ,高3 cm 。
蜘蛛因急于捉到苍蝇,沿着长方形的表面向上爬,它要从A 点爬到C1点,有很多路线,它们有长有短,蜘蛛究竟应该沿着怎样的路线爬上去,所走的距离最短?你能帮蜘蛛求出最短距离吗?10. 已知△ABC 的三边a 、b 、c ,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形?你能说明理由吗?答案: 是直角三角形。
(平方差公式的灵活运用)ab b a b a 2)(222-+=+ =2216960217c ==⨯-。
家庭作业:一、选择题1.下列说法正确的有( )①△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2. ②△ABC 中,a 2+b 2≠c 2,则△ABC 不是直角三角形. ③若△ABC 中,a 2-b 2=c 2,则△ABC 是直角三角形. ④若△ABC 是直角三角形,则(a+b)(a-b)=c 2. A.4个 B.3个C.2个D.1个 C BD2.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )A.24cm2B.36cm2C.48cm2D.60cm23.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距( )A.35海里B.40海里C.45海里D.50海里4.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC'交AD于E,AD=8,AB=4,则DE的长为( )A.3B.4C.5D.6二、填空题(共4小题,每小题4分,共16分.把答案填在题后的横线上.)5.如图,学校有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条"路".他们仅仅少走了_________步路(假设2步为1米),却踩伤了青草.6.如图,圆柱形玻璃容器高20cm,底面圆的周长为48cm,在外侧距下底1cm的点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.7.如果三条线段的长度分别为8cm、xcm、18cm,这三条线段恰好能组成一个直角三角形,那么以x为边长的正方形的面积为__________.8.已知△ABC的三边a、b、c满足等式|a-b-1|+|2a-b-14|=-|c-5|,则△ABC的面积为________.三、解答题(共6小题,1、2题各10分,3-6题各12分,共68分.解答应写出文字说明,证明过程或演算步骤.)9.如图是一块地,已知AB=8m,BC=6m,∠B=90°,AD=26m,CD=24m,求这块地的面积.10.如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?11.如图,铁路上A、B两点相距25km, C、D为两村庄,DA⊥AB于A,CB⊥AB于B,若DA=10km,CB=15km,现要在AB上建一个周转站E,使得C、D两村到E站的距离相等,则周转站E应建在距A点多远处?12.如图,折叠矩形纸片ABCD,先折出折痕(对角线)AC,再折叠使AB边与AC重合,得折痕AE,若AB=3,AD=4,求BE的长.13.如图,A、B两个小镇在河流CD的同侧,到河流的距离分别为AC=10km,BD=30km,且CD=30km,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每km3万元,请你在河流CD上选择建水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?14.“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直线行驶,某一时刻刚好行驶到车速检测仪所在位置A处正前方30米的C处,过了2秒后,测得小汽车所在位置B处与车速检测仪间距离为50米,这辆小汽车超速了吗?附加题(10分,不计入总分)如图,P是矩形ABCD内一点,PA=1,PB=5,PC=7,则PD=_________.一、1.C 2.A 3.D 4.C二、5.4 6.30cm 7.260cm或388cm 8.30三、9.解:连接AC.……1分在△ABC中,∵AB=8m,BC=6m,∠B=90°,∴由勾股定理,AC2=AB2+BC2=82+62=100,AC=10. ……3分在△ACD中,AC2+CD2=102+242=676,AD2=676,∴AC2+CD2=AD2. ∴△ACD是直角三角形.……6分∴……8分答:求这块地的面积是96m2.……10分10.解:由勾股定理,82+62=102,……3分102+242=262 .……6分∴30-26=4.……8分答:细木棒露在盒外面的最短长度是4cm.……10分11.解:设E点建在距A点xkm处.……1分如图,则AE长xkm,BE长(25-x)km.……2分∵DA⊥AB,∴△DAE是直角三角形.由勾股定理,DE2=AD2+AE2=102+x2.……5分同理,在Rt△CBE中,CB2+BE2=152+(25-x)2.……7分依题意,102+x2=152+(25-x)2,…… 9分解得,x=15. ……11分答:E应建在距A15km处.……12分12.解:在AC上截取AF=AB,连接EF.……1分依题意,AB=AF, BE=EF, ∠B=∠AFE=90°.……3分在Rt△ABC中,AB=3,BC=AD=4,∴AC2=32+42=25,AC=5. ∴CF=AC-AF=5-3=2. ……5分设BE长为x,则EF=x,CE=4-x. ……7分在Rt△CFE中,CE2=EF2+CF2,即(4-x)2=x2+22.……9分解得,x=. ……11分答:BE的长为.……12分13.解:作点A关于CD的对称点E,连接EB,交CD于M. 则AC=CE=10公里.……2分过点A作AF⊥BD,垂足为F.过点B作CD的平行线交EA延长线于G,得矩形CDBG.……4分则CG=BD=30公里,BG=CD=30公里,EG=CG+CE=30+10=40里.……7分在Rt△BGE中,由勾股定理,BE2=BG2+EG2=302+402,BE=50km,……9分∴3×50=150(万元).……11分答:铺设水管的总费用最少为150万元. ……12分14.解:依题意,在Rt△ACB中,AC=30米,AB=50米,由勾股定理,BC2=AB2-AC2=502-302,BC=40米.……3分∴小汽车由C到B的速度为40÷2=20米/秒. ……5分∵20米/秒=72千米/小时,……8分72>70,……10分因此,这辆小汽车超速了. ……12分附加题解:过点P作MN∥AD交AB于点M,交CD于点N,则AM=DN,BM=CN.……2分∵∠PMA=∠PMB=90°,∴PA2-PM2=AM2,PB2-PM2=BM2.……4分∴PA2-PB2=AM2-BM2.……5分同理,PD2-PC2=DN2-CN2.……7分∴PA2-PB2=PD2-PC2.又PA=1,PB=5,PC=7,……8分∴PD2=PA2-PB2+PC2=12-52+72,PD=5.……10分初二数学实数单元复习导学案目标认知一、知识网络:二、重难点聚焦:教学重点:算术平方根和平方根的概念及其求法;教学难点:平方根和实数的概念.三、知识要点回顾:4、实数的三个非负性:|a|≥0,a2≥0,≥0(a≥0)5、实数的运算:⑴加减法:类比合并同类项;⑵乘法:=(a≥0,b≥0);⑶除法:(a≥0,b>0)6、算术平方根与平方根的区别与联系.区别: ①定义不同;②个数不同;③表示方法不同;④取值范围不同.联系: ①具有包含关系;②存在条件相同;③ 0的算术平方根与平方根都是0.提示1. 正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;零的平方根和算术平方根都是零;负数没有平方根.2. 实数都有立方根,且一个数的立方根只有一个,它的符号与被开方数的符号相同.3. 所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.4. 无理数分成三类:①开方开不尽的数,如,等;②有特殊意义的数,如π;③有特定结构的…5. 有理数和无理数统称实数,实数和数轴上的点一一对应.6. 实数的运算:实数运算的基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算.正确地确定运算结果的符号和灵活运用各种运算律来进行运算是掌握好实数运算的关键.规律方法整合1.有关概念的识别1下面几个数:0.23…,,3π,,,其中,无理数的个数有()A、1B、2C、3D、4…,3π,是无理数故选C【变式1】下列说法中正确的是()A、的平方根是±3B、1的立方根是±1C、=±1D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,∵=9,9的平方根是±3,∴A正确.∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A、1B、1.4C、D【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知|AO|=,∴A表示数为,故选C.【变式3】例:已知那么a+b-c的值为___________【答案】初中阶段的三个非负数:;a2≥0;≥0 a=2,b=-5,c=-1; a+b-c=-22.计算类型题2. 设,则下列结论正确的是()A. B.C. D.解析:(估算)因为,所以选B【变式1】1)1.25的算术平方根是___________;平方根是___________.2) -27立方根是__________. 3)___________,___________,___________.【答案】1);. 2)-3. 3),,【变式2】求下列各式中的(1)(2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4【变式3】化简:【答案】=+-=3.数形结合3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______解析:在数轴上找到A、B两点,【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().A.-1 B.1-C.2-D.-2【答案】选C4.易错题4.判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是±15.(3)当x=0或2时,(4)是分数解析:(1)错在对算术平方根的理解有误,算术平方根是非负数.故(2)表示225的算术平方根,即=15.实际上,本题是求15的平方根,故的平方根是.(3)注意到,当x=0时,=,显然此式无意义,发生错误的原因是忽视了“负数没有平方根”,故x≠0,所以当x=2时,x=0.(4)错在对实数的概念理解不清. 形如分数,但不是分数,它是无理数.学习成果测评:A组(基础)一、细心选一选1.下列各式中正确的是()A. B. C. D.2. 的平方根是( )A.4 B. C. 2 D.3. 下列说法中①无限小数都是无理数②无理数都是无限小数③-2是4的平方根④带根号的数都是无理数。