2018高考一轮复习 立体几何

合集下载

(课标通用)2018年高考数学一轮复习 第八章 立体几何大题冲关 理

(课标通用)2018年高考数学一轮复习 第八章 立体几何大题冲关 理

第八章立体几何高考中立体几何问题的热点题型1.立体几何是高考的重要内容,每年基本上都是一个解答题,两个选择题或填空题.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性的存在问题等;2.思想方法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一空间点、线、面的位置关系以空间几何体(主要是柱、锥或简单组合体)为载体,通过空间平行、垂直关系的论证命制试题,主要考查公理4及线面平行与垂直的判定定理与性质定理,常与平面图形的有关性质及体积的计算等知识交汇考查,考查学生的空间想象能力和推理论证能力以及转化与化归思想,一般以解答题的形式出现,难度中等.[典题1] 如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E-ABC的体积.(1)[证明]在三棱柱ABC-A1B1C1中,BB1⊥底面ABC,AB⊂平面ABC,所以BB1⊥AB.又AB⊥BC,BC∩BB1=B,所以AB⊥平面B1BCC1.又AB⊂平面ABE,所以平面ABE⊥平面B1BCC1.(2)[证明]证法一:如图①,取AB中点G,连接EG,FG.因为E,F分别是A1C1,BC的中点,所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1. 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .又EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .①②证法二:如图②,取AC 的中点H ,连接C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点, 所以HF ∥AB .又E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE .又C 1H ∩HF =H ,AE ∩AB =A , 所以平面ABE ∥平面C 1HF . 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)[解] 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3.所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.1.证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.2.计算几何体的体积时,能直接用公式时,关键是确定几何体的高,若不能直接用公式时,注意进行体积的转化.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需要说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论; (3)证明:直线DF ⊥平面BEG . (1)解:点F ,G ,H 的位置如图所示.(2)解:平面BEG ∥平面ACH .证明如下: 因为ABCD -EFGH 为正方体, 所以BC ∥FG ,BC =FG .又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH,与EG交于点O,连接BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG,同理DF⊥BG,又EG∩BG=G,所以DF⊥平面BEG.热点二立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种考查形式:(1)根据条件作出判断,再进一步论证.(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.[典题2] [2017·山东济南调研]如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BDBC 1的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,AA 1⊂平面AA 1C 1C . ∴AA 1⊥平面ABC .(2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,∴AB ⊥AC .∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz.A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0,∴取向量n 1=(0,4,3).由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0,∴取向量n 2=(3,4,0). ∴cos θ=n 1·n 2|n 1||n 2|=165×5=1625.由题图可判断二面角A 1-BC 1-B 1为锐角, 故二面角A 1-BC 1-B 1的余弦值为1625.(3)[解] 假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD →=λBC 1→,∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ).又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 解得λ=925,∵925∈[0,1], ∴在线段BC 1上存在点D ,使得AD ⊥A 1B , 此时BD BC 1=925.1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.热点三 空间向量在立体几何中的应用在高考中主要考查通过建立恰当的空间直角坐标系,利用空间向量的坐标运算证明空间中的线、面的平行与垂直关系,计算空间角(特别是二面角),常与空间几何体的结构特征,空间线、面位置关系的判定定理与性质定理等知识综合,以解答题形式出现,难度中等.常见的命题角度有:[考查角度一] 计算线线角、线面角[典题3] 如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.[解] 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)由题意知,AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量, AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m|AD →||m |=33, 所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2), 设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0), 则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP→|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3], 则cos 2〈CQ →,DP →〉=2t25t 2-10t +9=29⎝ ⎛⎭⎪⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值. 又因为BP =12+22=5,所以BQ =25BP =255.解决与线线角、线面角有关的问题,关键是利用垂直关系建立空间直角坐标系,运用向量的坐标运算求解.[考查角度二] 求二面角[典题4] [2016·浙江卷]如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B -AD -F 的平面角的余弦值.(1)[证明] 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,平面BCFE ∩平面ABC =BC ,且AC ⊥BC , 所以AC ⊥平面BCK ,因此BF ⊥AC . 又EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点, 则BF ⊥CK ,又AC ∩CK =C , 所以BF ⊥平面ACFD .(2)[解] 解法一:过点F 作FQ ⊥AK 于Q ,连接BQ .因为BF ⊥平面ACK ,所以BF ⊥AK ,则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B -AD -F 的平面角. 在Rt △ACK 中,AC =3,CK =2,得AK =13,FQ =31313. 在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以二面角B -AD -F 的平面角的余弦值为34.解法二:如图,延长AD ,BE ,CF相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x 轴、z 轴的正方向,建立空间直角坐标系O -xyz .由题意,得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0) ,E ⎝ ⎛⎭⎪⎫12,0,32,F ⎝ ⎛⎭⎪⎫-12,0,32. 因此,AC →=(0,3,0),AK →=(1,3,3), AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧ AB →·n =0,AK →·n =0,得⎩⎨⎧ 2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是cos 〈m ,n 〉=m·n |m||n |=34. 所以二面角B -AD -F 的平面角的余弦值为34.1.用向量法解决立体几何问题,可使复杂问题简单化,使推理论证变为计算求解,降低思维难度,使立体几何问题“公式”化,训练的关键在于“归类、寻法”.2.求二面角的余弦值,转化为求两个半平面所在平面的法向量,通过两个平面的法向量的夹角求得二面角的大小,但要注意结合实际图形判断所求角的大小.。

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

[知识重温] 一、必记 2●个知识点 1.空间向量及其有关概念 语言描述 共线向量(平 表示空间向量的有向线段所在的直线互相① __________ 行向量) 平行或重合 共面向量 平行于②同一平面 ________的向量 对空间任意两个向量 a,b(b≠0),a∥b⇔存在 λ 共线向量定理 a=λb ∈R,使③________ 若两个向量 a,b 不共线,则向量 p 与向量 a,b 共面向量定理 共面⇔存在唯一的有序实数对(x,y),使 p=④ x a+yb ________
[小题热身] 1.在下列命题中: ①若向量 a,b 共线,则向量 a,b 所在的直线平行; ②若向量 a,b 所在的直线为异面直线,则向量 a,b 一定不 共面; ③若三个向量 a,b,c 两两共面,则向量 a,b,c 共面; ④已知空间的三个向量 a,b,c,则对于空间的任意一个向 量 p 总存在实数 x,y,z 使得 p=xa+yb+zc. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3
二、必明 3●个易误点 1. 共线向量定理中 a∥b⇔存在 λ∈R, 使 a=λb 易忽视 b≠0. 2.共面向量定理中,注意有序实数对(x,y)是唯一存在的. 3.一个平面的法向量有无数个,但要注意它们是共线向量, 不要误为是共面向量.
2.数量积及坐标运算 (1)两个向量的数量积: (ⅰ)a· b=|a||b|cos〈a,b〉 ; (ⅱ)a⊥b=⑥________( a· b=0 a,b 为非零向量); (ⅲ)|a|2=a2,|a|= x2+y2+z2.
(2)向量的坐标运算: a=(a1,a2,a3),b=(b1,b2,b3) (a1+b1,a2+b2,a3+b3) 向量和 a+b=⑦________________________ 向量差 a-b=⑧________________________ (a1-b1,a2-b2,a3-b3) 数量积 a· b=⑨________________________ a1b1+a2b2+a3b3 a________0) 1=λb1,a2=λb2,a3=λb a1b1+a2b2+a3b3=0 垂直 a⊥b⇔⑪__________________ a1b1+a2b2+a3b3 夹角公式 cos〈a,b〉=⑫________________________ 2 2 2 2 2 a2 1+a2+a3 b1+b2+b3

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.7.2 精品

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.7.2 精品

【解析】以D为原点,DA,DC,DD1所在直线为坐标轴建 立空间直角坐标系,设AB=1, 则D(0,0,0),
N(0,1,
1 2
),M(0,
1 2
,
0),A1
1,
0,1,
所以DN
(0,1,
1 2
),MA1
(1,
1 2
,1),
所以DN
MA1
0 1 1(
1 ) 2
1 1 2
0,
所以 DN M所A1以,A1M与DN所成的角的大小是90°. 答案:90°
则 A(-1,0,2),B1 1,0,0,B(1,0,2),C1(0,3,0),
所以 AB1=(2,0,- 2),BC1=(-1, 3,- 2), 因为 AB1 BC1=(2,0,- 2) (-1, 3,- 2)=0, 所以 AB1 即BC异1,面直线AB1和BC1所成角为直角,则其 正弦值为1.
b.如图②③,n1,n2分别是二面角α-l-β的两个半平面 α,β的法向量,则二面角的大小θ满足cosθ=_c_o_s_<n__1,_n_2_> 或_-_c_o_s_<_n_1_,_n_2>_.
【特别提醒】 1.利用 | AB |2 =AB AB 可以求空间中有向线段的长度. 2.点面距离的求法
【变式训练】将正方形ABCD沿对角线AC折起,当以
A,B,C,D四点为顶点的三棱锥体积最大时,异面直线AD
与BC所成的角为 ( )
A.
B.
C.
D.
6
4
3
2
【解析】选C.不妨以△ABC为底面,则由题意当以 A,B,C,D为顶点的三棱锥体积最大,即点D到底面△ABC 的距离最大时,平面ADC⊥平面ABC,取AC的中点O,连接 BO,DO,则易知DO,BO,CO两两互相垂直,所以分别以 OD,OB,OC 所在直线为z,x,y轴建立空间直角坐标系,令 BO=DO=CO=1,则有O(0,0,0),A(0,-1,0),D(0,0,1),

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.4

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.4
行”)
因为②_l_∥__α__, __l⊂___β___,α__∩__β_=__b_,
所以 l∥b
第九页,编辑于星期六:二十二点 二十三分。
2.平面与平面平行的判定定理和性质定理
文字语言图形语言源自符号语言因为③_a_∥__β__,
判 一个平面内的两条相交直线 定 与另一个平面平行,则这两 定 个平面平行(简记为“线面
第十页,编辑于星期六:二十二点 二十三分。
3.平行关系中的两个重要结论 (1)垂直于同一条直线的两个平面平行,即若 a⊥α,a⊥β, 则 α∥β. (2)平行于同一平面的两个平面平行,即若 α∥β,β∥γ,则 α ∥γ.
第十一页,编辑于星期六:二十二点 二十三分。
二、必明 3●个易误点 1.直线与平面平行的判定中易忽视“线在面内”这一关键 条件. 2.面面平行的判定中易忽视“面内两条相交线”这一条件. 3.如果一个平面内有无数条直线与另一个平面平行,易误 认为这两个平面平行,实质上也可以相交.
第十九页,编辑于星期六:二十二点 二十三分。
考向二 平面与平面平行的判定和性质
[互动讲练型] [例 2] 如图,四棱柱 ABCD-A1B1C1D1 的底面 ABCD 是正 方形,O 是底面中心,A1O⊥底面 ABCD,AB=AA1= 2.
(1)证明:平面 A1BD∥平面 CD1B1; (2)求三棱柱 ABD-A1B1D1 的体积.
第二十六页,编辑于星期六:二十二点 二十三 分。
考向三 平行关系的综合应用[互动讲练型] [例 3] 如图,ABCD 与 ADEF 为平行四边形,M,N,G 分 别是 AB,AD,EF 的中点.
(1)求证:BE∥平面 DMF; (2)求证:平面 BDE∥平面 MNG.
第二十七页,编辑于星期六:二十二点 二十三 分。

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析

2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。

2018年人教版高三数学一轮复习课件--立体几何PPT课件

2018年人教版高三数学一轮复习课件--立体几何PPT课件

设矛盾.
[答案] D
解决此类题目要准确理解几何体的定义,把握几何体
的结构特征,并会通过反例对概念进行辨析.举反例时可
利用最熟悉的空间几何体如三棱柱、四棱柱、正方体、三 棱锥、三棱台等,也可利用它们的组合体去判断.
1.(2013· 天津质检)如果四棱锥的四条侧棱都相等,就称
它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命 题中,假命题是 A.等腰四棱锥的腰与底面所成的角都相等 B.等腰四棱锥的侧面与底面所成的二面角都相等或 ( )
目 录
立体几何
第一节 空间几何体的结构特征及三视图和直观图
第二节 空间几何体的表面积和体积
第三节 空间点、直线、平面间的位置关系 第四节 直线、平面平行的判定及性质 第五节 直线、平面垂直的判定与性质 第六节 空间向量及其运算和空间位置关系
第七节 空间向量与空间角
立体几何
[知识能否忆起] 一、多面体的结构特征 多面体 结构特征 有两个面 互相平行 ,其余各面都是四边形,并 棱柱 平行且相等 且每相邻两个面的交线都 ___________ 有一个面是 多边形 ,而其余各面都是有一个 公共 顶点 棱锥 ____ 的三角形 底面 截面 底面 棱锥被平行于 的平面所截, 和 棱台 之间的部分
标轴 平行于y轴的线段长度在直观图中
. 不变
变为原来的一半
五、三视图 几何体的三视图包括 正视图 、 侧视图 、俯视图 ,
分别是从几何体的 正前方 、正左方 、 正上方 观察几何
体画出的轮廓线.
[小题能否全取] 1.(教材习题改编)以下关于几何体的三视图的论述中,正
确的是
A.球的三视图总是三个全等的圆 B.正方体的三视图总是三个全等的正方形 C.水平放置的正四面体的三视图都是正三角形 D.水平放置的圆台的俯视图是一个圆

2018高考一轮复习高中数学立体几何知识点汇编

2018高考一轮复习高中数学立体几何知识点汇编

高中课程复习专题——数学立体几何一 空间几何体 ㈠ 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。

围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。

2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。

其中,这条直线称为旋转体的轴。

㈡ 几种空间几何体的结构特征 1 棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1.2 棱柱的分类1.3 棱柱的性质⑴ 侧棱都相等,侧面是平行四边形;⑵ 两个底面与平行于底面的截面是全等的多边形; ⑶ 过不相邻的两条侧棱的截面是平行四边形; ⑷ 直棱柱的侧棱长与高相等,侧面的对角面是矩形。

1.4 长方体的性质⑴ 长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC 12= AB 2+ AC 2+ AA 12⑵ 长方体的一条对角线AC 1与过定点A 的三条棱所成 的角分别是α、β、γ,那么:cos 2α + cos 2β + cos 2γ = 1 sin 2α + sin 2β + sin 2γ = 2⑶ 长方体的一条对角线AC 1与过定点A 的相邻三个面所组成的角分别为α、β、γ,则:cos 2α + cos 2β + cos 2γ = 2 sin 2α + sin 2β + sin 2γ = 11.5 棱柱的侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱为邻边的矩形。

图1-1 棱柱图1-2 长方体图1-1 棱柱1.6 棱柱的面积和体积公式S 直棱柱侧面 = c ·h (c 为底面周长,h 为棱柱的高) S 直棱柱全 = c ·h+ 2S 底 V 棱柱 = S 底 ·h 2 圆柱的结构特征2-1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。

江苏2018高三数学一轮复习 立体几何热点问题

江苏2018高三数学一轮复习     立体几何热点问题

高考导航立体几何是研究空间几何体的基础和必备内容,也是历年高考命题的热点.其中有两个考查热点:一是空间几何体的表面积、体积的求解,试题难度不大;二是空间平行与垂直关系的证明与探索性问题,难度中等.热点一求解空间几何体的表面积和体积空间几何体的表面积和体积多以常见几何体或与球的接、切组合体考查,主要考查空间想象能力、逻辑推理能力和计算能力.求解几何体的表面积时,要考虑全面;求解棱锥的体积时,等体积转化是常用的思想方法,转化原则是其高易求,底面放在已知几何体的某一面上.求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以便于求解.例1(1)(2017·盐城模拟)如图,正四棱锥P ABCD的底面一边AB长为2 3 cm,侧面积为8 3 cm2,则它的体积为________cm3.(2)(2017·苏、锡、常、镇四市调研)如图,正三棱柱ABCA1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥AA1EF的体积是________.解析(1)设正四棱锥P ABCD的侧面上的斜高为h′,又底面一边AB长为2 3 cm,则侧面积为4×12×23h′=83(cm2),解得h′=2(cm),则它的高h=22-(3)2=1,体积为13×(23)2×1=4(cm 3). (2)由正三棱柱的底面边长为4得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则1A A E F V -三棱锥=1F A AE V -三棱锥=131S A AE ∆×23=13×12×6×4×23=8 3.答案 (1)4 (2)8 3探究提高 (1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.训练1 (1)(2017·扬州中学模拟)在正三棱锥P ABC 中,M ,N 分别是PB ,PC 的中点,若截面AMN ⊥平面PBC ,则此棱锥中侧面积与底面积的比为________.第(1)题图 第(2)题图 (2)如图,正方体ABCDA 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥ADED 1的体积为________.解析 (1)取BC 的中点D ,连接AD ,PD ,且PD 与MN 的交点为E .因为AM =AN ,E 为MN 的中点,所以AE ⊥MN ,又截面AMN ⊥平面PBC ,所以AE ⊥平面PBC ,则AE ⊥PD ,又E 点是PD 的中点,所以P A =AD .设正三棱锥P ABC 的底面边长为a ,则侧棱长为32a ,斜高为22a ,则此棱锥中侧面积与底面积的比为3×12a ×22a 34a2=61. (2)1A DED V -=1E ADD V -=13×1S ADD ∆×CD =13×12×1=16.答案 (1)6∶1 (2)16热点二 空间平行关系和垂直关系的证明(规范解答)直线与平面的位置关系是立体几何的核心内容,高考始终把直线与平面的平行、垂直关系作为考查的重点,以多面体为载体的线面位置关系的论证是历年必考内容,其中既有单独考查直线和平面的位置关系的试题,也有以简单几何体体积的计算为载体考查直线和平面的位置关系的试题.从内容上看,主要考查对定义、定理的理解及符号语言、图形语言、文字语言之间的相互转换;从能力上来看,主要考查考生的空间想象能力和逻辑思维能力.例2(满分12分)(2015·山东卷)如图,三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .满分解答 (1)证明 法一 连接DG ,CD ,设CD ∩GF =M ,连接MH……………………………………………………………………………………1分在三棱台DEF ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则M 为CD 的中点,……………………………………………………………3分 又H 为BC 的中点,所以HM ∥BD ,…………………………………………4分 又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH . …………………………………………………………6分法二在三棱台DEF ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.…………………………………………………………………3分在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.……………………………………………4分又GH∩HF=H,所以平面FGH∥平面ABED.……………………………5分因为BD⊂平面ABED,所以BD∥平面FGH.………………………………6分(2)证明连接HE,EG,因为G,H分别为AC,BC的中点,所以GH∥AB.………………………………………………………………7分由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE. ……………………9分又CF⊥BC,所以HE⊥BC. ………………………………………………10分又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH. ………………………………………………………11分又BC⊂平面BCD,所以平面BCD⊥平面EGH. …………………………12分❶(法一)作辅助线得1分,证明四边形DFCG为平行四边形得2分,再得到HM ∥BD得1分,最后根据线面平行的判定定理得结论得2分.❷(法二)证明四边形HBEF为平行四边形且BE∥HF得3分,再证明GH∥AB得1分,再推出平面FGH∥平面ABED得1分,最后得出BD∥平面FGH得1分.❸第(2)问中得到GF∥AB得1分,证明四边形EFCH是平行四边形且CH∥HE 得2分,再得到BC⊥HE得1分,再得到BC⊥平面EGH得1分,最后证得结论得1分.❹第(1)问法一中若漏写“HM⊂平面FGH”,“BD⊄平面FGH”各扣1分;在第(2)问最后漏写“BC⊂平面BCD”扣1分.证明线面平行问题(一)第一步:找(作)出所证线面平行中的平面内的一条直线.第二步:证明线线平行.第三步:根据线面平行的判定定理证明线面平行.第四步:反思回顾.检查关键点及答题规范.证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面.第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行.第四步:转化为线面平行.第五步:反思回顾,检查答题规范.证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线.第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线.第三步:得出确定的这条直线垂直于另一平面.第四步:转化为面面垂直.第五步:反思回顾,检查答题规范.训练2(2016·苏北四市调研)如图,在几何体ABCDEF中,ABCD是正方形,DE ⊥平面ABCD.(1)求证:AC⊥平面BDE;(2)若AF ∥DE ,DE =3AF ,点M 在线段BD 上,且BM =13BD ,求证:AM ∥平面BEF .证明 (1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE ⊥AC ,因为ABCD 是正方形,所以AC ⊥BD ,又BD ∩DE =D ,从而AC ⊥平面BDE .(2)延长EF ,DA 交于点G ,连接GB ,因为AF ∥DE ,DE =3AF ,所以GA GD =AF DE =13,因为BM =13BD ,所以BM BD =13,所以BM BD =GA GD =13,所以AM ∥GB ,又AM ⊄平面BEF ,GB ⊂平面BEF ,所以AM ∥平面BEF .热点三 平面图形折叠成空间几何体将平面图形沿其中一条或几条线段折起,使其成为空间图形,把这类问题称为平面图形的翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化,有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.解决这类问题就是要据此研究翻折以后的空间图形中的线面关系和几何量的度量值,这是化解翻折问题难点的主要方法.例3(2016·全国Ⅱ卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CF CD ,故AC ∥EF ,由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′.(2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4,所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面BHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′ABCFE 的体积V =13×694×22=2322.探究提高 (1)①利用AC 与EF 平行,转化为证明EF 与HD ′垂直;②求五棱锥的体积需先求棱锥的高及底面的面积,结合图形特征可以发现OD ′是棱锥的高,而底面的面积可以利用菱形ABCD 与△DEF 面积的差求解,这样就将问题转化为证明OD ′与底面垂直以及求△DEF 的面积问题了.(2)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.训练3(2017·徐州、连云港调研)如图1所示,在Rt△ABC中,∠C=90°,D,E 分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2所示.(1)求证:A1F⊥BE;(2)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.(1)证明由已知,得AC⊥BC,且DE∥BC.所以DE⊥AC,则DE⊥DC,DE⊥DA1,又因为DC∩DA1=D,所以DE⊥平面A1DC.由于A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,CD∩DE=D,所以A1F⊥平面BCDE,又BE⊂平面BCDE,所以A1F⊥BE.(2)解线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图所示,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(1)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰△DA1C底边A1C的中点,所以A1C⊥DP,又DE∩DP=D,所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.热点四线、面位置关系中的开放存在性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,一般有三种类型:(1)条件追溯型.(2)存在探索型.(3)方法类比探索型.例4(2017·郑州质检)如图所示,在四棱锥P ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)在线段CD上是否存在一点G,使得平面EFG⊥平面PDC?若存在,请说明其位置,并加以证明;若不存在,请说明理由.(1)证明如图所示,连接AC,在四棱锥P ABCD中,底面ABCD是边长为a的正方形,且点F为对角线BD的中点.所以对角线AC经过点F,又在△P AC中,点E为PC的中点,所以EF为△P AC的中位线,所以EF∥P A,又P A⊂平面P AD,EF⊄平面P AD,所以EF∥平面P AD.(2)解存在满足要求的点G.在线段CD上存在一点G为CD的中点,使得平面EFG⊥平面PDC,因为底面ABCD是边长为a的正方形,所以CD⊥AD.又侧面P AD⊥底面ABCD,CD⊂平面ABCD,侧面P AD∩平面ABCD=AD,所以CD⊥平面P AD.又EF∥平面P AD,所以CD⊥EF.取CD中点G,连接FG、EG.因为F为BD中点,所以FG∥AD.又CD⊥AD,所以FG⊥CD,又FG∩EF=F,所以CD⊥平面EFG,又CD⊂平面PDC,所以平面EFG⊥平面PDC.探究提高(1)在立体几何的平行关系问题中,“中点”是经常使用的一个特殊点,通过找“中点”,连“中点”,即可出现平行线,而线线平行是平行关系的根本.(2)第(2)问是探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论.训练4(2017·南京师大附中检测)如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,则侧棱SC上是否存在一点E,使得BE∥平面P AC?若存在,求SE∶EC;若不存在,试说明理由.(1)证明连接BD,设AC交BD于点O,连接SO,由题意得四棱锥SABCD是正四棱锥,所以SO⊥AC,在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD,因为SD⊂平面SBD,所以AC⊥SD.(2)解在棱SC上存在一点E,使得BE∥平面P AC. 连接OP.设正方形ABCD的边长为a,则SC=SD=2a.由SD⊥平面P AC得SD⊥PC,易求得PD=2a 4.故可在SP上取一点N,使得PN=PD.过点N作PC的平行线与SC交于点E,连接BE,BN,在△BDN中,易得BN∥PO,又因为NE∥PC,NE⊂平面BNE,BN⊂平面BNE,BN∩NE=N,PO⊂平面P AC,PC⊂平面P AC,PO∩PC=P,所以平面BEN∥平面P AC,所以BE∥平面P AC.因为SN∶NP=2∶1,所以SE∶EC=2∶1.(建议用时:70分钟)一、填空题1.(2017·南通、扬州、泰州三市调研)已知正三棱柱的各条棱长均为a,圆柱的底面直径和高均为b.若它们的体积相等,则a3∶b3的值为________.解析由题意可得34a3=14πb3,则a3b3=3π3.答案3π32.(2017·苏北四市调研)已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 解析 在平面DAC 上过点D 作DE ⊥AC 于点E ,因为平面DAC ⊥平面BAC ,由面面垂直的性质定理可得DE ⊥平面BAC .又DE =125,所以三棱锥DABC 的体积为13×12×4×3×125=245. 答案 245 二、解答题3.(2017·盐城中学模拟)如图,在三棱锥P ABC 中,平面P AB ⊥平面ABC ,P A ⊥PB ,M ,N 分别为AB ,P A 的中点.(1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:P A ⊥平面MNC .证明 (1)因为M ,N 分别为AB ,P A 的中点,所以MN ∥PB , 又因为MN ⊂平面MNC ,PB ⊄平面MNC ,所以PB ∥平面MNC . (2)因为P A ⊥PB .MN ∥PB ,所以P A ⊥MN . 因为AC =BC ,AM =BM ,所以CM ⊥AB . 因为平面P AB ⊥平面ABC ,CM ⊂平面ABC ,平面P AB ∩平面ABC =AB . 所以CM ⊥平面P AB .因为P A ⊂平面P AB ,所以CM ⊥P A . 又MN ∩CM =M ,所以P A ⊥平面MNC .4.(2017·南京模拟)如图,在直三棱柱ABCA 1B 1C 1中,点D 为棱BC 上一点. (1)若AB =AC ,D 为棱BC 的中点,求证:平面ADC 1⊥平面BCC 1B 1;(2)若A1B∥平面ADC1,求BDDC的值.(1)证明因为AB=AC,点D为BC的中点,所以AD⊥BC.因为ABCA1B1C1是直三棱柱,所以BB1⊥平面ABC.因为AD⊂平面ABC,所以BB1⊥AD.因为BC∩BB1=B,BC⊂平面BCC1B1,BB1⊂平面BCC1B1,所以AD⊥平面BCC1B1.因为AD⊂平面ADC1,所以平面ADC1⊥平面BCC1B1.(2)连接A1C,交AC1于点O,连接OD,所以点O为A1C的中点.因为A1B∥平面ADC1,A1B⊂平面A1BC,平面ADC1∩平面A1BC=OD,所以A1B∥OD.因为点O为A1C的中点,所以点D为BC的中点.所以BDDC=1.5.(2017·苏、锡、常、镇、宿迁五市调研)如图,已知直三棱柱ABCA1B1C1的侧面ACC1A1是正方形,点O是侧面ACC1A1的中心,∠ACB=π2,点M是棱BC的中点.(1)求证:OM∥平面ABB1A1;(2)求证:平面ABC1⊥平面A1BC.证明(1)在△A1BC中,因为点O是A1C的中点,点M是BC的中点,所以OM ∥A1B.又OM⊄平面ABB1A1,A1B⊂平面ABB1A1,所以OM∥平面ABB1A1.(2)因为ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC,所以CC1⊥BC.又∠ACB=π2,即BC⊥AC,且CC1,AC⊂平面ACC1A1,CC1∩AC=C,所以BC⊥平面ACC1A1.又AC1⊂平面ACC1A1,所以BC⊥AC1.又在正方形ACC1A1中,A1C⊥AC1,且BC,A1C⊂平面A1BC,BC∩A1C=C,所以AC1⊥平面A1BC.又AC1⊂平面ABC1,所以平面ABC1⊥平面A1BC.6.(2017·南京师大附中模拟)如图1,在等腰梯形PDCB中,已知PB∥DC,PB =3,DC=1,PD=2,DA⊥PB,垂足为点A.将△P AD沿AD折起,使平面P AD ⊥平面ABCD,如图2所示.(1)证明:平面P AD⊥平面PCD;(2)在图2中,已知点M是棱PB的中点,求三棱锥DACM的体积.证明(1)在等腰梯形PDCB中,PB∥CD,DA⊥PB,所以CD⊥DA.因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD.P A⊂平面P AD,P A⊥DA,所以P A⊥平面ABCD.因为CD⊂平面ABCD,所以P A⊥CD,因为AD∩AP=A,AD,AP⊂平面P AD,所以CD⊥平面P AD.又因为CD⊂平面PCD,所以平面P AD⊥平面PCD.(2)在图2中,过点M作MN∥P A交AB于点N,因为M是棱PB的中点,所以MN=12P A.由(1)知P A⊥平面ABCD,从而易证得MN⊥平面ABCD.在图1中,过点C作CE⊥PB,垂足为点E,因为四边形PDCB是等腰梯形,PB=3,DC=1,DA⊥PB,所以P A=AE=EB=1.又因为PD=BC=2,所以DA=1.从而V三棱锥DACM =V三棱锥MACD=13MN×S△ACD=13×12×12=112.7.(2017·石家庄质检)如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点,现在沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.(1)解如图,线段AB上存在一点K,且当AK=14AB时,BC∥平面DFK.证明如下:设H为AB的中点,连接EH,则BC∥EH,∵AK=14AB,F为AE的中点,∴KF∥EH,∴KF∥BC,∵KF⊂平面DFK,BC⊄平面DFK,∴BC∥平面DFK.(2)证明∵在折起前的图形中E为CD的中点,AB=2,BC=1,∴在折起后的图形中,AE=BE=2,从而AE2+BE2=4=AB2,∴AE⊥BE.∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,BE⊂平面ABCE,∴BE⊥平面ADE,∵BE⊂平面BDE,∴平面BDE⊥平面ADE.8.(2016·全国Ⅰ卷)如图,已知正三棱锥P ABC的侧面是直角三角形,P A=6,顶点P在平面ABC内的正投影为点D,D在平面P AB内的正投影为点E,连接PE 并延长交AB于点G.(1)证明:G是AB的中点;(2)在图中作出点E在平面P AC内的正投影F(说明作法及理由),并求四面体PDEF的体积.(1)证明因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面P AB内的正投影为E,所以AB⊥DE.又因为PD∩DE=D,所以AB⊥平面PED,又PG⊂平面PED,故AB⊥PG.又由已知可得,P A=PB,所以G是AB的中点.(2)解在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC 内的正投影.理由如下:由已知可得PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC.又P A∩PC=P,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23CG.由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=13×12×2×2×2=43.。

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.1 精品

2018届高考数学理科全国通用一轮总复习课件:第七章 立体几何 7.1 精品

2.(必修2P19练习T3改编)利用斜二测画法得到的:
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
④菱形的直观图一定是菱形.
以上结论正确的个数是
.
【解析】由斜二测画法的规则可知①正确;②错误,是一 般的平行四边形;③错误,等腰梯形的直观图不可能是平 行四边形;而菱形的直观图也不一定是菱形,④也错误. 答案:1
2.已知三视图,判断几何体的技巧 (1)对柱、锥、台、球的三视图要熟悉. (2)明确三视图的形成原理,并能结合空间想象将三视 图还原为直观图. (3)遵循“长对正、高平齐、宽相等”的原则. 易错提醒:对于简单组合体的三视图,应注意它们的交 线的位置,区分好实线和虚线的不同.
【题组通关】
1.(2016·临沂模拟)某几何体的三视图如图所示,那么
2.给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的 连线是圆柱的母线; ②在圆台的上、下底面的圆周上各取一点,则这两点的 连线是圆台的母线;
③圆柱的任意两条母线所在的直线是互相平行的.
其中正确命题的序号是 ( )
A.①②
B.②③
C.①③
D.③
【解析】选D.根据圆柱、圆台的母线的定义和性质
2
4
在图②中作C′ OC 6 a.
2
8
所以S△A′B′C′=
1 AB CD 1 a 6 a 6 a2.
2
2 8 16
(2)选C.如图,在原图形OABC中, 应有OD=2O′D′=2 2 2 (4cm2 ), CD=C′D′=2cm,
所以OC= OD2 CD2 4 2 2 所22以O6Acm=O, C,

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.1

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.1
答案:B
第二十九页,编辑于星期六:二十二点 二十三 分。
3.(2017·合肥一模)某几何体的三视
图如图所示,则该几何体的体积为( )
A.2
8 B.3
C.3
10 D. 3
第三十页,编辑于星期六:二十二点 二十三分。
解析:该几何体为一个横放的直三棱柱切去一个三棱锥后
的图形.原直三棱柱的体积为V1=
1 2
×2×2×2=4,切去的三棱
锥的体积为V2=13×12×2×2×1=23,则该几何体的体积为V=V1
-V2=4-23=130.故选D.
答案:D
第三十一页,编辑于星期六:二十二点 二十三 分。
4.(2017·江西南昌一模)如图,在正四棱柱ABCD- A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的 正视图与侧视图的面积之比为( )
第二十八页,编辑于星期六:二十二点 二十三 分。
——[通·一类]——
2.(2016·课标全国卷Ⅲ)如图,网格 纸上小正方形的边长为1,粗实线画出的 是某多面体的三视图,则该多面体的表
面积为( )
A.18+36 5 B.54+18 5
C.90
D.81
解析:由三视图可知,该几何体的底面是边长为3的正方 形,高为6,侧棱长为3 5 ,则该几何体的表面积S=2×32+ 2×3×3 5+2×3×6=54+18 5.故选B.
——[悟·技法]—— 空间几何体结构特征的解题策略
(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特 征,依据条件构建几何模型,在条件不变的情况下,变换模型 中的线面关系或增加线、面等基本元素,然后再依据题意判 定.
(2)通过举反例对结构特征进行辨析,即要说明一个命题是 错误的,只要举出一个反例即可.

江苏2018高三数学一轮复习 立体几何

江苏2018高三数学一轮复习    立体几何

第1讲 空间点、线、面之间的位置关系考试要求 1.平面的基本性质及其简单应用(证明一些空间图形的位置关系的简单命题),A 级要求;2.空间点、线、面的位置关系,A 级要求.知 识 梳 理1.平面的公理与定理(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理4:平行于同一条直线的两条直线互相平行.(5)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.2.空间中两直线的位置关系(1)位置关系的分类⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. 3.空间直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.(2)平面与平面的位置关系有平行、相交两种情况.诊 断 自 测1.判断正误(在括号内打“√”或“×”)(1)圆心和圆上两点可以确定一个平面.( )(2)如果两个不重合的平面α,β有一条公共直线a ,就说平面α,β相交,并记作α∩β=a .( )(3)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( )(4)已知a ,b ,c ,d 是四条直线,若a ∥b ,b ∥c ,c ∥d ,则a ∥d .( )(5)两条直线a ,b 没有公共点,则a 与b 是异面直线.( )解析 (1)若圆心和圆上两点在一条直线上,可确定无数个平面,故(1)错误;(3)两个平面α,β有一个公共点,那么它们有且只有一条过该点的公共直线,故(3)错误;(5)两条直线a ,b 没有公共点,则a 与b 平行或异面,故(5)错误. 答案 (1)× (2)√ (3)× (4)√ (5)×2.已知a ,b 是异面直线,直线c 平行于直线a ,那么关于c 与b 位置关系,下列说法正确的是________(填序号).①一定是异面直线;②一定是相交直线;③不可能是平行直线;④不可能是相交直线.解析 由已知得直线c 与b 可能为异面直线也可能为相交直线,但不可能为平行直线,若b ∥c ,则a ∥b ,与已知a ,b 为异面直线相矛盾.答案 ③3.给出下列命题:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.其中正确的命题是________(填序号).解析 经过不共线的三点可以确定一个平面,∴①不正确;两条平行线可以确定一个平面,∴②正确;两两相交的三条直线可以确定一个或三个平面,∴③正确;命题④中没有说明三个交点是否共线,∴④不正确.答案 ②③4.(2015·广东卷改编)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题:①l 与l 1,l 2都不相交;②l 与l 1,l 2都相交;③l 至多与l 1,l 2中的一条相交;④l 至少与l 1,l 2中的一条相交. 其中真命题是________(填写所有真命题的序号).解析 如图1,l 1与l 2是异面直线,l 1与l 平行,l 2与l 相交,故①②不正确;如图2,l 1与l 2是异面直线,l 1,l 2都与l 相交,故③不正确,故填④.答案 ④5.(必修2P31习题12改编)在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱A 1B 1,A 1D 1的中点,则A 1B 与EF 所成角的大小为________.解析 如图,连接B 1D 1,D 1C ,B 1C .由题意知EF 是△A 1B 1D 1的中位线,所以EF ∥B 1D 1,又A 1B ∥D 1C ,即∠B 1D 1C (或其补角)为异面直线A 1B 与EF 所成的角.因为△D 1B 1C 为正三角形,所以∠B 1D 1C =π3.故A 1B 与EF 所成角的大小为π3.答案 π3考点一 平面基本性质的应用【例1】 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 和AA 1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA.∴CE,D1F,DA三线共点.规律方法公理1是判断一条直线是否在某个平面的依据;公理2及其推论是判断或证明点、线共面的依据;公理3是证明三线共点或三点共线的依据.要能够熟练用文字语言、符号语言、图形语言来表示公理.【训练1】如图所示是正方体和正四面体,P,Q,R,S分别是所在棱的中点,则四个点共面的图形的序号是________.解析可证①中的四边形PQRS为梯形;②中,如图所示,取A1A和BC的中点分别为M,N,可证明PMQNRS为平面图形,且PMQNRS为正六边形;③中,可证四边形PQRS为平行四边形;④中,可证Q点所在棱与面PRS平行,因此,P,Q,R,S四点不共面.答案①②③考点二空间两条直线的位置关系【例2】(1)如图,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填序号).(2)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.解析(1)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接GM,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉面GMN,因此GH与MN异面.所以图②④中GH与MN异面.(2)把正四面体的平面展开图还原.如图所示,GH与EF为异面直线,BD与MN 为异面直线,GH与MN成60°角,DE⊥MN.答案(1)②④(2)②③④规律方法空间中两直线位置关系的判定,主要是异面、平行和垂直的判定,对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、平行公理及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.【训练2】如图,已知不共面的三条直线a,b,c相交于点P,A∈a,B∈a,C ∈b,D∈c,求证:AD与BC是异面直线.证明法一(反证法)假设AD和BC共面,所确定的平面为α,那么点P,A,B,C,D都在平面α内,∴直线a,b,c都在平面α内,与已知条件a,b,c不共面矛盾,假设不成立,∴AD和BC是异面直线.法二(直接证法)∵a∩c=P,∴它们确定一个平面,设为α,由已知C∉平面α,B∈平面α,BC⊄平面α,AD⊂平面α,B∉AD,∴AD和BC是异面直线.考点三异面直线所成的角【例3】已知三棱锥A-BCD中,AB=CD,且直线AB与CD所成的角为60°,点M,N分别是BC,AD的中点,求直线AB和MN所成的角.解 法一 如图,取AC 的中点P ,连接PM ,PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN (或其补角)为AB 与CD 所成的角.则∠MPN =60°或∠MPN =120°,若∠MPN =60°,因为PM ∥AB ,所以∠PMN (或其补角)是AB 与MN 所成的角.又因为AB =CD ,所以PM =PN ,则△PMN 是等边三角形,所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°,即AB 与MN 所成的角为30°.综上直线AB 和MN 所成的角为60°或30°.法二由AB =CD ,可以把该三棱锥放在长方体AA 1BB 1-C 1CD 1D 中进行考虑,如图, 由M ,N 分别是BC ,AD 的中点,所以MN ∥AA 1,即∠BAA 1(或其补角)为AB 与MN 所成的角.连接A 1B 1交AB 于O ,所以A 1B 1∥CD ,即∠AOA 1(或其补角)为AB 与CD 所成的角.所以∠AOA 1=60°或120°,由矩形AA 1BB 1的性质可得∠BAA 1=60°或30°.所以直线AB 和MN 所成的角为60°或30°.规律方法 求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.【训练3】 (2017·泰州模拟)如图所示,在正三棱柱ABC -A 1B 1C 1中,D 是AC 的中点,AA 1∶AB =2∶1,则异面直线AB 1与BD 所成的角为________.解析取A 1C 1的中点E ,连接B 1E ,ED ,AE ,在Rt △AB 1E 中,∠AB 1E 为异面直线AB 1与BD 所成的角.设AB =1,则A 1A =2,AB 1=3,B 1E =32,AE =32,故B 1E 2+AE 2=AB 21,所以在Rt △aB 1E 中,cos ∠AB 1E =323=12,故∠AB 1E =60°. 答案 60°[思想方法]1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上或选择某两点确定一条直线,然后证明其他点都在这条直线上.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过该点B 的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.[易错防范]1.正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.2.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.3.两条异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2. 4.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.基础巩固题组(建议用时:40分钟)一、填空题1.若空间三条直线a ,b ,c 满足a ⊥b ,b ⊥c ,则直线a 与c 的位置关系是________. 解析 当a ,b ,c 共面时,a ∥c ;当a ,b ,c 不共面时,a 与c 可能异面也可能相交.答案 相交、平行或异面2.(2017·苏州期末)已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是________. 解析 依题意,直线b 和c 的位置关系可能是相交、平行或异面.答案 相交、平行或异面3.平面α,β相交,在α,β内各取两点,这四点都不在交线上,这四点能确定________个平面.解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面.答案1或44.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对.解析如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,因为各棱具有不同的位置,且正方体共有12条棱,排除两棱的重复计算,共有异面直线12×4 2=24(对).答案245.(2017·哈尔滨一模)如图,在四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC =2AD,△P AB和△P AD都是等边三角形,则异面直线CD与PB所成角的大小为________.解析如图,过点B作直线BE∥CD,交DA的延长线于点E,连接PE.∴∠PBE(或其补角)是异面直线CD与PB所成角.∵△P AB和△P AD都是等边三角形,∴∠P AD=60°,DA=P A=AB=PB=AE,∴∠P AE=120°.设P A=AB=PB=AE =a,则PE=3a.又∠ABC=∠BAD=90°,∴∠BAE=90°,∴BE=2a,∴在△PBE中,PB2+BE2=PE2,∴∠PBE=90°.即异面直线CD与PB所成角为90°.答案90°6.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.解析取CD的中点H,连接EH,FH.在正四面体CDEF中,由于CD⊥EH,CD⊥HF,所以CD⊥平面EFH,所以AB⊥平面EFH,则平面EFH与正方体的左右两侧面平行,则EF也与之平行,与其余四个平面相交.答案47.(2017·苏北四市期末)如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,给出以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(填序号).解析A,M,C1三点共面,且在平面AD1C1B中,但C∉平面AD1C1B,C1∉AM,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,AM与DD1也是异面直线,①②错,④正确;M,B,B1三点共面,且在平面MBB1中,但N∉平面MBB1,B∉MB1,因此直线BN与MB1是异面直线,③正确.答案③④8.(2016·全国Ⅰ卷改编)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为________.解析根据平面与平面平行的性质,将m,n所成的角转化为平面CB1D1与平面ABCD 的交线及平面CB1D1与平面ABB1A1的交线所成的角.设平面CB1D1∩平面ABCD =m1.∵平面α∥平面CB1D1,∴m1∥m.又平面ABCD∥平面A1B1C1D1,且平面CB1D1∩平面A1B1C1D1=B1D1,∴B1D1∥m1,∴B1D1∥m.∵平面ABB1A1∥平面DCC1D1,且平面CB1D1∩平面DCC1D1=CD1,同理可证CD1∥n.因此直线m与n所成的角即直线B1D1与CD1所成的角.在正方体ABCD-A1B1C1D1中,△CB1D1是正三角形,故直线B1D1与CD1所成角为60°,其正弦值为3 2.答案3 2二、解答题9.如图所示,正方体ABCD-A1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.解(1)AM,CN不是异面直线.理由:连接MN,A1C1,AC.因为M ,N 分别是A 1B 1,B 1C 1的中点,所以MN ∥A 1C 1. 又因为A 1A 綊C 1C ,所以四边形A 1ACC 1为平行四边形, 所以A 1C 1∥AC ,所以MN ∥AC , 所以A ,M ,N ,C 在同一平面内, 故AM 和CN 不是异面直线. (2)直线D 1B 和CC 1是异面直线.理由:因为ABCD -A 1B 1C 1D 1是正方体,所以B ,C ,C 1,D 1不共面.假设D 1B 与CC 1不是异面直线,则存在平面α,使D 1B ⊂平面α,CC 1⊂平面α, 所以D 1,B ,C ,C 1∈α,这与B ,C ,C 1,D 1不共面矛盾.所以假设不成立, 即D 1B 和CC 1是异面直线.10.(2017·成都月考)如图所示,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值. 解 (1)S △ABC =12×2×23=23, 三棱锥P -ABC 的体积为 V =13S △ABC ·P A =13×23×2=43 3. (2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE是异面直线BC 与AD所成的角(或其补角).在△ADE中,DE=2,AE=2,AD=2,cos∠ADE=22+22-22×2×2=34.故异面直线BC与AD所成角的余弦值为3 4.能力提升题组(建议用时:20分钟)11.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.则以上命题正确的是________(填序号).解析①假设其中有三点共线,则该直线和直线外的另一点确定一个平面.这与四点不共面矛盾,故其中任意三点不共线,所以①正确.②从条件看出两平面有三个公共点A,B,C,但是若A,B,C共线,则结论不正确;③不正确;④不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.答案①12.四棱锥P-ABCD的所有侧棱长都为5,底面ABCD是边长为2的正方形,则CD与P A所成角的余弦值为________.解析因为四边形ABCD为正方形,故CD∥AB,则CD与P A所成的角即为AB 与P A所成的角,即为∠P AB.在△P AB内,PB=P A=5,AB=2,利用余弦定理可知cos∠P AB=P A2+AB2-PB2 2×P A×AB=5+4-52×5×2=55.答案5 513.如图,正方形ACDE与等腰直角三角形ACB所在的平面互相垂直,且AC =BC=2,∠ACB=90°,F,G分别是线段AE,BC的中点,则AD与GF所成的角的余弦值为________.解析取DE的中点H,连接HF,GH.由题设,HF綊12AD.∴∠GFH为异面直线AD与GF所成的角(或其补角).在△GHF中,可求HF=2,GF=GH=6,∴cos∠HFG=2+6-62×2×6=36.答案3 614.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.解 (1)由已知可求得正方形ABCD 的面积S =4, 所以四棱锥O -ABCD 的体积V =13×4×2=83.(2)如图,连接AC ,设线段AC 的中点为E ,连接ME ,DE ,又M 为OA 中点,∴ME ∥OC ,则∠EMD (或其补角)为异面直线OC 与MD 所成的角,由已知可得DE =2,EM =3,MD =5,∵(2)2+(3)2=(5)2,∴△DEM 为直角三角形, ∴tan ∠EMD =DE EM =23=63.∴异面直线OC 与MD 所成角的正切值为63.第2讲 线面平行与面面平行考试要求 1.空间中线面平行、面面平行的判定定理、性质定理及有关性质,B 级要求;2.运用线面平行、面面平行的判定及性质定理证明一些空间图形的平行关系的简单命题,B 级要求.知 识 梳 理1.直线与平面平行 (1)直线与平面平行的定义直线l 与平面α没有公共点,则称直线l 与平面α平行. (2)判定定理与性质定理2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理(1)a⊥α,b⊥α⇒a∥b.(2)a⊥α,a⊥β⇒α∥β.诊断自测1.判断正误(在括号内打“√”或“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()解析(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a∥α,P∈α,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另一个平面,则这两个平面平行或相交,故(3)错误.答案(1)×(2)×(3)×(4)√2.给出下列四个命题:①若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;②若直线a和平面α满足a∥α,那么a与α内的任何直线平行;③若直线a,b和平面α满足a∥α,b∥α,那么a∥b;④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.其中正确的是________(填序号).解析根据线面平行的判定与性质定理知,④正确.答案④3.(2015·北京卷改编)设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的________条件(从“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选填一个).解析当m∥β时,可能α∥β,也可能α与β相交.当α∥β时,由m⊂α可知,m∥β.∴“m∥β”是“α∥β”的必要不充分条件.答案必要不充分4.(必修2P35练习5改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E 为DD1的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.答案平行5.设α,β,γ为三个不同的平面,a,b为直线,给出下列条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a ∥b.其中能推出α∥β的条件是________(填上所有正确的序号).解析在条件①或条件③中,α∥β或α与β相交.由α∥γ,β∥γ⇒α∥β,条件②满足.在④中,a⊥α,a∥b⇒b⊥α,又b⊥β,从而α∥β,④满足.答案②④考点一线面、面面平行的相关命题的真假判断【例1】(2015·安徽卷改编)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题:①若α,β垂直于同一平面,则α与β平行;②若m,n平行于同一平面,则m与n平行;③若α,β不平行,则在α内不存在与β平行的直线;④若m,n不平行,则m与n不可能垂直于同一平面.其中正确的是________(填序号).解析对于①,α,β可能相交,故错误;对于②,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;对于③,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;对于④,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故④正确.答案④规律方法(1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理.(2)①结合题意构造或绘制图形,结合图形作出判断.②特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】(2017·苏北四市调研)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m ⊂α,n ∥α,则m ∥n ; ②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β. 其中是真命题的是________(填序号).解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案 ②考点二 直线与平面平行的判定与性质(多维探究) 命题角度一 直线与平面平行的判定【例2-1】 (2016·全国Ⅲ卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体N -BCM 的体积.(1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为12P A .如图,取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2=5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 命题角度二 直线与平面平行性质定理的应用【例2-2】 如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面ABCD 内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH .因为平面PBD∩平面GEFH=GK,PO⊂平面PBD.所以PO∥GK,且GK⊥底面ABCD,又EF⊂平面ABCD,从而GK⊥EF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB=14DB=12OB,即K为OB的中点.再由PO∥GK得GK=12PO,即G是PB的中点,且GH=12BC=4.由已知可得OB=42,PO=PB2-OB2=68-32=6,所以GK=3.故四边形GEFH的面积S=GH+EF2·GK=4+82×3=18.规律方法(1)判断或证明线面平行的常用方法有:①利用反证法(线面平行的定义);②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);③利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.【训练2】在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面P AD.证明(1)连接EC,∵AD∥BC,BC=12AD,E为AD的中点,∴BC綊AE,∴四边形ABCE是平行四边形,∴O为AC的中点,又∵F是PC的中点,∴FO∥AP,又FO⊂平面BEF,AP⊄平面BEF,∴AP∥平面BEF.(2)连接FH,OH,∵F,H分别是PC,CD的中点,∴FH∥PD,又PD⊂平面P AD,FH⊄平面P AD,∴FH∥平面P AD.又∵O是BE的中点,H是CD的中点,∴OH∥AD,又∵AD⊂平面P AD,OH⊄平面P AD,∴OH∥平面P AD.又FH∩OH=H,∴平面OHF∥平面P AD.又∵GH⊂平面OHF,∴GH∥平面P AD.考点三面面平行的判定与性质(典例迁移)【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,则GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綊AB,∴A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【迁移探究1】如图,在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接A1B.∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.【迁移探究2】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.又由题设A 1D 1D 1C 1=DCAD ,∴DC AD =1,即ADDC =1.规律方法 (1)判定面面平行的主要方法 ①利用面面平行的判定定理.②线面垂直的性质(垂直于同一直线的两平面平行). (2)面面平行的性质定理①两平面平行,则一个平面内的直线平行于另一平面. ②若一平面与两平行平面相交,则交线平行.提醒 利用面面平行的判定定理证明两平面平行时需要说明是一个平面内的两条相交直线与另一个平面平行.【训练3】 (2016·山东卷)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB =BC ,AE =EC .求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 证明 (1)因为EF ∥DB ,所以EF 与DB 确定平面BDEF ,图①如图①,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)如图②,设FC的中点为I,连接GI,HI.图②在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.[思想方法]1.线线、线面、面面平行间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.[易错防范]1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、填空题1.(2017·保定模拟)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是________.解析命题①l可以在平面α内,不正确;命题②直线a与平面α可以是相交关系,不正确;命题③a可以在平面α内,不正确;命题④正确.答案12.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的________________条件(从“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选填一个).解析若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.答案充分不必要3.(2017·盐城中学质检)如图所示的三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是________.解析在三棱柱ABC-A1B1C1中,AB∥A1B1,∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE ∥AB.答案平行4.(2017·连云港调研)在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.解析如图,取CD的中点E.连接AE,BE,由于M,N分别是△ACD,△BCD的重心,所以AE,BE分别过M,N,则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.因为AB⊂平面ABD,MN⊄平面ABD,AB⊂平面ABC,MN⊄平面ABC,所以MN∥平面ABD,MN∥平面ABC.答案平面ABD与平面ABC5.(2017·镇江期末)设b,c表示两条直线,α,β表示两个平面,现给出下列命题:①若b⊂α,c∥α,则b∥c;②若b⊂α,b∥c,则c∥α;③若c∥α,α⊥β,则c⊥β;④若c∥α,c⊥β,则α⊥β.其中正确的命题是________(填序号).解析①中直线b,c平行或异面,则①错误;②中c∥α或c⊂α,则②错误;③中c,β的位置关系可能平行、相交或者直线在平面上,则③错误;由线面平行的性质、线面垂直的性质、面面垂直的判定定理可知④正确,故正确命题是④.答案④6.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是________.解析①中,易知NP∥AA′,MN∥A′B,∴平面MNP∥平面AA′B,可得出AB∥平面MNP(如图).④中,NP∥AB,能得出AB∥平面MNP.在②③中不能判定AB∥平面MNP.答案①④7.(2017·淮安调研)如图所示,正方体ABCD-A1B1C1D1中,AB=2,点E为AD 的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.。

2018版高考数学大一轮复习专题8立体几何课件

2018版高考数学大一轮复习专题8立体几何课件

4.三视图
考点41 空间几何体的结构与三视图
除棱柱的一切特征外,还有如下特
征: 侧棱与底面垂直(直棱柱),底面是正多边形. 除棱锥的一切特征外,还有如下 特征: ①顶点在底面内的投影是底面中心,底面是正 多边形; ②侧棱长相等; ③侧面是全等的等腰三角形,各等腰三角形底 边上的高(称为斜高)相等; ④棱锥的高、斜高和斜足与底面中心的连线组 成一个直角三角形,棱锥的高、侧棱和侧棱在 底面内的投影组成一个直角三角形.
专题8
立体几何
第1节 空间几何体的三视图、表面积和体积
第2节 空间直线、平面平行与垂直的判定及其性质
第1节 空间几何体的三视图、表面积和体积
600分基础 考点&考法
考点41 空间几何体的结构与三视图
考点42 几何体表面积的计算 考点43 几何体体积的计算
考点41 空间几何体的结构与三视图
考点41 空间几何体的结构与三视图
考法1 空间几何体的结构特征
1.计算几何体中有关线段长度的常见思路
勾股定理、三角函数公式等),结合题目的已知条件求解.
根据几何体的特征,利用一些常用定理与公式(如正弦定理、余弦定理、
2.有关几何体的外接球、内切球的计算问题的常见思路
与球有关的组合体问题:一种是 ,一种是外接.解题时要认真分析
考点41 空间几何体的结构与三视图
考法2 空间几何体的三视图
2.根据几何体的某个(些)视图,判断余下视图 (3)将几个视图联系起来观察,确定物体形状.根据一个视图 不能确定物体的形状,往往需要两个或两个以上的视图. (4)注意三视图中虚线和实线的变化,从而区别不同的物体形状.
画三视图时,重叠的线只画一条,被挡住的线(看

核按钮2018高考新课标数学理一轮复习配套课件:第八章立体几何8.2 精品

核按钮2018高考新课标数学理一轮复习配套课件:第八章立体几何8.2 精品

类型一 空间几何体的面积问题
如图,在△ABC 中,∠ABC=45°,∠BAC=90°, AD 是 BC 边上的高,沿 AD 把△ABD 折起,使∠BDC=90°.若 BD=1,求三棱锥 D-ABC 的表面积.
解:∵折起前 AD 是 BC 边上的高,
∴沿 AD 把△ABD 折起后,AD⊥DC,AD⊥BD.
积为(
(2014·重庆)某几何体的三视图如图所示,则该几何体的体 )
A.12
B.18
C.24
D.30
解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到
的.所以该几何体的体积为 V=12×3×4×5-13×12×3×4×3=24.故选 C.
类型四 空间旋转体的体积问题
已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是 由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几 何体的体积为( )
1.几何体的展开与折叠 (1)几何体的表面积,除球以外,一般都是利用展开图求得 的,利用空间问题平面化的思想,把一个平面图形折叠成一个 几何体,再研究其性质,是考查空间想象能力的常用方法. (2)多面体的展开图 ①直棱柱的侧面展开图是矩形; ②正棱锥的侧面展开图是由一些全等的等腰三角形拼成 的,底面是正多边形; ③正棱台的侧面展开图是由一些全等的等腰梯形拼成的, 底面是正多边形.
自查自纠
1.(1)Ch 12Ch′ 12(C+C′)h′
(2)2πrl πrl π(r+r′)l
(3)侧面积 两个底面积 侧面积 一个底面积
2.(1)Sh
1 3Sh
13h(S+ SS′+S′)
(2)πr2h 13πr2h 13πh(r2+rr′+r′2)
3.(1)4πR2 (2)43πR3

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.3

2018版高中数学一轮全程复习(课件)第七章 立体几何 7.3
第三十一页,编辑于星期六:二十二点 二十三 分。
第三十二页,编辑于星期六:二十二点 二十三 分。
第三十页,编辑于星期六:二十二点 二十三分。
——[通·一类]—— 3.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=
AA1,则异面直线BA1与AC1所成的角等于( ) A.30° B.45° C.60° D.90°
解析:如图,可补成一个正方体, ∴AC1∥BD1. ∴BA1与AC1所成角的大小为∠A1BD1. 又易知△A1BD1为正三角形, ∴∠A1BD1=60°. 即BA1与AC1成60°的角. 答案:C
解析:连接B1D1,D1C(图略), 则B1D1∥EF, 故∠D1B1C为所求. 又B1D1=B1C=D1C, ∴∠D1B1C=60°. 答案:60°
第八页,编辑于星期六:二十二点 二十三分。
[知识重温]
一、必记6●个知识点
1.平面的基本性质
表示 公理
文字语言
公理1
如果一条直线上 的两点在一个平 面内,那么这条 直线在此平面内
设其棱长为2,取AD的中点F,连接EF,
设EF的中点为O,连接CO,则EF∥BD,
则∠FEC就是异面直线CE与BD所成的角.
△ABC为等边三角形,则CE⊥AB,易得CE= 3,
同理可得CF= 3,故CE=CF.
因为OE=OF,所以CO⊥EF.
又EO=12EF=14BD=12,
1
所以cos∠FEC=ECOE=
(2)平行公理(公理4)和等角定理: 平行公理:平行于同一条直线的两条直线⑥__平__行____. 等角定理:空间中如果两个角的两边分别对应平行,那么 这两个角⑦_相__等__或__互_.补 (3)异面直线所成的角: ①定义:已知两条异面直线a,b,经过空间任一点O作直 线a′∥a,b′∥b,把a′与b′所成的⑧锐__角 ___(或__直__角__)_叫做异 面直线②a范与围b所:成⑨的_0_,角__π2_(或__夹_. 角).

【高考数学】2018最新高三数学课标一轮复习课件:高考解答题专讲4 立体几何(专题拔高配套PPT课件)

【高考数学】2018最新高三数学课标一轮复习课件:高考解答题专讲4 立体几何(专题拔高配套PPT课件)

-11-
题型一
题型二
题型三
题型四
利用空间向量求空间角 空间向量是一种计算空间角的很好的工具,可以避免作空间角这 一难点,把几何问题代数化. 【例3】 (2017浙江台州期末)如图,在边长为2的菱形ABCD 中,∠BAD=60°,O为AC的中点,点P为平面ABCD外一点,且平面 PAC⊥平面ABCD,PO=1,PA=2.
高考解答题专讲
立体几何
考情分析 典例剖析
-9-
题型一
题型二
题型三
题型四
对点训练(2017浙江金华模拟)如图,AB=BE=BC=2AD=2,且 AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,
(1)求证:平面ADE⊥平面BDE; (2)求直线AD与平面DCE所成角的正弦值.
高考解答题专讲
立体几何
由 VA-DCE=VE-ADC ,得 · d· S△CDE= · |BE|· S△ACD, 可解得 d=
30 10 3 3
1
1
,而 AD=1,则 sin θ=
������ |������������ |
=
30 10
,
30 10
故直线 AD 与平面 DCE 所成角的正弦值为
.
高考解答题专讲
立体几何
考情分析 典例剖析
(1)求证:AC⊥平面ABB1A1; (2)求二面角A-C1D-C的平面角的余弦值.
高考解答题专讲
立体几何
考情分析 典例剖析
-7-
题型一
题型二
题型三
题型四
分析:(1)推导出AB⊥AC,AA1⊥AC,由此能证明AC⊥平面ABB1A1. (2)过点C作CP⊥C1D于P,连接AP,又AC⊥平面DCC1D1,从而 ∠CPA是二面角A-C1D-C的平面角,由此能求出二面角A-C1D-C的平 面角的余弦值. (1)证明:∵在底面ABCD中,AB=1,AC= 3,BC=2, ∴AB2+AC2=BC2,∴AB⊥AC, ∵侧棱AA1⊥底面ABCD,∴AA1⊥AC, 又∵AA1∩AB=A,AA1,AB⊂平面ABB1A1, ∴AC⊥平面ABB1A1.

2018高考数学(文理通用版)一轮复习课件:第七章 立体几何 第1讲

2018高考数学(文理通用版)一轮复习课件:第七章 立体几何 第1讲

• A.0 B.1 • C.2 D.3 • [解析] (1)(2)(3)(5)不正确,(4)正确,故选 B.
2.(2016· 天津,5 分)将一个长方体沿相邻三个面的对角线截去一 个棱锥, 得到的几何体的正视图与俯视图如图所示, 则该几何体的侧(左) 视图为 导学号 30071968 (
B
)
• [解析] 由正视图、俯视图得原几何体的 形状如图所示,则该几何体的侧视图为B .
• 知识点二 空间几何体的三视图 • 空间几何体的三视图是用正投影得到的, 完全相同 这种投影下与投影面平行的平面图形留下 主(正)视图 左(侧)视图 俯视图 的影子与平面图形的形状和大小是 _________的,三视图包括__________、 ___________、________.
• 知识点三 空间几何体的直观图 斜二测 • 空间几何体的直观图常用________画法来 画,其规则是: 垂直 • 1.原图形中x轴、y轴、z轴两两垂直,直 平行于 观图中,x′轴、y′轴的夹角为45°(或135°) 不变 ,z′轴与x′轴、y′轴所在平面 ______. 原来的一半 • 2.原图形中平行于坐标轴的线段,直观图 中仍分别________坐标轴.平行于y轴和z 轴的线段在直观图中保持原长度_____,平 行于x轴的线段长度在直观图中变为 _____________.
1.下列结论正确的个数为 导学号 30071967 (
B
)
(1)夹在圆柱的两个平行截面间的几何体还是圆柱. (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. (3)上下底面是两个平行的圆面的旋转体是圆台. (4)用一个平面去截一个球,截面是一个圆面. (5)在用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于 x 轴和 y 轴,且∠A=90° ,则在直观图中∠A=45° .

2018版高考数学文人教大一轮复习课件 第八章 立体几何

2018版高考数学文人教大一轮复习课件 第八章 立体几何

定理
l⊥a

知识拓展
重要结论:
(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直
线(证明线线垂直的一个重要方法).
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面
解析
易知点A 在平面BCD上的射影在底面的中心,而中心不在EF上,所以
平面AEF⊥平面BCD错误,选C.
5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O. 外 心. (1)若PA=PB=PC,则点O是△ABC的____ 如图1,连接OA,OB,OC,OP, 在Rt△POA、Rt△POB和Rt△POC中,
所以DE∥平面AA1C1C.
(2)BC1⊥AB1.
证明

题型二 平面与平面垂直的判定与性质
例2 如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=
§8.5 直线、平面垂直的判定与性质
内容索引
基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.直线与平面垂直
(1)定义
如果直线l与平面α内的 任意一条 直线都垂直,则直线l与平面α垂直.
(2)判定定理与性质定理 文字语言 一条直线与一个平 图形语言 符号语言 a,b⊂α a∩b=O
在 AD , CD 上 , AE = CF = 5 , EF 交 BD 于 点 H. 将
△DEF沿EF折到△D′EF的位置.OD′= 10.
4
证明:D′H⊥平面ABCD.
证明

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

2018版高中数学理一轮全程复习课件第七章 立体几何 7.

3.利用平面的法向量求二面角的大小时,二面角是锐角或 |n1· n2| 钝角由图形决定.由图形知二面角是锐角时 cosθ=|n ||n |;由图 1 2 |n1· n2| 形知二面角是钝角时,cosθ=-|n ||n |.当图形不能确定时,要根 1 2 据向量坐标在图形中观察法向量的方向, 从而确定二面角与向量 n1,n2 的夹角是相等(一个平面的法向量指向二面角的内部,另 一个平面的法向量指向二面角的外部),还是互补(两个法向量同 时指向二面角的内部或外部),这是利用向量求二面角的难点、 易错点.
4.在正方体 ABCD-A1B1C1D1 中,点 E 为 BB1 的中点,则 平面 A1ED 与平面 ABCD 所成的锐二面角的余弦值为( ) 1 2 3 2 A.2 B.3 C. 3 D. 2
解析:以 A 为原点建立如图所示的空间直角坐标系 A-xyz, 1 设棱长为 1,则 A1(0,0,1),E1,0,2,D(0,1,0), 1 → → ∴A1D=(0,1,-1),A1E=1,0,-2,
[小题热身] 1.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则 两平面所成的二面角为( ) A.45° B.135° C.45° 或 135° D.90° m· n 1 2 解析:cos〈m,n〉=|m||n|= = , 1· 2 2 即〈m,n〉=45° .∴两平面所成二面角为 45° 或 180° -45° =135° . 答案:C
2.直线和平面所成角的求法 如图所示,设直线 l 的方向向量为 e,平面 α 的法向量为 n, 直线 l 与平面 α 所成的角为 φ,两向量 e 与 n 的夹角为 θ,则有 |e· n| sinφ=|cosθ|=③________. |e||n|

2018版高考数学浙江,文理通用大一轮复习讲义教师版文

2018版高考数学浙江,文理通用大一轮复习讲义教师版文

1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】 重要结论:(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)1.(教材改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.3.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条. 答案 6解析 各中点连线如图,只有平面EFGH 与平面ABB 1A 1平行,在四边形EFGH 中有6条符合题意.4.如图是长方体被一平面所截得的几何体,四边形EFGH 为截面,则四边形EFGH 的形状为________.答案 平行四边形解析 ∵平面ABFE ∥平面DCGH ,又平面EFGH ∩平面ABFE =EF ,平面EFGH ∩平面DCGH =HG , ∴EF ∥HG .同理EH ∥FG ,∴四边形EFGH 的形状是平行四边形.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ;(2)求证:GH ∥平面P AD . 证明(1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP , FO ⊂平面BEF ,AP ⊄平面BEF , ∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD . 又∵GH ⊂平面OHF ,∴GH ∥平面P AD . 命题点2 直线与平面平行的性质例2 (2016·长沙模拟)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.(1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK =4+82×3=18. 思维升华 判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.证明∵CD∥平面EFGH,而平面EFGH∩平面BCD=EF,∵CD∥EF.同理HG∥CD,且HE∥AB,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形.∴CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角(或补角).又∵CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD -A 1B 1D 1的体积. (1)证明 由题设知,BB 1綊DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形,∴A 1B ∥D 1C . 又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, ∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又S △ABD =12×2×2=1,∴111三棱柱-ABD A B D V =S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 (2016·盐城模拟)如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.解方法一存在点E,且E为AB的中点时,DE∥平面AB1C1.下面给出证明:如图,取BB1的中点F,连接DF,则DF∥B1C1,∵AB的中点为E,连接EF,ED,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问截面在什么位置时其截面面积最大?解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG ,EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α(α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC ,y b =BG BC ,两式相加得x a +y b =1,即y =ba (a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αa x (a -x ).∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a 2,y =b 2.即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大..立体几何中的探索性问题典例 (14分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.4分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2, 6分] V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.8分](2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .10分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .12分]又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB . 14分]解决立体几何中的探索性问题的步骤 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性;第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2016·金华模拟)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1B.2C.3D.4答案 A解析命题①:l可以在平面α内,不正确;命题②:直线a与平面α可以是相交关系,不正确;命题③:a可以在平面α内,不正确;命题④正确.故选A.2.(2016·余姚模拟)已知m,n,l1,l2表示直线,α,β表示平面.若m⊂α,n⊂α,l1⊂β,l2⊂β,l1∩l2=M,则α∥β的一个充分条件是()A.m∥β且l1∥αB.m∥β且n∥βC.m∥β且n∥l2D.m∥l1且n∥l2答案 D解析由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知α∥β.故选D.3.(2017·嘉兴月考)对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是() A.若m∥α,n∥α,则m∥nB.若m∥α,n⊂α,则m∥nC.若m∥α,n⊥α,则m∥nD.若m⊥α,n⊥α,则m∥n答案 D解析对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D 正确.4.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A .①③B .①④C .②③D .②④ 答案 B解析 ①中易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B 可得出AB ∥平面MNP (如图). ④中,NP ∥AB ,能得出AB ∥平面MNP .5.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且P A =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则P A PC =PBPD ,∴PB =165,∴BD =245;若点P在α,β之间,则P APC=PBPD,∴PB=16,∴BD=24.6.(2016·全国甲卷)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β;②如果m⊥α,n∥α,那么m⊥n;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.8.在正四棱柱ABCD-A1B1C1D1中,O是底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面P AO.答案Q为CC1的中点解析假设Q为CC1的中点.因为P为DD1的中点,所以QB∥P A.连接DB,因为O是底面ABCD的中心,所以D1B∥PO,又D1B⊄平面P AO,QB⊄平面P AO,且P A∩PO于P,所以D1B∥平面P AO,QB∥平面P AO,又D1B∩QB于B,所以平面D1BQ∥平面P AO.故点Q满足条件,Q为CC1的中点时,有平面D1BQ∥平面P AO.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN 平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形, 其面积S =HF ·HD =(12AC )·(12SB )=452.11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥GE , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1, BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.(2017·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD . (1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连接GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形,所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD , 所以E G ∥平面ABCD . (2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形, 所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE =2×13×a +2a 2×a ×32a=32a 3. *13.(2016·南通模拟)如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求ADDC的值.解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.连接A 1B ,交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1.∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1.(2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DCAD, 又∵A 1O OB =1,∴DC AD =1,即AD DC=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高考一轮复习立体几何一一.选择题(共24小题)1.(2014•郴州三模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()A.B. C. D.2.(2014秋•城区校级期末)如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD﹣A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()A.B.C.D.3.(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为()A.B.C.D.4.(2013•鹰潭校级模拟)已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.1 C.D.5.(2012•陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.6.(2015•铜川模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2 C.3 D.47.(2015秋•哈尔滨校级月考)某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b 的线段,则a+b的最大值为()A.2 B.2C.4 D.28.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.29.已知某个几何体的三视图如图所示.根据图中标出的尺寸(单位:cm).可得这个几何体的体积是cm3.()A.B.C.D.410.(2013秋•秦安县期末)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为()A.B.C.D.11.(2014•唐山一模)正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.8πB.16πC.32πD.64π12.(2016•北海一模)已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π13.(2015•沈阳校级模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()A.πB.2πC.3πD.4π14.正四面体的内切球与外接球的半径的比等于()A.1:3 B.1:2 C.2:3 D.3:515.(2014•道里区校级三模)已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正方形,则该正四面体的内切球的表面积为()A.6πB.54πC.12πD.48π16.(2014•大庆二模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B. C. D.17.(2015•新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144π D.256π18.(2015秋•晋中期末)表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为()A.2 B.C.6D.19.(2015•新课标II)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.20.(2015秋•淮南期末)如图所示,ABCD﹣A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,OA1不共面C.A,M,C,O不共面D.B,B1,O,M共面21.(2015•衡阳县校级模拟)如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行22.(2015秋•眉山期末)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()A.B.C.D.23.(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交24.(2016•延庆县一模)已知两条直线a,b和平面α,若a⊥b,b⊄α,则“a⊥α”是“b∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件二.填空题(共6小题)25.(2014•长春一模)已知三棱柱ABC﹣A1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12π,则该三棱柱的体积为.26.(2013•长春一模)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=.27.(2016•石嘴山校级二模)在三棱锥P﹣ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P﹣ABC的外接球的表面积为8π,则该三棱锥的体积为.28.(2015•南昌一模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为2,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为.29.(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.30.(2016春•厦门校级期中)a,b,c是空间中互不重合的三条直线,下面给出五个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线;上述命题中正确的是(只填序号).2017高考一轮复习立体几何一参考答案与试题解析一.选择题(共24小题)1.(2014•郴州三模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()A.B. C. D.【分析】根据题意几何体是球缺,利用球的视图是圆,看不到的线要画虚线,可得答案.【解答】解:用一个平行于水平面的平面去截球,截得的几何体是球缺,根据俯视图的定义,几何体的俯视图是两个同心圆,且内圆是截面的射影,∴内圆应是虚线,故选:B.【点评】本题考查了几何体的三视图,要注意,看不到的线要画虚线2.(2014秋•城区校级期末)如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD﹣A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()A.B.C.D.【分析】直接利用三视图的定义,正视图是光线从几何体的前面向后面正投影得到的投影图,据此可以判断出其正视图.【解答】解:由正视图的定义可知:点A、A1、C1在后面的投影点分别是点D、D1、C1,线段A1B在后面的投影面上的投影是以D1为端点且与线段A1B平行且相等的线段,即可得正视图.故选:A.【点评】从正视图的定义可以判断出题中的正视图,同时要注意能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.3.(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为()A.B.C.D.【分析】通过三视图的画法,几何体的主视图的轮廓是一个正方形,在作三视图时,能看见的线作成实线,被遮住的线作成虚线,由此规则判断各个选项即可.【解答】解:对于选项A,几何体的主视图的轮廓是一个正方形,故A不正确;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确.对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不正确;对于D,正视图是正方形符合题意,其中的两条实绩符合斜视图的特征,故D不正确.故选B.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.高考常考题型.4.(2013•鹰潭校级模拟)已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.1 C.D.【分析】由三棱锥的主视图与俯视图知三棱锥的底面与其中一个侧面都是直角三角形,画出其直观图,可得侧视图为直角三角形,且直角边长分别为1,.代入公式计算.【解答】解:由三棱锥的主视图与俯视图知三棱锥的底面与其中一个侧面都是直角三角形,其直观图如图:SB=,SO=1,BC=1,∴CM=,几何体的侧视图为直角三角形,且直角边长分别为1,.∴侧视图的面积S=.故选C.【点评】本题考查了由主视图与俯视图求侧视图的面积,解题的关键是判断主视图与俯视图的数据所对应的几何量,画出其直观图.5.(2012•陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【分析】直接利用三视图的画法,画出几何体的左视图即可.【解答】解:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,AD1在右侧的射影是正方形的对角线,B1C在右侧的射影也是对角线是虚线.如图B.故选B.【点评】本题考查几何体的三视图的画法,考查作图能力.6.(2015•铜川模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A.1 B.2 C.3 D.4【分析】由题意可知,几何体为三棱锥,将其放置在长方体模型中即可得出正确答案.【解答】解:由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示(图中红色部分),利用长方体模型可知,此三棱锥的四个面中,全部是直角三角形.故选:D.【点评】本题考查学生的空间想象能力,由三视图还原实物图,是基础题.7.(2015秋•哈尔滨校级月考)某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b的线段,则a+b的最大值为()A.2 B.2C.4 D.2【分析】由棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,设出三度,利用勾股定理,基本不等式求出最大值.【解答】解:将已知中的棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,则设长方体的三度:x、y、z,所以x2+y2+z2=9,x2+y2=a2,y2+z2=b2,x2+z2=4可得a2+b2=14∵(a+b)2≤2(a2+b2)a+b≤2,∴a+b的最大值为2,故选:B.【点评】本题考查三视图,几何体的结构特征,考查空间想象能力,基本不等式的应用,是中档题.8.(2015•北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B.C.D.2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB⊥平面ABCD,底面ABCD为正方形∴PB=1,AB=1,AD=1,∴BD=,PD==.PC==该几何体最长棱的棱长为:故选:C.【点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键9.已知某个几何体的三视图如图所示.根据图中标出的尺寸(单位:cm).可得这个几何体的体积是cm3.()A.B.C.D.4【分析】由三视图知几何体是一个三棱锥,三棱锥的底面是一个底边是2,高是2的三角形,三棱锥的高是2,根据三棱锥的体积公式得到结果.【解答】解:原几何体为底面是高为2,底边长是2的三角形的三棱锥,该三棱锥的高是2,所以体积是=.故选:A.【点评】本题考查由三视图还原几何体并且看出几何体各个部分的长度,本题解题的关键是要求体积需要求出几何体的底面面积和高.本题是一个基础题.10.(2013秋•秦安县期末)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为()A.B.C.D.【分析】设出球的半径,求出圆锥的底面半径然后求出球的面积以及圆锥的全面积,即可求出结果.【解答】解:如图,设球半径为R,则锥的底面半径r=R,锥的高h=R.∴S锥=S底面积+S侧=πr2+πRr=π(R)2+×R•Rπ=R2S球=4πR2.S锥:S球==,故选:D.【点评】本题考查球的内接体,圆锥的表面积以及球的面积的求法,考查计算能力.11.(2014•唐山一模)正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A.8πB.16πC.32πD.64π【分析】由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【解答】解:如图,球心O到四个顶点的距离相等,∵正三棱锥A﹣BCD中,底面边长为6,∴BE=2,在直角三角形BOE中,BO=R,EO=6﹣R,BE=2,由BO2=BE2+EO2,得R=4∴外接球的半径为4,表面积为:64π故选:D.【点评】本题是基础题,考查空间想象能力,计算能力;利用直角三角形BOE是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.12.(2016•北海一模)已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π【分析】求出△PAD所在圆的半径,利用勾股定理求出球O的半径R,即可求出球O的表面积.【解答】解:令△PAD所在圆的圆心为O1,△PAD为正三角形,AD=2,则圆O1的半径r=,因为平面PAD⊥底面ABCD,AB=4,所以OO1=AB=2,所以球O的半径R==,所以球O的表面积=4πR2=.故选:B.【点评】本题考查球O的表面积,考查学生的计算能力,比较基础.13.(2015•沈阳校级模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()A.πB.2πC.3πD.4π【分析】过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外切圆⊙O2,且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,由题意⊙O1的半径为r=1,进而求出圆锥的底面半径和高,代入圆锥体积公式,可得答案.【解答】解:过圆锥的旋转轴作轴截面,得△ABC及其内切圆⊙O1和外切圆⊙O2,且两圆同圆心,即△ABC的内心与外心重合,易得△ABC为正三角形,由题意⊙O1的半径为r=1,∴△ABC的边长为2,∴圆锥的底面半径为,高为3,∴V=.故选:C.【点评】本题考查的知识点是旋转体,圆锥的体积,其中根据已知分析出圆锥的底面半径和高,是解答的关键.14.正四面体的内切球与外接球的半径的比等于()A.1:3 B.1:2 C.2:3 D.3:5【分析】画出图形,确定两个球的关系,通过正四面体的体积,求出两个球的半径的比值即可.【解答】解:设正四面体为PABC,两球球心重合,设为O.设PO的延长线与底面ABC的交点为D,则PD为正四面体PABC的高,PD⊥底面ABC,且PO=R,OD=r,OD=正四面体PABC内切球的高.设正四面体PABC底面面积为S.将球心O与四面体的4个顶点PABC全部连接,可以得到4个全等的正三棱锥,球心为顶点,以正四面体面为底面.每个正三棱锥体积V1=•S•r 而正四面体PABC体积V2=•S•(R+r)根据前面的分析,4•V1=V2,所以,4••S•r=•S•(R+r),所以,R=3r故选:A.【点评】本题是中档题,考查正四面体的内切球与外接球的关系,找出两个球的球心重合,半径的关系是解题的关键,考查空间想象能力,计算能力.15.(2014•道里区校级三模)已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正方形,则该正四面体的内切球的表面积为()A.6πB.54πC.12πD.48π【分析】由正四面体的俯视图是边长为2的正方形,所以此四面体一定可以放在棱长为2的正方体中,求出正四面体的边长,可得正四面体的内切球的半径,即可求出正四面体的内切球的表面积.【解答】解:∵正四面体的俯视图是如图所示的边长为3正方形ABCD,∴此四面体一定可以放在正方体中,∴我们可以在正方体中寻找此四面体.如图所示,四面体ABCD满足题意,由题意可知,正方体的棱长为3,∴正四面体的边长为6,∴正四面体的高为2∴正四面体的内切球的半径为,∴正四面体的内切球的表面积为4πR2=6π故选:A.【点评】本题的考点是由三视图求几何体的表面积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的表面积公式分别求解,考查了空间想象能力.16.(2014•大庆二模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B. C. D.【分析】由已知中几何体的三视图中,正视图是一个正三角形,侧视图和俯视图均为三角形,我们得出这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,得到球的半径,代入球的表面积公式,即可得到答案.【解答】解:由已知中知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径R=PD=.则这个几何体的外接球的表面积为S=4πR2=4π×()2=故选:A.【点评】本题考查的知识点是由三视图求面积、体积,其中根据三视图判断出几何体的形状,分析出几何体的几何特征是解答本题的关键.17.(2015•新课标II)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144π D.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.18.(2015秋•晋中期末)表面积为40π的球面上有四点S、A、B、C且△SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB⊥平面ABC,则三棱锥S﹣ABC体积的最大值为()A.2 B.C.6D.【分析】作出直观图,根据球和等边三角形的性质计算△SAB的面积和棱锥的最大高度,代入体积公式计算.【解答】解:过O作OF⊥平面SAB,则F为△SAB的中心,过F作FE⊥SA于E点,则E为SA中点,取AB中点D,连结SD,则∠ASD=30°,设球O半径为r,则4πr2=40π,解得r=.连结OS,则OS=r=,OF=,∴SF==2.∴DF=EF=,SE==.∴SA=2SE=2,S△SAB=SA2=6.过O作OM⊥平面ABC,则当C,M,D三点共线时,C到平面SAB的距离最大,即三棱锥S﹣ABC体积最大.连结OC,∵平面SAB⊥平面ABC,∴四边形OMDF是矩形,∴MD=OF=,OM=DF=.∴CM==2.∴CD=CM+DM=3.∴三棱锥S﹣ABC体积V=S△SAB•CD==6.故选C.【点评】本题考查了棱锥的体积计算,空间几何体的作图能力,准确画出直观图找到棱锥的最大高度是解题关键.19.(2015•新课标II)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.20.(2015秋•淮南期末)如图所示,ABCD﹣A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,OA1不共面C.A,M,C,O不共面D.B,B1,O,M共面【分析】本题利用直接法进行判断.先观察图形判断A,M,O三点共线,为了要证明A,M,O三点共线,先将M看成是在平面ACC1A1与平面AB1D1的交线上,利用同样的方法证明点O、A也是在平面ACC1A1与平面AB1D1的交线上,从而证明三点共线.【解答】解:连接A1C1,AC,则A1C1∥AC,∴A1、C1、C、A四点共面,∴A1C⊂平面ACC1A1,∵M∈A1C,∴M∈平面ACC1A1,又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,∴A、M、O三点共线.故选:A.【点评】本题主要考查了平面的基本性质及推论、三点共线及空间想象能力,属于基础题.21.(2015•衡阳县校级模拟)如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行【分析】先利用三角形中位线定理证明MN∥BD,再利用线面垂直的判定定理定义证明MN 与CC1垂直,由异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D 【解答】解:如图:连接C1D,BD,在三角形C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,D错误故选D【点评】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键22.(2015秋•眉山期末)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()A.B.C.D.【分析】利用公理三及推论判断求解.【解答】解:在A图中:分别连接PS,QR,则PS∥QR,∴P,S,R,Q共面.在B图中:过P,Q,R,S可作一正六边形,如图,故P,Q,R,S四点共面.在C图中:分别连接PQ,RS,则PQ∥RS,∴P,Q,R,S共面.D图中:PS与RQ为异面直线,∴P,Q,R,S四点不共面.故选:D.【点评】本题考查四点不共面的图形的判断,是基础题,解题时要认真审题,注意平面性质及推论的合理运用.23.(2015•广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可退出和l1,l2异面矛盾,这样便说明D正确.【解答】解:A.l与l1,l2可以相交,如图:∴该选项错误;B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;C.l可以和l1,l2都相交,如下图:,∴该选项错误;D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;∵l和l1,l2都共面;∴l和l1,l2都平行;∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;∴该选项正确.故选D.【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.24.(2016•延庆县一模)已知两条直线a,b和平面α,若a⊥b,b⊄α,则“a⊥α”是“b∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】分别判断出充分性和不必要性即可.【解答】解:若a⊥b,b⊄α,a⊥α,则b∥α,是充分条件,若a⊥b,b⊄α,b∥α,推不出a⊥α,不是必要条件,则“a⊥α”是“b∥α”的充分不必要条件,故选:A.【点评】本题考查了充分必要条件,考查线面、线线的位置关系,是一道基础题.二.填空题(共6小题)25.(2014•长春一模)已知三棱柱ABC﹣A1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12π,则该三棱柱的体积为3.【分析】求出底面中心到底面三角形顶点的距离,求出外接球的半径,然后求出棱柱的高,即可求出所求体积.【解答】解:设球半径R,上下底面中心设为M,N,由题意,外接球心为MN的中点,设为O,则OA=R,由4πR2=12π,得R=OA=,又AM=,由勾股定理可知,OM=1,所以MN=2,即棱柱的高h=2,所以该三棱柱的体积为××2=3.故答案为:3.【点评】本题是基础题,考查几何体的外接球的表面积的应用,三棱柱体积的求法,考查计算能力.26.(2013•长春一模)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=.【分析】设正四面体ABCD的棱长为a,利用体积分割法计算出内切球半径r=a,从而得到S2关于a的式子.利用正三角形面积公式,算出正四面体的表面积S1关于a的式子,由此不难得出S1与S2的比值.【解答】解:设正四面体ABCD的棱长为a,可得∵等边三角形ABC的高等于a,底面中心将高分为2:1的两段∴底面中心到顶点的距离为×a= a可得正四面体ABCD的高为h== a∴正四面体ABCD的体积V=×S△ABC×a=a3,设正四面体ABCD的内切球半径为r,则4××S△ABC×r=a3,解得r= a∴内切球表面积S2=4πr2=∵正四面体ABCD的表面积为S1=4×S△ABC=a2,∴==故答案为:【点评】本题给出正四面体,求它的表面积与其内切球表面积的比值,着重考查了正四面体的性质、球的表面积公式和多面体的外接、内切球算法等知识,属于中档题.27.(2016•石嘴山校级二模)在三棱锥P﹣ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P﹣ABC的外接球的表面积为8π,则该三棱锥的体积为.【分析】作出草图,根据底面△ABC与截面圆的关系计算截面半径,根据球的面积计算球的半径,利用勾股定理计算球心到截面的距离,得出棱锥P﹣ABC的高.【解答】解:过A作平面ABC所在球截面的直径AD,连结BD,CD,∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=∠ADC=∠ADB=30°.∴∠BCD=∠CBD=∠BDC=60°.即△BCD是等边三角形.∵BC=2,∴AD==.过球心O作OM⊥平面ABC,则M为AD的中点,∴AM=.设外接球半径为r,则4πr2=8π,∴r=.即OA=.∴OM==.∵PA⊥平面ABC,∴PA=2OM=.∴V P﹣ABC===.故答案为.【点评】本题考查了棱锥与外接球的关系,棱锥的体积计算,属于中档题.28.(2015•南昌一模)已知直三棱柱ABC﹣A1B1C1中,∠BAC=90°,侧面BCC1B1的面积为2,则直三棱柱ABC﹣A1B1C1外接球表面积的最小值为4π.【分析】设BC=2x,BB1=2y,则4xy=2,利用直三棱柱ABC﹣A1B1C1中,∠BAC=90°,可得直三棱柱ABC﹣A1B1C1外接球的半径为≥=1,即可求出三棱柱ABC﹣A1B1C1外接球表面积的最小值.【解答】解:设BC=2x,BB1=2y,则4xy=2,∵直三棱柱ABC﹣A1B1C1中,∠BAC=90°,∴直三棱柱ABC﹣A1B1C1外接球的半径为≥=1,∴直三棱柱ABC﹣A1B1C1外接球表面积的最小值为4π×12=4π.故答案为:4π.【点评】本题考查三棱柱ABC﹣A1B确定1C1外接球表面积的最小值,考查基本不等式的运用,确定直三棱柱ABC﹣A1B1C1外接球的半径的最小值是关键.29.(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.【分析】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣AMN的体积即可.。

相关文档
最新文档