轴向拉伸与压缩PPT课件
合集下载
轴向拉伸和压缩及连接件的强度计算PPT课件
特点
轴向拉伸和压缩时,杆件只承受 轴向力,不受其他外力作用,杆 件横截面保持为平面,无剪切和 扭转。
轴向拉伸和压缩的应用场景
01
02
03
机械制造
轴、螺栓、螺母等连接件 的设计和强度计算。
建筑行业
钢结构的稳定性分析和设 计,如钢梁、钢柱等。
石油化工
管道、压力容器等承受内 压的元件设计和安全评估。
轴向拉伸和压缩的基本原理
准确性。
材料性能研究
深入研究材料的力学性能,特别是 其非线性行为,为强度计算提供更 准确的基础数据。
设计优化与验证
结合实际应用案例,不断优化设计, 并通过实验验证来确保设计的有效 性。
05 轴向拉伸和压缩及连接件 的未来发展与展望
当前研究的热点与难点
材料性能的极限挑战
随着对高性能材料需求的增加,如何准确预测材料在轴向 拉伸和压缩下的行为以及连接件的强度成为当前研究的热 点。
但是,在实际应用中,由于材料的不 均匀性、表面粗糙度等因素的影响, 拉伸强度和压缩强度可能会有所差异 。
强度计算中的注意事项
01
材料的不均匀性
在计算强度时,需要考虑材料的不均匀性。即使是同一种材料,不同部
位的力学性能也可能存在差异。
02 03
温度的影响
温度对材料的力学性能有很大影响。在高温下,材料的屈服强度和抗拉 强度都会降低。因此,在高温环境下工作的零件,需要考虑温度对强度 的影响。
复杂应力状态
轴向拉伸和压缩及连接件在实际应用中可能面临复杂的应力状态, 如弯曲、剪切等,增加了强度计算的难度。
连接件设计
连接件的设计对整体结构的强度和稳定性至关重要,设计不当可能 导致失效或安全事故。
应用案例分析
轴向拉伸和压缩时,杆件只承受 轴向力,不受其他外力作用,杆 件横截面保持为平面,无剪切和 扭转。
轴向拉伸和压缩的应用场景
01
02
03
机械制造
轴、螺栓、螺母等连接件 的设计和强度计算。
建筑行业
钢结构的稳定性分析和设 计,如钢梁、钢柱等。
石油化工
管道、压力容器等承受内 压的元件设计和安全评估。
轴向拉伸和压缩的基本原理
准确性。
材料性能研究
深入研究材料的力学性能,特别是 其非线性行为,为强度计算提供更 准确的基础数据。
设计优化与验证
结合实际应用案例,不断优化设计, 并通过实验验证来确保设计的有效 性。
05 轴向拉伸和压缩及连接件 的未来发展与展望
当前研究的热点与难点
材料性能的极限挑战
随着对高性能材料需求的增加,如何准确预测材料在轴向 拉伸和压缩下的行为以及连接件的强度成为当前研究的热 点。
但是,在实际应用中,由于材料的不 均匀性、表面粗糙度等因素的影响, 拉伸强度和压缩强度可能会有所差异 。
强度计算中的注意事项
01
材料的不均匀性
在计算强度时,需要考虑材料的不均匀性。即使是同一种材料,不同部
位的力学性能也可能存在差异。
02 03
温度的影响
温度对材料的力学性能有很大影响。在高温下,材料的屈服强度和抗拉 强度都会降低。因此,在高温环境下工作的零件,需要考虑温度对强度 的影响。
复杂应力状态
轴向拉伸和压缩及连接件在实际应用中可能面临复杂的应力状态, 如弯曲、剪切等,增加了强度计算的难度。
连接件设计
连接件的设计对整体结构的强度和稳定性至关重要,设计不当可能 导致失效或安全事故。
应用案例分析
《轴向拉伸和压缩》课件
课程目标
掌握轴向拉伸和压缩的基 本原理和分析方法
了解轴向拉伸和压缩在实 际工程中的应用
培养学生的实验技能和实 践能力,提高解决实际问 题的能力
Part
02
轴向拉伸和压缩的基本概念
拉伸和压缩的定义
拉伸
物体在力的作用下沿力的方向伸 展或拉长的过程。
压缩
物体在力的作用下沿力的方向缩 短或压扁的过程。
拉伸和压缩的力分析
力的方向分析
在轴向拉伸和压缩过程中,力的方向 沿着杆件轴线,与杆件轴线重合。
力的作用点分析
力的作用点选择在杆件上,通常选择 在杆件的两端,以便于分析杆件受力 情况。
拉伸和压缩的变形分析
变形量分析
在轴向拉伸和压缩过程中,杆件会发生伸长或缩短的变形,变形量可以用伸长量或缩短 量来表示。
拉伸和压缩的分类
按变形程度
弹性变形和塑性变形
按外力性质
静力拉伸和压缩、动力拉伸和压缩、冲击拉伸和压缩
拉伸和压缩的物理模型
直杆拉伸与压缩模型
忽略横截面变化的简单拉伸与压缩模型。
弹性杆件模型
考虑横截面变化的弹性变形模型。
弹性体模型
考虑物体内部应力和应变的弹性变形模型。
Part
03
轴向拉伸和压缩的力学分析
2
引伸计:测量试样在拉伸
或压缩过程中的应变。
3
计算机和数据采集系统:
记录和处理实验数据。
实验步骤
准备试样
01 选择所需材料,制备标准试样
。
安装试样
02 将试样放置在试验机的夹具中
,确保试样轴线与拉伸或压缩 方向一致。
设定实验参数
03 设定初始实验条件,如加载速
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
杆件轴向拉伸与压缩_图文
极限应力(危险应力、失效应力):材料发生破坏或产生过大变形而 不能安全工作时的最小应力值,即材料丧失工作能力时的应力,以符号 σu表示,其值由实验确定。
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
许用应力:构件安全工作时的最大应力,即构件在工作时允许承受的
最大工作应力,以符号[σ]表示。计算公式为:
式中,n为安全系数,它是一个大于1的系数,一般来说,确定安全系数 时应考虑以下几个方面的因素。(1) 实际荷载与设计荷载的出入。(2) 材料 性质的不均匀性。(3) 计算结果的近似性。(4) 施工、制造和使用时的条件 影响。可见,确定安全系数的数值要涉及工程上的各个方面,不单纯是个 力学问题。通常,安全系数由国家制定的专门机构确定。
根据上述现象,对杆件内部的变形作如下假设:变形之前横截面为平 面,变形之后仍保持为平面,而且仍垂直于杆轴线,只是每个横截面沿 杆轴作相对平移。这就是平面假设。
ac
F
a' c'
F
b' d'
bd
11
建筑力学
推论:
1、等直拉(压)杆受力时没有发生剪切变形,因而横截 面上没有切应力。 2、拉(压)杆受力后任意两个横截面之间纵向线段的伸长 (缩短)变形是均匀的。亦即横截面上各点处的正应力 都相等。
p t
s M
10
建筑力学
拉(压)杆横截面上的正应力
推导思路:实验→变形规律→应力的分布规律→应力的计算公式
简单实验如下。用弹性材料做一截面杆(如下图),在受拉力前,在截 面的外表皮上画ab和cd两个截面,在外力F的作用下,两个截面ab和cd的 周线分别平行移动到a`b`和c`d`。根据观察,周线仍为平面周线,并且截 面仍与杆件轴线正交。
一般来说,在采用截面法之前不要使用力的可传性原理, 6
材料力学--轴向拉伸和压缩
2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图
目
§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比
录
§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。
材料力学之轴向拉伸与压缩PPT(79张)
F1 F2
F3 Fn
F1
ΔFQy
DF
DF 平均应力: Pm DA
ΔFQz ΔA
ΔFN
DF dF 总应力: plim
DA0 DA dA
F2
limDFN
dFN 垂的直应于 力截 称面 为
DA DA0 dA“正应力”
limDFQ
dFQ
与截面相切 的应力称为
DA DA0 dA“切应力”
以AB杆为研究对象
mA 0
F N FNC B B C9 11 0k N850
以CDE为研究对象
mE 0
FNCD40kN
20kN 18kN 4m
F Ns C3 iD 0 n 0 8 F N B 8 C 2 4 0 0
30O FNCD C
FNBC
B 4m
BC
应力的国际单位为N/m2 (帕斯卡)
1N/m2=1Pa
1MPa=106Pa=1N/mm2
某截面某一点处应力(矢量)正负号的规定:
1GPa=109Pa
正应力:拉应力为正,压应力为负;
切应力:对截面内部(靠近截面)的一点,产生顺时针方向力矩的切应力为正, 反之为负。
拉(压)杆横截面上的应力
几何变形
平面假设
d A
FNAsBin300F FNAcBo3s00FNBC
FNAB
30 0
B
AB
FNAB28.3MPa AAB
C
FNBC a
F
BCFANBBCC4.8MPa
例 题 2.8
计算图示结构BC和CD杆横截面上的正应力值。 已知CD杆为φ28的圆钢,BC杆为φ22的圆钢。
D
F3 Fn
F1
ΔFQy
DF
DF 平均应力: Pm DA
ΔFQz ΔA
ΔFN
DF dF 总应力: plim
DA0 DA dA
F2
limDFN
dFN 垂的直应于 力截 称面 为
DA DA0 dA“正应力”
limDFQ
dFQ
与截面相切 的应力称为
DA DA0 dA“切应力”
以AB杆为研究对象
mA 0
F N FNC B B C9 11 0k N850
以CDE为研究对象
mE 0
FNCD40kN
20kN 18kN 4m
F Ns C3 iD 0 n 0 8 F N B 8 C 2 4 0 0
30O FNCD C
FNBC
B 4m
BC
应力的国际单位为N/m2 (帕斯卡)
1N/m2=1Pa
1MPa=106Pa=1N/mm2
某截面某一点处应力(矢量)正负号的规定:
1GPa=109Pa
正应力:拉应力为正,压应力为负;
切应力:对截面内部(靠近截面)的一点,产生顺时针方向力矩的切应力为正, 反之为负。
拉(压)杆横截面上的应力
几何变形
平面假设
d A
FNAsBin300F FNAcBo3s00FNBC
FNAB
30 0
B
AB
FNAB28.3MPa AAB
C
FNBC a
F
BCFANBBCC4.8MPa
例 题 2.8
计算图示结构BC和CD杆横截面上的正应力值。 已知CD杆为φ28的圆钢,BC杆为φ22的圆钢。
D
《轴向拉伸与压缩》课件
轴向拉伸的应用范围
建筑工程
轴向拉伸在钢筋混凝土结构中的应用,增加结构的承载能力。
材料制备
轴向拉伸用于制备高强度材料、纤维材料、复合材料等。
模具设计
轴向拉伸在模具设计中的应用,增强产品的形状和结构。
轴向拉伸的原理与方法
1
应力-应变关系
介绍轴向拉伸应力和应变之间的关系。
2
材料性能分析
通过实验和测试,评估材料的拉伸性能和变形行为。念 轴向拉伸的应用范围 轴向拉伸的原理与方法 轴向压缩的概念 轴向压缩的应用范围 轴向压缩的原理与方法
背景介绍
轴向拉伸和压缩是一种重要的力学变形方式,在工程应用中起着至关重要的作用。本节将介绍轴向拉伸 和压缩的背景和意义。
轴向拉伸的概念
轴向拉伸是指在材料中施加一个沿着轴向方向的拉力,使材料沿轴向伸长的 力学变形方式。
3
工程应用案例
展示轴向拉伸在工程实践中的应用案例。
轴向压缩的概念
轴向压缩是指沿着轴向方向对材料施加的压缩力,使材料沿轴向缩短的力学 变形方式。
轴向压缩的应用范围
桥梁建设
砖瓦制造
汽车制造
轴向压缩在桥梁建设中的应用, 提升桥梁的稳定性和承载能力。
轴向压缩用于砖瓦制造过程中, 提高瓦片的密度和强度。
汽车制造中的轴向压缩应用, 改善车身结构和安全性能。
轴向压缩的原理与方法
1 应变率分析
2 压缩强度测试
分析材料在轴向压缩中 的变形速率和应变过程。
通过实验和测试,评估 材料在轴向压缩条件下 的强度和稳定性。
3 工程实践案例
展示轴向压缩在工程实 践中的应用案例和成果。
建筑力学 材料力学 轴向拉伸与压缩ppt课件
可编辑课件PPT
1
可编辑课件PPT
2
目录
§2-1 轴向拉伸、压缩及工程实例
§2-2 轴力和轴力图
§2-3 横截面上的应力
§2-4 斜截面上的应力
§2-5 拉、压杆的变形
§2-6 材料在拉伸、压缩时的力学性质
§2-7 强度计算、许用应力和安全因数
§2-8 拉伸和压缩超静定问题
可编辑课件PPT
3
§2–1 轴向拉伸、压缩及工程实例
PB
PC
N3
C
PC N4
轴力图如右图
N
5P
2P +
+
P
–
可3编P辑课件PPT
D PD D PD D PD
x
14
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN
–
可编3辑k课N件PPT
16
[例3] 一等直杆受四个轴向外力作用,如图所示,试求杆 件横截面l-l、2-2、3-3上的轴力,并作轴力图。
可编辑课件PPT
17
问题提出:
§2–3 横截面上的应力
P
P
P
P
1. 内力大小不能衡量构件强度的大小。 2. 强度:① 内力在截面的分布集度应力;
② 材料承受荷载的能力。
一、应力的概念
1. 定义:由外力引起的内力集度。
一、概念
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
1
可编辑课件PPT
2
目录
§2-1 轴向拉伸、压缩及工程实例
§2-2 轴力和轴力图
§2-3 横截面上的应力
§2-4 斜截面上的应力
§2-5 拉、压杆的变形
§2-6 材料在拉伸、压缩时的力学性质
§2-7 强度计算、许用应力和安全因数
§2-8 拉伸和压缩超静定问题
可编辑课件PPT
3
§2–1 轴向拉伸、压缩及工程实例
PB
PC
N3
C
PC N4
轴力图如右图
N
5P
2P +
+
P
–
可3编P辑课件PPT
D PD D PD D PD
x
14
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN + 8kN
–
可编3辑k课N件PPT
16
[例3] 一等直杆受四个轴向外力作用,如图所示,试求杆 件横截面l-l、2-2、3-3上的轴力,并作轴力图。
可编辑课件PPT
17
问题提出:
§2–3 横截面上的应力
P
P
P
P
1. 内力大小不能衡量构件强度的大小。 2. 强度:① 内力在截面的分布集度应力;
② 材料承受荷载的能力。
一、应力的概念
1. 定义:由外力引起的内力集度。
一、概念
轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。 轴向压缩:杆的变形是轴向缩短,横向变粗。
材料力学PPT第二章
Q235钢的主要强度指标:s = 240 MPa,
b = 390 MPa
低碳钢拉伸试件图片
试件拉伸破坏断口图片
结合压缩曲线得到结论:颈缩过程,材 料的力学性质发生变化
塑性指标
1.延伸率
l1 l 100%
l
2.断面收缩率
A A1 A
100%
l1----试件拉断后的长度
A1----试件拉断后断口处的最小 横截面面积
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
FN 2 45° B x
F
a
c
b
d
F FN dA
bd
A
dA A
A
FN
A
A 1
45°
C
2
FN1
y
FN 2 45° B
F
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
≥5%—塑性材料 <5%—脆性材料 σ
Q235钢: 20% ~ 30% ≈60%
冷作硬化
O
应力-应变(σ-ε)图
注意:
(1) 低碳钢的s,b都还是以相应的抗力除以试
《材料力学拉压》PPT课件
F
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
各点线应变相同 F
F
根据静力平衡条件: F NdF A dAA
即
FN
A
FN
A
正负号规定:拉应力为正,压应力为负.
FN 的适用条件:
A
1、只适用于轴向拉伸与压缩杆件,即杆端处力的合 力作用线与杆件的轴线重合.
2、只适用于离杆件受力区域稍远处的横截面.
4、 实验验证
拉伸与压缩/横截面上的内力和应力
卸载
卸载定律:在卸载
过程中,应力与应
变满足线性关系.
p e
应变关系
e p
拉伸与压缩/材料的力学性能
低碳钢Q235拉伸时的力学行为
断裂 冷作<应变>硬化现象:
应力超过屈服极限后
卸 载 与
卸载,再次加载,材 料的比例极限提高,
再
再加载
而塑性降低的现象.
加
载
拉伸与压缩/材料的力学性能
名义屈服应力
p0.
n
(n>1) 引入安全系数的原因:
1、作用在构件上的外力常常估计不准确;构件的外形及所受 外力较复杂,计算时需进行简化,因此工作应力均有一定 程度的近似性;
2、材料均匀连续、各向同性假设与实际构件的出入,且小试样 还不能真实地反映所用材料的性质等.
构件拉压时的强度条件
maxFNAmax[]
拉伸与压缩/拉〔压〕时的强度计算
1.5m B
A 1
FN1
B
FN 2
F
2m
F
2
C
FFN2 cos 0 FN1 FN2 sin 0
解得
FN1
3 4
F(拉) ,
FN2
5 4
F(压)
第二章轴向拉伸和压缩
60 MPa
已知:薄壁圆环,长度为b,内径d=200mm,壁 厚δ=5mm,承受p=2MPa的内压力作用。 求:圆环径向截面上的拉应力
b
δ p
p
d
将钢环截开,取上半部为研究对象
Fy 0
p
0
得:
b d sin d
2 pb d 2FN
2FN 0 FN p
bd 2
ABC杆为圆杆,直径d=10mm
钢材的
F1 A
E 200GPa
0.28
F2 B
C F3
求:(1)杆的伸长 (2)BC 段变形后的直径
解: 作杆的轴力图 F1 A
F2 B
C F3
杆的横截面面积
FN(kN) 10
10
A 102 106 m2 78.5106 m2
4
l
内力 — 是一个分布力系,利用截面法求得 的是该分布力系的合力。
F1
F2
F3
Fn
应力 — 内力在一点的分布集度
通俗地说,应力就是单位面积上的内力。
2、平均应力
pm
F A
F 是矢量
pm 也是矢量
3、应力
p lim F A0 A
F1
F
C
A
F2
F1
p
C
称为C点的应力
F2
4、正应力和切应力
长度为1.2 m,BD杆为8号槽钢,长
F
度为1.6 m,F=60kN,
C
B
材料的 160MPa
3
4
求:(1)校核结构的强度
(2)计算B点的位移
D
解:
2材料力学轴向拉压.ppt课件
斜FA 布p纵α上切截=。截应c±面面力o4A5上FA上成so的截对p面全A dFA应Ac力mmm oia 可nxp9s i分0AAn 4α45解—A —59 ——为d0 c2 正横 斜Ao20 截截应s面面p力面面9 和积A 积0 4 4切550 应2F2力
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
三. 圣维南(Saint-Venant)原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。 应力分布示意图:
(红色实线为变形前的线,红色虚线为红色实线变形后的形状。)
例1 直径为d =1 cm 杆受拉力P =10 kN的作用,试求最大切应力, 并求与横截面夹角30°的斜截面上的正应力和切应力。
1 kL2 2
2
§8–3 拉压杆的应力与圣维南原理
一、拉(压)杆横截面上的应力 1. 变形规律试验及平面假设:
变形前
ab cd
P 受载后
a´
b´
c´
d´
P
平面假设:原为平面的横截面在变形后仍为平面。 纵向纤维变形相同。
均匀材料、均匀变形,内力当然均匀分布。
2. 拉伸应力: P
s FN(x)
s FN (x)
3、轴力图—— FN (x) 的图象表示。
意 ①反映出轴力与截面位置变化关系,较直观;
义 ②确定出最大轴力的数值 FN
及其所在横截面的位置,
P
即确定危险截面位置,为
+
强度计算提供依据。
FN>0 FN<0
x
[例1] 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 P 的力,方向如图,试画出杆的轴力图。
FN4= P
轴力图如右图 FN
2P + –
3P
BC
PB FN3
PC C
PC FN4
5P
+
P
D PD D PD D PD
x
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN +
8kN – 3kN
OA
BC
D
PA
PB
PC
PD
FN1
A
BC
D
PA
PB
PC
PD
解: 求OA段内力FN1:设置截面如图
X 0 FN1 PA PB PC PD 0
FN1 5P 8P 4P P 0 FN1 2P
同理,求得AB、
FN2
BC、CD段内力分
别为:
FN2= –3P
FN3= 5P
由几何关系: cosa A
Aa
Aa
A
cosa
代入上式,得:
pa
P Aa
P cosa
A
s 0 cosa
即,斜截面上全应力: pa s 0cosa
这里,s 0
P A
斜截面上全应力: pa s 0cosa P
k
分解:
a
sa pa cosas 0cos2a
k
k
pa
P
a
s
3、拉压杆内一点M 的应力单元体:
s
ss
s
4、拉压杆斜截面上的应力
取分离体如图3, a 逆时针为正;
s
ss
s a 绕研究对象顺时针转为正;
由分离体平衡得:
a
a
x
图3
s
a a
s 0 s 0
c os2a sinacosa
或:s
a a
s 0
2
s 0
2
(1cos2a sin2a
[例2] 图示杆长为L,受分布力 q = kx 作用,方向如图,试画出
杆的轴力图。 q(x)
解:x 坐标向右为正,坐标原点在 自由端。
L
取左侧x 段为对象,内力N(x)为:
O x
O x
q
q(x)
Nx x
qL
FN
FN (x)
x kxdx 1 kx2
0
2
–
k L2
FN (x)max
pa
s
ina
s
0
c
osas
ina
s 0
2
sin2a
a
k
反映:通过构件上一点不同截面上应力变化情况。
P
sa
a Pa
a
当a = 0°时, (sa )maxs 0 (横截面上存在最大正应力)
当a = 90°时, (s a )min0
当a
=
±
45°时,|a
|m
ax
s 0
2
(45 °斜截面上剪应力达到最大)
§8-4 材料在拉伸与压缩时的力学性能 力学性能:材料在外力作用下表现的有关强度、变形方面的特性。
一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(及其缓慢地加载); 标准试件。
d
h
2、试验仪器:万能材料试验机;变形仪(常用引伸仪)。
二、低碳钢试件的拉伸图(P-- L图)
L PL EA
A
轴力引起的正应力 —— s : 在横截面上均布。
正应力与轴力有相同的正负号,即拉应力为正,压应力为负。
二、拉(压)杆斜截面上的应力
k
设有一等直杆受拉力P作用。 P
P
求:斜截面k-k上的应力。 解:采用截面法
P
a
k
k
Pa
由平衡方程:pa Aa P
a
则:
pa
P Aa
k Aa:斜截面面积;Pa:斜截面上内力。
§8–2 轴力及轴力图
一、内力 指由外力作用所引起的、物体内相邻部分之间分布内
力系的合成(附加内力)。
1. 轴力——轴向拉压杆的内力,用N 表示。
P
A
P
截开: P
代替:
P
A P
简图
FN A
轴力的正负规定:
FN
FN
FN 与外法线同向,为正轴力(拉力)
FN与外法线反向,为负轴力(压力)
FN
FN
2. 轴力计算——利用截面法计算轴力。
当a = 0,90°时, |a |min 0
补充: 1.一点的应力状态:过一点有无数的截面,这一点的各个截面
上的应力情况,称为这点的应力状态。
2、单元体:单元体—构件内的点的代表物,是包围被研究点的
无限小的几何体,常用的是正六面体。
单元体的性质—a、平行面上,应力均布;
M P
b、平行面上,应力相等。
第八章 轴向拉伸与压缩
§8–1 引言 §8–2 轴力及轴力图 §8–3 拉压杆的应力与圣维南原理 §8–4 材料在拉伸与压缩时的力学性能 §8–5 集中应力概念 §8–6 失效、许用应力与强度条件 §8–7 胡克定律与拉压杆的变形 §8–8 简单拉压静不定问题 §8–9 连接部分的强度计算
§8–1 引言
解:拉压杆斜截面上的应力,直接由公式求之:
s
0
P A
3பைடு நூலகம்.1140010002
127.4MPa
maxs 0/2127 .4/263.7MPa
s
a
s 0
2
(1c
os2a
)127.4(1c 2
os60)95.5MPa
a
s 0
2
s
in2a
127.4s 2
in6055.2MPa
一、概念 轴向拉压的外力特点:外力的合力作用线与杆的轴线重合。 轴向拉压的变形特点:杆的变形主要是轴向伸缩,伴随横向 缩扩。 轴向拉伸:杆的变形是轴向伸长,横向缩短。
轴向压缩:杆的变形是轴向缩短,横向变粗。
力学模型如图
P
轴向拉伸,对应的力称为拉力。
P
轴向压缩,对应的力称为压力。
P P
二、
工 程 实 例