数列求和常见的7种方法
数列求和常见的7种方法
数列求与得基本方法与技巧一、总论:数列求与7种方法:利用等差、等比数列求与公式错位相减法求与反序相加法求与分组相加法求与裂项消去法求与分段求与法(合并法求与)利用数列通项法求与二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法,三、逆序相加法、错位相减法就是数列求与得二个基本方法。
数列就是高中代数得重要内容,又就是学习高等数学得基础。
在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、一、利用常用求与公式求与利用下列常用求与公式求与就是数列求与得最基本最重要得方法。
1、等差数列求与公式:2、等比数列求与公式:3、4、5、[例1]已知,求得前n项与。
解:由由等比数列求与公式得(利用常用公式)===1-[例2]设S n=1+2+3+…+n,n∈N*,求得最大值、解:由等差数列求与公式得, (利用常用公式)∴===∴当,即n=8时,二、错位相减法求与这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn}得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。
[例3]求与:………………………①解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积设………………………。
②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列得求与公式得:∴[例4] 求数列前n 项得与、解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积设…………………………………①………………………………② (设制错位)①—②得 (错位相减)∴三、反序相加法求与这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。
高中数学数列求和的七种方法
高中数学数列求和的七种方法
1、倒序相加法
倒序相加法如果一个数列{an}满足与首末两项等距离的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
2、分组求和法
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
3、错位相减法
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
4、裂项相消法
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5、乘公比错项相减(等差等比)
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{anbn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的
前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应
用范围,确定公式适用于这个数列之后,再计算。
7、迭加法
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等
比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一
系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
高中数学 数列求和常见的7种方法
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21 资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+资料来源QQ 群697373867 关注微信公众号:高中“数学教研室”回复任意内容获取资料[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)=418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c nnn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。
数列求和7种方法
1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n) “ n(n - 1)dna1 d2等差数列求和公式:等比数列求和公式:S nS n=^n(n 1)2nS n 八k3k 4[例1]已知log 3 x解:由log3x* a1 (1 -q.1-qa i —^n qi -q(q =1)、& 八k2n(n 1)(2n 1)-1 2 3,求x x x 'I Xn项和.log 23-1=log 3 -log3 2 =log 2 31x =—2由等比数列求和公式得S n = x x2x3(利用常用公式)[例2]设S= 1+2+3+…+n, n€ N,求f (n)解: 由等差数列求和公式得S n•••当题1.等比数列S nf(n) ,n 32)S n 1x(1 x n)1 -xSn1 1齐-班)_ 1丄1一1 —歹2(n 32)Sm的最大值.1」n(n1), S22n 34n 641= -(n 1)( n 2)2(利用常用公式)1n 34 64(、n 8 )250n J n— 8、n ——,即 n= 8 时,f (n)(8max1502 2J 的前n项和 S n= 2n- 1,则Ll'i 〔4—1练习题1 已知 1 f ,求数列{ a n }的前n 项和S. 答案爲二〃2" _ 1$ _ 22心二泌-2"+1 答案: -1 3 5 加-1■ ■ ' '■■'・' ______ ■ ■ ■练习题2 221V2"的前n 项和为 ____题 2.若 12+22+…+(n -1) 2=an 3+bn 2+cn ,贝H a = , b = , c = __________(卑T)用•(沏-1) 2h-划+罔 1 1J 解: 原式= •」 . 答案:_ _ 1 二、错位相减法求和 这种方法是在推导等比数列的前 n 项和公式时所用的方法, 这种方法主要用于求数列{a n • b n }的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列 • [例 3]求和:S n =1 3x 5x 2 7x 3(2n -1)x nJL.............. ①解:由题可知,{ (2 n-L )x n J }的通项是等差数列{2n — 1}的通项与等比数列{x n」}的通项之积设xS n =1x 3x 2 5x 3 • 7x 4心……爲(2n- 1)x n..................... .②(设制错位) ①—②得(1 -x )^ =1 2x 2x 2 2x 3 • 2x 4「一 2x nJ -(2 n-1)x n(错位相减)再利用等比数列的求和公式得:n J1 — X(1 _x)S n=1 2x(2n _ 1)x nS n =(2n - 1)x n 1 -(2n 1)x n (1 x)(1-x)2[例4]求数列2, 42 , 63 ,,前n 项的和.2 2 2 2解:由题可知,出}的通项是等差数列{2n }的通项与等比数列{2n}的通项之积设S nWn2n①•②1 2 2 ①-②得(一評匸歹F IF-/n(设制错位) (错位相减)S n 1^_2nJ2n-4 -答案:— 、反序相加法求和 这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序) 数列相加,就可以得到 n 个(a 1 a n ). [例 5]求证:c : 3C : 5C ; (2n 1)C : =(n 1)2n ,再把它与原证明:设 S n =C n ■ 3C 15C^. . (2n . 1)C : .............. ..①把①式右边倒转过来得S n =(2n 1)C : (2 n-1)C :「3C : C :又由o m 二可得1n 1 nS n -(2n 1)C n (2n- 1)C n 3C n - C n .......... . ……..②① + ②得 2S n =(2n+2)(C : +C : + …y +C :) = 2(n +1) 2n5 =(n 1) 2n[例 6]求 sin 1 sin 2 sin 3 飞in 88 sin 89 的值 (反序)(反序相加)(2) 2 ' 2 ' 2 ' 2 ••• 2 " 解:设 S = sin 1 sin 2 sin 3 亠 亠 sin 88 sin 89 .................... ① 将①式右边反序得 2 0 2。
数列求和7种方法(方法全_例子多)84179
百度文库-让每个人平等地提升自我数列求和的基本方法和技巧(配以相应的练习)一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
1、2、3、5、一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法n(a1 a n)等差数列求和公式:等比数列求和公式:S nS nnk3k 1S nS n1)1)]2na13d1[例1]已知x ,求xx2解:由等比数列求和公式得na1印(11(q 1) x3a.qS n[例2]设S n= 1+2+3+ …+n, n€ N*,求f(n)4、S n的前(q 1)nk2k 1n项和.2x3x(1 x n)1 x2(1S n(n 32)S n 1」n(n 1)(2 n 1)6x nJ2L =1 _ 丄11 2n2的最大值.(利用常用公式)百度文库-让每个人平等地提升自我2解:由等差数列求和公式得1Sn2n(n 1),S n1-(n 1)( n 2) 2(利用常用公式)S n…f(n) (n 32)S n 1n ~2n 34n 641 ""“ 64n 34•••当 n -8•一 n1 I,5050,即 8 时,f (n )max50二、错位相减法求和这种方法是在推导等比数列的前 n 项和公式时所用的方法, 项和,其中{ a n }、{ b n }分别是等差数列和等比数列 2 3[例 3]求和:S n 1 3x 5x 7x(2n 1)x n 1解:由题可知, {(2n 1)x n 1}的通项是等差数列设xS n1x 3x 2 5x 3 7x 4(2n 这种方法主要用于求数列 {2n — 1}的通项与等比数列{ x nn1)x ①一②得 (1 x)S n 1 2x 2x 2 2x 32x 42x n 1(2n 1)x n{a n • b n }的前n}的通项之积 (设制错位)(错位相减)再利用等比数列的求和公式得:(1X )Snn 1c 1 X /c 2x(2n1 xn1)x[例4]求数列2,-62 2 解:由题可知,设S n2 ' '2n4 22 4 戸 2 22 22①一②得(1n 1S (2n 1)x(2nS n2(1 x)贵前n 项的和.1)x n (1 x) }的通项是等差数列{2n }的通项与等比数列{ I }的通项之积2n_6_ 23 6 24 1)S n2S n2 22 1尹n 2 yr....................2n、“ 1 2 2 23 24 2n盯 2 2n 2* 2*1(设制错位) (错位相减)百度文库-让每个人平等地提升自我练习题1 已知,求数列{a n}的前n项和S.答案:练习题的前n项和为百度文库-让每个人平等地提升自我答案:三、逆序相加法求和这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a.a n).0 12[例5]求证:C n 3C n 5C n(2n 1)C:(n 1)2n证明:设S n C0 3C1 5C;(2n i)c n把①式右边倒转过来得又由c nmS n (2n 1)C:(2nC:m可得S n (2n 1)C0 (2n①+②得2S n(2nS n (n1)C:1i)c n2)(C°C:1) 2n3c n C0(反序)3C;1C n 1 nC:C n n) 2(n 1) 2n(反序相加)题1 已知函数(1)证明:(2)求的值.解:(1 )先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1 )小题已经证明的结论可知, 两式相加得:百度文库-让每个人平等地提升自我所以四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可 .1 1[例7]求数列的前n 项和:1 1,— 4,-y 7,a a 1 1解:设 S n (1 1) (- 4) (-2a a将其每一项拆开再重新组合得1 S n (1 一a3n 2,•-7)(丄 a n 13n 2)1a(3n 1)n2丄 孑(3n 1)n\ 1丄a[例8]求数列{n(n+1)(2n+1)}的前n 项和.当a = 1时, 当a 1时,S n解:设 a k k(k 1)(2k 1)2k 3 )(13k 23n 2)(3n 1)n1a a 1(3n 1)n 2nS n k(k 1)(2kk 11)n(2 k 313k 2 k)将其每一项拆开再重新组合得nS n = 2k 1k 3 k 2=2(13 233\n )3(12 2 (1 2n)(分组)(分组求和)(分组)2 2n (n 1) n(n 1)(2n 1) n(n 1)2 2 22n(n 1) (n 2)2(分组求和)五、裂项法求和 这是分解与组合思想在数列求和中的具体应用 .裂项法的实质是将数列中的每项(通项)分解,然后 重新组合,使之能消去一些项,最终达到求和的目的.通项分解 (裂项)如:(1) a nf(n 1) f(n)(2) sin1 cos n cos(n 1)tan(n 1) tan n(3) a n1 n(n 1)(4) a n(2n )2 (2n 1)(2 n1)1 2n 1(5)a nn(n 1)( n 2) 12[n(n 1) (n 1)(n 2)](7)a na n(8) a n[例9]求数列n 2 1 n(n 1) 2n2(n 1) n n(n 1)1 2n1 n 2n 1,则 S n1(n 1)2n ' n1 (n 1)2n(An B)(A n C)C B (AnAn七)的前 n 项和.(裂项)解:设a n则S n=(.2 .1)(..n 1(3 (裂项求和)[例10]在数列{a n }中,a n、、n )-,求数列{b n }的前n 项的和•a n a n 1解:a n••• b nS n8[(1 =8(1/n 1(2009年广东文)20.(本小题满分n n 1 f nn 12 2}的前n 项和2)(丄1)2 3(14)(-二n n1 =8nn 114分)• 数列{b n (裂项)(裂项求和)1 x已知点(1,一)是函数f (x ) a (a 0,且a 1)的图象上一点,等比数列{a n }的前n 项和为f (n ) 3c ,数列{b n }(b n 0)的首项为 c ,且前 n 项和 S n 满足 S * — S n 1 = ... S n + .. S n1(n2).(1)求数列{a n }和{b n }的通项公式;1(2)若数列{—— bn b n}前n 项和为T n ,问Tn > 1000的最小正整数2009n 是多少?0.【解析】(1)a 1 又数列又公比又b n 数列b n ,a 2a 3f 3a n 成等比数列, a 2 a 12 27S n2n a12a s4 81 2 27所以1,所以3a nS n 1S n 1构成一个首相为 1( n N );1公差为 1的等差数列,1 n , S n n 21 2 2n 1 ;⑵T n1 1b|b2 b2b3b s b4HI ib n b n i7 III 1(2n 1) 2n 1由T n 11 1 1 11 -2 3 2 3 5HI 1 12 2n 112n 11 1丄2 2n 1n2n 1 n2n 11000得n 1000,满足T n2009 9竺0的最小正整数为112.2009练习题1.练习题2。
数列求和的七种方法是什么
数列求和的七种方法是什么
1、数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
2、倒序相加法。
倒序相加法如果一个数列{an}满足与首末两项等“距离”的两项的和相等(或等于同一常数),那么求这个数列的前n项和,可用倒序相加法。
3、分组求和法。
分组求和法一个数列的通项公式是由几个等差或等比或可求和的数列的通项公式组成,求和时可用分组求和法,分别求和而后相加。
4、错位相减法。
错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可用此法来求,如等比数列的前n项和公式就是用此法推导的。
5、裂项相消法。
裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
6、乘公比错项相减(等差×等比)。
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an×bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列。
7、公式法。
对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。
运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
8、迭加法。
主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an,从而求出Sn。
13.数列求和7种常用方法
例.已知函数 f (x) ,4x求
4x 2
f ( 1 ) f ( 2 ) f ( 3 ) f ( 2012) f ( 2013)。
2014 2014 2014
2014 2014
解:
f (1 x)
41 x 41x 2
4 4 24x
2 4x 2
f (x) f (1 x) 1
(3)an 2n, Sn n 2 n
(6)an
n3, Sn
[ n(n 1)]2 2
2、公式法 (1)等差数列:
(2)等比数列:
Sn
a1
a2 2
n
na1
n(n 1) 2
d
Sn
na1 a1 (1
q
n
)
1 q
a1 anq) 1 q
q 1 q 1
3、倒序相加法
适用于与首末两项等距离的两项之和相等的数 列求和,比如等差数列求和的推导.
数列求和常见解题方法
数列求和的常用方法
不同的数列求和,适用不同的方法,决定选取哪 种方法关键是看数列的通项的形式。
1、记忆法:适用于常见数列求和
1 (1)an n, Sn 2 n(n 1)
(4)an
n2,
Sn
n(n
1)(2n 6
1)
(2)an 2n 1, Sn n2
(5)an 2n1, Sn 2n 1
相邻两项组合,所 以要分n的奇、偶
例.化简 1 5 9 13 17 21 (1)n1 (4n 3);
解: 当n为偶数时:
原式 (1 5) (9 13) [(4n 7) (4n 3)];
4444
n 个4 2
2n
注意 个数
当n为奇数时:
数列求和的七种方法
数列求和的七种方法
1. 求和公式法:利用数列的通项公式和求和公式,将每一项的值代入公式求和。
2. 算术数列求和法:对于等差数列,可以利用求和公式 S =
n/2(2a + (n-1)d),其中a为首项,d为公差,n为项数。
3. 几何数列求和法:对于等比数列,可以利用求和公式 S =
a(1-q^n)/(1-q),其中a为首项,q为公比,n为项数。
4. 分割求和法:将数列分割成多个子序列,分别求和后再将结果相加。
5. 枚举法:遍历数列中的每一项,依次相加求和。
6. 递推关系式法:通过建立递推关系式,根据当前项与前一项的关系来求和。
7. 数学归纳法:对于特定的数列,可以利用数学归纳法证明求和公式的正确性,然后代入数值计算求和结果。
数列求和的七种方法
数列求和的七种方法数列求和是数学中非常基础的概念之一,它在高中数学中被广泛讨论和应用。
在数学中,我们经常遇到需要求解数列的和的问题,这样的问题可以通过不同的方法和技巧来解决。
在这篇文章中,我们将讨论七种常见的数列求和方法,并深入探讨它们的原理和应用。
第一种方法是等差数列的求和方法。
等差数列是指一个数列中每一项与其前一项之差保持恒定的数列。
对于一个等差数列,我们可以通过使用求和公式来求解其总和。
具体来说,对于首项为a,公差为d的等差数列,其前n项和可以通过公式Sn = (n/2)(2a + (n-1)d)来计算,其中n表示项数。
这种方法适用于各种等差数列,无论是正数还是负数的等差数列。
第二种方法是等比数列的求和方法。
等比数列是指一个数列中每一项与其前一项之比保持恒定的数列。
对于一个等比数列,我们可以通过使用求和公式来求解其总和。
具体来说,对于首项为a,公比为r的等比数列,其前n项和可以通过公式Sn = (a(1-r^n))/(1-r)来计算,其中n表示项数。
需要注意的是,公比不能为0或1,否则求和公式将无法使用。
第三种方法是利用等差数列的性质进行求和。
等差数列具有很多性质,其中一个重要的性质是数列的和等于首项与末项乘以项数的一半。
具体来说,对于首项为a,末项为b,项数为n的等差数列,其总和可以通过公式Sn = (a + b) * n / 2来计算。
这种方法在一些情况下更加简便和直观,特别是当我们只关注数列的总和而不关心具体的项时。
第四种方法是利用等比数列的性质进行求和。
等比数列也具有一些特殊的性质,其中一个重要的性质是当公比小于1时,数列的和可以表示为首项与末项的差除以1减去公比。
具体来说,对于首项为a,公比为r的等比数列(其中|r|<1),其总和可以通过公式Sn = (a -ar^n)/(1-r)来计算。
这种方法在一些情况下也更加简洁和有效。
第五种方法是使用递归关系进行求和。
递归关系是数列中的每一项与前一项之间存在一定规律的关系。
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = .解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和7种方法(方法全-例子多)
(3) (4)
(5)
(6)
(7)
(8)
[例9]求数列得前n项与、
解:设(裂项)
则(裂项求与)
=
=
[例10]在数列{an}中,,又,求数列{bn}得前n项得与、
解:∵
∴(裂项)
∴数列{bn}得前n项与
(裂项求与)
==
[例11]求证:
解:设
∵(裂项)
∴(裂项求与)
=
===
∴ 原等式成立
练习题1、
当时,=
[例8]求数列{n(n+1)(2n+1)}得前n项与、
解:设
∴=
将其每一项拆开再重新组合得
Sn=(分组)
=
=(分组求与)
=
五、裂项法求与
这就是分解与组合思想在数列求与中得具体应用、裂项法得实质就是将数列中得每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求与得目得、通项分解(裂项)如:
(2)利用第(1)小题已经证明得结论可知,
两式相加得:
所以、
练习、求值:
四、分组法求与
有一类数列,既不就是等差数列,也不就是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见得数列,然后分别求与,再将其合并即可、
[例7]求数列得前n项与:,…
解:设
将其每一项拆开再重新组合得
(分组)
当a=1时,=(分组求与)
[例15]求之与、
解:由于(找通项及特征)
∴
=(分组求与)
=
=
=
[例16]已知数列{an}:得值、
解:∵(找通项及特征)
=(设制分组)
=(裂项)
∴ (分组、裂项求与)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法.数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位。
数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设Sn =1+2+3+…+n,n∈N *,求1)32()(++=n nS n S n f 的最大值。
解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式)∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n=8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n· b n}的前n项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个)(1n a a +。
[例5] 求证:n n n n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(………….。
…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………。
.② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44。
5题1 已知函数 (1)证明:;(2)求的值。
解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。
[例7] 求数列的前n项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组)当a=1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+---[例8] 求数列{n (n +1)(2n+1)}的前n 项和。
解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n=k k k nk n k n k ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{an }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{bn }的前n项的和。
解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{bn }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n(裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n 。
[例12] 求co s1°+ c os2°+ cos 3°+···+ cos178°+ cos 179°的值.解:设S n = cos1°+ c os2°+ co s3°+···+ co s178°+ co s179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (co s1°+ co s179°)+( cos2°+ co s178°)+ (cos 3°+ cos177°)+···+(c os89°+ c os 91°)+ c os 90°(合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S2002=2002321a a a a +⋅⋅⋅+++ (合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a=5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8nn n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅ =313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列;2。