平面任意力系习题

合集下载

理论力学2.2、平面任意力系的合成与平衡

理论力学2.2、平面任意力系的合成与平衡
m F1 OA F2 OB F1 ( OB OA) F1 AB
m F1 OA F2 OB F1 ( OA OB ) F1 AB
3
力 线 作用在刚体上的力可以离开其作用线而平 平 行移动到刚体上任意位置处,但必须对刚体 移 附加一个力偶,附加力偶的力偶矩等于原力 定 对平移后所得新力作用点的力矩。 理
求细绳的拉力和A、B两处的支持力。
解、研究对象:AB,受力 如图所示,则有:


Fix Fiy mD
0 0
(Fi )

0

FB FD G FA c
FA
os
sin 0
FB

BD

G

AB 2
0 sin
FA

AD

0
FA 115.5(N) FB 72.2(N ) FD 129.9(N) 12
例2.2-6、匀质细杆AB长度为L,重量为mg,静 止在半径为r的光滑半圆槽内(图2.2-17),
L=3r;求AB杆与水平线之间的夹角
解、研究对象:AB杆,受力如 图所示,则有:
Fix 0 Fiy 0 mO (Fi ) 0

FB FB
cos(2 ) FD sin sin(2 ) FD cos
d mO 2402 3.39(m) FR 709 .5
xE
d
sin

3.39 sin 70.8
3.59(m)
y yE tan 70.8 (x xE ) y 2.87x 10.31 0
10
课堂练习题(图示):

平面任意力系习题及答案

平面任意力系习题及答案

平面任意力系习题及答案平面任意力系习题及答案力学是物理学的一个重要分支,研究物体受力的作用和运动规律。

平面任意力系是力学中的一个重要概念,它涉及到多个力在平面内的作用和平衡问题。

在本文中,我们将探讨一些关于平面任意力系的习题,并提供相应的答案。

1. 问题描述:一个物体受到三个力的作用,力的大小和方向分别为F1=10N,θ1=30°;F2=15N,θ2=120°;F3=8N,θ3=210°。

求物体所受合力的大小和方向。

解答:首先,我们需要将力的分量计算出来。

根据三角函数的定义,我们可以得到F1x=F1*cosθ1=10*cos30°=8.66N,F1y=F1*sinθ1=10*sin30°=5N;F2x=F2*cosθ2=15*cos120°=-7.5N,F2y=F2*sinθ2=15*sin120°=12.99N;F3x=F3*cosθ3=8*cos210°=-6.93N,F3y=F3*sinθ3=8*sin210°=-4N。

然后,我们将分量相加,得到合力的分量。

Fx=F1x+F2x+F3x=8.66N-7.5N-6.93N=-5.77N,Fy=F1y+F2y+F3y=5N+12.99N-4N=13.99N。

最后,我们可以利用勾股定理计算合力的大小和方向。

合力的大小为F=sqrt(Fx^2+Fy^2)=sqrt((-5.77N)^2+(13.99N)^2)=15.16N,合力的方向为θ=arctan(Fy/Fx)=arctan(13.99N/-5.77N)=-68.6°。

因此,物体所受合力的大小为15.16N,方向为-68.6°。

2. 问题描述:一个物体受到四个力的作用,力的大小和方向分别为F1=8N,θ1=30°;F2=12N,θ2=120°;F3=10N,θ3=210°;F4=6N,θ4=300°。

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。

()3、力偶矩就是力偶。

()二.电动机重P=500N.放在水平梁AC的中央.如图所示。

平面任意力系习题

平面任意力系习题

A
a
D
E
F
a
4m
B
1E
B
C
A
F
G
D
ll
6
6
a
a
题 3-28图
题3-29图
3-30.构架由杆 ACE 、DEF 、BCD 铰接而成的, 所受的力及几何尺寸如图所示,各杆的
自重不计,试求杆 BCD 在铰链 C 处给杆 ACE 的力。
D
A b
E a
C a
B
b
b
题 3-30图
3-31.如图所示的构架,起吊重物的重为 滑轮和杆的自重,几何尺寸如图,试求支座
B1
2
A
α
题 3-37图
4F 4F
F
3
a
1
F
2
a
a
a
a
a
题 3-36 图
()
3-9.桁架中的杆是二力杆。 ( )
3-10.静滑动摩擦力 F 应是一个范围值。 ( )
2. 填空题(把正确的答案写在横线上)
3-11.平面平行力系的平衡方程
n
n
M A (Fi ) 0
M B(Fi ) 0 ,
i1
i1
其限制条件

3-12. 题 3-12 图平面力系,已知: F1=F 2=F 3=F 4=F , M=Fa , a 为三角形边长,如以 A
C
A
l /2
l /2
l/6 B
题3-26图
3-27.均质杆 AB 重为 P1,一端用铰链 A
支与墙面上,并用滚动支座 C 维持平衡,另一端又与重为 P2 的均质杆 BD 铰接,杆 BD 靠
与光滑的台阶 E 上,且倾角为 α ,设 AC 2 AB , BE 2 BD 。试求 A 、 C 和 E 三处的约

3 平面任意力系习题一

3 平面任意力系习题一

3 平面任意力系(习题一)4.l 计算下列各图中F 力对O 点之矩。

图题4-14.2 分别求下图所示三个力偶的合力偶矩,已知;1180F F N '==,22130F F N '==,33100F F N '==;170d cm =,260d cm =,350d cm =。

图题4-24.3求图示梁上分布荷载对B 点之矩。

图题4.34.4各梁受荷载情况如图题2.3所示,试求(1)各力偶分别对A 、B 点的矩。

(2)各力偶中二个力在x 、y 轴上的投影。

图题4.44.5 求图题4.5示各梁的支座反力图题4.5 图题4.64.6 如图题4.6所示,已知皮带轮上作用力偶矩80m N m =⋅,皮带轮的半径0.2d m =,皮带紧拉边力N F T 5001=,求平衡时皮带松边的拉力2T F 。

4.7 如图所示,四个力作用于O 点,设F 1=50N ,F 2=30N ,F 3=60N ,F 4=100N 。

试分别用几何法和解析法求其合力。

题4.7 (a)图 题4.7 (b)图4.8 拖动汽车需要用力F=5kN ,若现在改用两个力F1和F2,已知F1与汽车前进方向的夹角20=α,分别用几何法和解析法求解:(1)若已知另外一个作用力F2与汽车前进方向的夹角 30=β,试确定F1和F2的大小; (2)欲使F2为最小,试确定夹角β及力F1、F2的大小。

图题4.84.9 支架由杆AB 、AC 构成,A 、B 、C 三处都是铰链约束。

在A 点作用有铅垂力F ,用两种方法求在图示两种情况下杆AB 、AC 所受的力,并说明所受的力是拉还是压。

题4.9图 题4.10图4.10 简易起重机如图所示,重物W=100N ,设各杆、滑轮、钢丝绳自重不计,摩擦不计,A 、B 、C 三处均为铰链连接。

求杆件AB 、AC 受到的力。

平面任意力系习题答案

平面任意力系习题答案

平面任意力系习题答案平面任意力系是指作用在物体上的力不满足平面力偶系或平面共面力系的条件,即力的作用线不在同一平面上,也不互相平行。

解决这类问题通常需要应用静力学的基本原理,如力的平衡条件、力矩平衡等。

习题1:已知一平面任意力系作用在刚体上,力F1=50N,方向为水平向右;力F2=30N,方向为竖直向上;力F3=40N,方向为与水平面成30度角斜向上。

求力系的合力。

答案:首先,将力F3分解为水平分量和竖直分量:- 水平分量:F3x = F3 * cos(30°) = 40 * (√3/2) = 20√3 N- 竖直分量:F3y = F3 * sin(30°) = 40 * (1/2) = 20 N然后,计算合力的水平分量和竖直分量:- 水平合力:Fx = F1 + F3x = 50 + 20√3 N- 竖直合力:Fy = F2 + F3y = 30 + 20 N最后,计算合力的大小和方向:- 合力大小:F = √(Fx^2 + Fy^2) = √((50 + 20√3)^2 + (30 + 20)^2) N- 方向:与水平面夹角θ满足tan(θ) = Fy / Fx习题2:一个平面任意力系作用在刚体上,已知力F1=60N,作用点A;力F2=40N,作用点B;力F3=50N,作用点C。

A、B、C三点不共线。

求力系的合力矩。

答案:首先,计算各力对任意一点(如A点)的力矩:- 力矩M1 = 0(因为力F1作用在A点,力矩为0)- 力矩M2 = F2 * (B到A的距离)- 力矩M3 = F3 * (C到A的距离)然后,计算合力矩:- 合力矩M = M1 + M2 + M3由于题目没有给出具体的距离,我们无法计算出具体的数值。

但是,上述步骤提供了计算合力矩的方法。

习题3:已知一平面任意力系作用在刚体上,力F1和F2的合力为100N,方向与F1相反,求F1和F2的大小。

答案:设F1的大小为xN,F2的大小为yN。

平面任意力系习题

平面任意力系习题

第3章 平面任意力系习题1、就是非题(对画√,错画×)3-1、平面任意力系的主矢0∑='=n1i i R F F =时,则力系一定简化一个力偶。

( )3-2、平面任意力系中只要主矢0∑≠'=n1i i R F F =,力系总可以简化为一个力。

( )3-3、平面任意力系中主矢的大小与简化中心的位置有关。

( )3-4、平面任意力系中主矩的大小与简化中心的位置无关。

( ) 3-5、作用在刚体上的力可以任意移动,不需要附加任何条件。

( )3-6、作用在刚体上任意力系若力的多边形自行封闭,则该力系一定平衡。

( ) 3-7、平面任意力系向任意点简化的结果相同,则该力系一定平衡。

( )3-8、求平面任意力系的平衡时,每选一次研究对象,平衡方程的数目不受限制。

( ) 3-9、桁架中的杆就是二力杆。

( )3-10、静滑动摩擦力F 应就是一个范围值。

( ) 2、填空题(把正确的答案写在横线上)3-11、平面平行力系的平衡方程0)(0)(i i ==∑∑==F F n1i Bn1i A MM ,其限制条件 。

3-12、题3-12图平面力系,已知:F 1=F 2=F 3=F 4=F ,M=Fa ,a 为三角形边长,如以A 为简化中心,则最后的结果其大小 ,方向 。

3-13、平面任意力系向任意点简化除了简化中心以外,力系向 简化其主矩不变。

3-14、平面任意力系三种形式的平衡方程: 、 、 。

3-15、判断桁架的零力杆。

题3-13a 图 、题3-13b 图 。

3F 4题3-12图题3-13图(a)(b)3、简答题3-16、平面汇交力系向汇交点以外一点简化,其结果如何?(可能就是一个力?可能就是一个力偶?或者就是一个力与一个力偶?),则此力系的最终结果就是什么?题3-21图'题3-22图(2)(1)C5KN3-18、为什么平面汇交力系的平衡方程可以取两个力矩方程或者就是一个投影方程与一个力矩方程?矩心与投影轴的选择有什么条件?3-19、如何理解桁架求解的两个方法?其平衡方程如何选取?3-20、摩擦角与摩擦因数的关系就是什么?在有摩擦的平衡问题时应如何求解?4、计算题3-21、已知F 1=150N,F 2=200N,F 3=300N,N 200='=F F ,求力系向点O 简化的结果,合力的大小及到原点O 的距离。

工程力学-平面任意力系习题

工程力学-平面任意力系习题

平面任意力系习题
一、选择题
1、在刚体同一平面内A,B,C 三点上分别作用1F ,2F ,3F 三个力,并构成封闭三角形,如图所示,则此力系的简化结果是(
)。

A、力系平衡;
B 、力系可以简化为合力;
C 、力系可以简化为合力偶;
D 、力系简化为一个合力和一个合力偶。

1
F 2
F 3F 2、某一平面平行力系各力的大小、方向和作用线的位置如图,则此力系的简化结果与简化中心的位置()
A 、无关;B、有关;C、无法确定。

3、若某一平面任意力系对其作用面内某一点之矩的代数和等于零,即
()∑=0F M A 时,则该力系的简化结果为(
)。

A、一定平衡;
B、一个合力偶;
C、不可能简化为合力偶;
D、一个合力和一个合力偶。

二、填空题
1、平面任意力系三矩式平衡方程限制条件(
)。

2、平面任意力系二矩式平衡方程限制条件(
)。

3、平面平行力系有(
)个独立的平衡方程;面任意力系有()个独立的平衡方
程。

三、计算题
1、已知:F、M、q、L,各杆自重不计,试求A、C处约束反力。

2、求图示组合梁支座的约束反力。

理论力学1课后习题答案

理论力学1课后习题答案

一、判断题(共268小题)1、试题编号:200510701005310,答案:RetEncryption(A)。

质点是这样一种物体:它具有一定的质量,但它的大小和形状在所讨论的问题中可忽略不计。

()2、试题编号:200510701005410,答案:RetEncryption(A)。

所谓刚体,就是在力的作用下,其内部任意两点之间的距离始终保持不变的物体。

()3、试题编号:200510701005510,答案:RetEncryption(B)。

在研究飞机的平衡、飞行规律以及机翼等零部件的变形时,都是把飞机看作刚体。

()4、试题编号:200510701005610,答案:RetEncryption(B)。

力对物体的作用,是不会在产生外效应的同时产生内效应的。

()5、试题编号:200510701005710,答案:RetEncryption(A)。

力学上完全可以在某一点上用一个带箭头的有向线段显示出力的三要素。

()6、试题编号:200510701005810,答案:RetEncryption(B)。

若两个力大小相等,则这两个力就等效。

()7、试题编号:200510701005910,答案:RetEncryption(B)。

凡是受二力作用的直杆就是二力杆。

()8、试题编号:200510701006010,答案:RetEncryption(A)。

若刚体受到不平行的三力作用而平衡,则此三力的作用线必汇交于一点。

()9、试题编号:200510701006110,答案:RetEncryption(A)。

在任意一个已知力系中加上或减去一个平衡力系,会改变原力系对变形体的作用效果。

()10、试题编号:200510701006210,答案:RetEncryption(A)。

绳索在受到等值、反向、沿绳索的二力作用时,并非一定是平衡的。

()11、试题编号:200510701006310,答案:RetEncryption(A)。

3-习题平面任意力系

3-习题平面任意力系
M ( A) 4NB 1.5 12sin 45o 0
FAx A
FAy y
F
B
C
FB
解得
NB 2.5KN () FAX 1.4KN () FAY 1.1KN ()
x
(b)
4KN/m
5KN
B
C
3
4
A
解:
FAX 0 FAY 12 5 0
M ( A) M A 121.5 5 3 0
FG

50 510 2

50(kN)
② 再研究梁CD 由 MC 0
FD 6 FG' 1 0
FD

50 6

8.33(kN)






MA 0, FB 3 FD 12 P10Q6 0 FB 100(kN) Y 0, FAy FB FD Q P 0 FAy 48.33(kN)
M (O) FBA cos l1 NCl2 = 0
NC 3562N
杠杆作用在工件上的夹紧力为3562N
3 10曲柄滑道机构如图所示,已知M 600N.m,OA 0.6m,BC 0.75m,
机构在图示位置处于平衡。滑道和连杆位置角 30, 60,不计摩擦。
铅垂线的夹角 10,各构件自重和各处摩擦都不计。试求杠杆作用于
工件上的夹紧力。
解:作用在活塞上的力 F PS P (D2 d 2 ) 120
4 F 0 120
FAB sin10
以COB杆为研究对象
3 7如图所示,组合梁两杆由AC和DC铰接所构成,起重机置于梁上。 已知起重机重P1 50kN,其重心在铅垂线EC上,起重荷载P2 10kN,今 不计梁重,梁结构尺寸如图,试求当起重机的外伸臂和梁AB在同一铅垂 面内时,支座A、B、D的约束力。

理论力学期末复习

理论力学期末复习

理论力学期末复习题一、单选题1、F= 100N 方向如图示,若将F 沿图示x ,y 方向分解,则x 向分力大小为( )。

A) 86.6 N ; B) 70.7 N ; C) 136.6 N ; D) 25.9 N 。

2、某平面任意力系F1 =4KN ,F2=3 KN ,如图所示,若向A 点简化,则得到( )A .F ’=3 KN ,M=0.2KNmB .F ’=4KN ,M=0.3KNmC .F ’=5 KN ,M=0.2KNmD .F ’=6 KN ,M=0.3 KNm第1题图 第2题图3、实验测定摩擦系数的方法,把物体放在斜面上,逐渐从零起增大斜面的倾角φ直到物体刚开始下滑为止,这时的φ就是对应的摩擦角φf ,求得摩擦系数为( )4、直角杆自重不计,其上作用一力偶矩为M 的力偶,图(a )与图(b )相比,B 点约束反力的关系为( )。

A 、大于B 、小于C 、相等D 、不能确定图(a ) 图(b )5、圆轮绕固定轴O 转动,某瞬时轮缘上一点的速度为v ,加速度为a ,如图所示。

试问哪些情况是不可能的?( )A 、(a)、(b)B 、(b)、(c)C 、(c)、(d)D 、(a)、(d)6、杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为vB ,则图示瞬时B 点相对于A 点的速度为____________________。

A) B v sinθ; B) B v cosθ; C) B v ⁄ sinθ; D) B v ⁄ cosθ.第6题图 第7题图二、填空题7、图示物块重G=100N ,用水平力P 将它压在铅垂墙上,P=400N ,物块与墙间静摩擦系数fs=0.3,物块与墙间的摩擦力为F= 。

8、鼓轮半径R=0.5m ,物体的运动方程为x=52t (t 以s 计,x 以m 计),则鼓轮的角速度ω= ,角加速度α= 。

第8题图 第9题图 9、平面图形上任意两点的加速度A a 、B a 与A 、B 连线垂直,且A a ≠ B a ,则该瞬时,平面图形的角速度ω= 和角加速度α应为 。

平面力系合成与平衡习题0

平面力系合成与平衡习题0

平面力系合成与平衡习题1、判断题:(1)无论平面汇交力系所含汇交力的数目是多小,都可用力多边形法则求其合力。

()(2)应用力多边形法则求合力时,所得合矢量与几何相加时所取分矢量的次序有关。

()(3)若两个力在同一轴上的投影相等,则这两个力的大小必定相等。

()(4)两个大小相等式、作用线不重合的反向平行力之间的距离称为力臂。

()(5)平面力偶系合成的结果为一合力偶,此合力与各分力偶的代数和相等。

()(6)平面任意力系向作用内任一点简化的主矢,与原力系中所有各力的矢量和相等。

()(7)一平面任意力系向作用面内任一点简化后,得到一个力和一个力偶,但这一结果还不是简化的最终结果。

()(8)平面任意力系向作用面内任一点简化,得到的主矩大小都与简化中心位置的选择有关。

()(9)只要平面任意力系简化的结果主矩不为零,一定可以再化为一个合力()。

(10)在求解平面任意力系的平衡问题时,写出的力矩方程的矩心一定要取在两投影轴的交点处。

()(11)平面任意力系平衡方程的基本形式,是基本直角坐标系而导出来的,但是在解题写投影方程时,可以任意取两个不相平行的轴作为投影轴,也就是不一定要使所取的两个投影轴互相垂直。

()2、填空题:(1)在平面力系中,若各力的作用线全部,则称为平面汇交力系。

(2)平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。

(3)若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。

(4)合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。

(5)平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。

(6)平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。

(7)平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。

(8)平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。

平面任意力系习题汇总

平面任意力系习题汇总
第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。
解:(1)取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2)合成结果:平面力系的主矢为零,主矩不为零,力针。
习题3-2.求下列各图中平行分布力的合力和对于A点之矩。
解:(1)平行力系对A点的矩是:
解:(1)研究AB杆,受力分析(注意BC是二力杆),画受力图:
列平衡方程:
(2)研究铰C,受力分析(注意BC、CD、CE均是二力杆),画受力图:
由力三角形:
其中:
(3)研究OE,受力分析,画受力图:
列平衡方程:
习题3-10.图示液压升降装置,由平台和两个联动机构所组成,联动机构上的液压缸承受相等的力(图中只画了一副联动机构和一个液压缸)。连杆EDB和CG长均为2a,杆端装有滚轮B和C,杆AD铰结于EDB的中点。举起重量W的一半由图示机构承受。设W=9800N,a=0.7m,l=3.2m,求当θ=60o时保持平衡所需的液压缸的推力,并说明所得的结果与距离d无关。
解:(1)研究整体,受力分析(注意1杆是二力杆),画受力图:
列平衡方程:
解方程组:
(2)研究1杆(二力杆),受力分析,画受力图:
由图得:
(3)研究铰C,受力分析,画受力图:
由力三角形得:
杆1和杆3受压,杆2受拉。
习题3-9.图示破碎机传动机构,活动颚板AB=60cm,设破碎时对颚板作用力垂直于AB方向的分力P=1kN,AH=40cm,BC=CD=60cm,OE=10cm;求图示位置时电机对杆OE作用的转矩M。
图中的几何关系是:
(3)列平衡方程
(4)解方程组:
反力实际方向如图示;
(5)研究BC杆,是二力杆,画受力图:

工程力学习题-答案4-廖明成

工程力学习题-答案4-廖明成

第四章 平面任意力系习 题4.1 重W ,半径为r 的均匀圆球,用长为L 的软绳AB 及半径为R 的固定光滑圆柱面支持如图,A 与圆柱面的距离为d 。

求绳子的拉力T F 及固定面对圆球的作用力N F 。

题4.1图F TyxOF N解:软绳AB 的延长线必过球的中心,力N F 在两个圆球圆心线连线上N F 和T F 的关系如图所示:AB 于y 轴夹角为θ 对小球的球心O 进行受力分析:0,sin cos TNX F F θθ==∑ 0,cos sin T NY F F W θθ=+=∑sin R rR d θ+=+ cos L rR dθ+=+ ()()()()22T R d L r F W R r L r ++=+++()()()()22NR d R r F W R r L r ++=+++4.2 吊桥AB 长L ,重1W ,重心在中心。

A 端由铰链支于地面,B 端由绳拉住,绳绕过小滑轮C 挂重物,重量2W 已知。

重力作用线沿铅垂线AC ,AC =AB 。

问吊桥与铅垂线的交角θ为多大方能平衡,并求此时铰链A 对吊桥的约束力A F 。

题4.2图A yF A xF解:对AB 杆件进行受力分析:120,sin cos 022A L M W W L θθ=-=∑ 解得:212arcsinW W θ= 对整体进行受力分析,由:20,cos02Ax X F W θ=-=∑2cos2Ax F W θ=210,sin02Ay Y F W W θ=+-=∑22121Ay W W F W +=4.3 试求图示各梁支座的约束力。

设力的单位为kN ,力偶矩的单位为kN ·m ,长度单位为m ,分布载荷集度为kN /m 。

(提示:计算非均布载荷的投影和与力矩和时需应用积分。

)题4.3图解:AyF AxF ByAxF AyF ByFBAxF AyF AyF Ax F AM(a )受力如图所示0,0.8cos300AxX F =-=∑ 0,0.110.80.150.20AByM F=⨯+⨯-=∑0,10.8sin300Ay By Y F F =+--=∑0.43, 1.1,0.3Ax By Ay F KN F KN F KN ===(b )受力如图所示0,0.40AxX F =+=∑0,0.820.5 1.60.40.720AByM F=⨯-⨯-⨯-=∑0,20.50Ay By Y F F =+-+=∑0.4,0.26,0.24Ax By Ay F KN F KN F KN =-==(c )受力如图所示0,sin300AxBX F F =-=∑ 0,383cos300ABM F =+-=∑ 0,cos3040AyBY F F =+-=∑2.12, 4.23,0.3Ax By Ay F KN F KN F KN ===(d )受力如图所示()()133q x x =- 0,0AxX F==∑()()33010,3 1.53Ay Y F q x dx x dx KN ===-=∑⎰⎰()30,0A A M M xq x dx =+=∑⎰()3013 1.53A M x x dx KN m =-=-•⎰4.4 露天厂房立柱的底部是杯形基础。

工程力学习题集(2)

工程力学习题集(2)

1—1 画出下列各图中各物体的受力图(不包含销钉、支座和基础),未画重力的物体的重量均不记,所有接触处均为光滑接触。

1—2 画出下列各图中各物体的受力图(不包含销钉、支座和基础),系统整体受力图。

未画重力的物体的重量均不记,所有接触处均为光滑接触。

(整体图可画原图上)1-3、图示平面任意力系中F1,F2=80N,F3=40N, F4=110N,M=200N.mm。

各力作用位置如图所示。

求:(1)力系向点O简化的结果;(2)力系的合力的大小、方向及合力作用线方程。

1-4、工字钢截面尺寸如图所示,求此截面的几何中心。

的约束力。

2-2、无重水平梁的支承和载荷如图(b)所示。

已知力F、力偶矩为M的力偶和强度为q的均布载荷。

求支座A和B处的约束力。

q=10kN/m,力偶矩M=40 kN·m,不计梁重。

求支座A,B,D的约束力和铰链C处所受的力。

2-4、图示构架中,物体重1200N,由细绳跨过滑轮E而水平系于墙上,尺寸如图,不计杆和滑轮的重量。

求支承A和B处的约束力,以及杆BC的内力F BC。

3.2作图示各杆的扭矩图。

右图中,各外加扭转力偶之矩从左至右依次为:15, 20,10, 35,单位:kN.m。

(3)确定︱F S ︱max 及︱M ︱max 。

4.2 设已知图示各梁的载荷F , q , Me 和尺寸a 。

(1)作剪力图和弯矩图;(2)确定︱F S ︱max 及︱M ︱max 。

30q kN /m=30q kN /m=5.1 阶梯型直杆如图所示。

已知:A1=800mm, A2=500mm。

试求:(1)画轴力图;(2)计算各截面的应力;5.2 直径D=50mm的圆轴,某横截面上的扭矩T=2.15kN.m。

试求该截面上距轴心20mm处的切应力及最大切应力。

5.3计算矩形截面简支梁1-1截面上a点和b的正应力和剪应力。

5.4 铸铁梁的载荷及横截面尺寸如图所示。

试找出梁的危险截面,并求出危险截面上的最大拉应力和最大压应力。

工程力学课后习题答案第四章 平面任意力系

工程力学课后习题答案第四章 平面任意力系

第四章 平面任意力系习 题4.1F TyxOF N解:软绳AB 的延长线必过球的中心,力N F 在两个圆球圆心线连线上N F 和T F 的关系如图所示:AB 于y 轴夹角为θ 对小球的球心O 进行受力分析:0,s i n c o sT NXF F θθ==∑ 0,cos sin T N Y F F W θθ=+=∑ s i n R r R dθ+=+ c o s L r R dθ+=+()()()()22T R d L r F W R r L r ++=+++ ()()()()22N R d R r F W R r L r ++=+++4.2。

AyF AxF 解:对AB 杆件进行受力分析:120,sin cos022AL MW W L θθ=-=∑解得: 212a r c s i n WW θ=对整体进行受力分析,由:20,c o s 02A x X F W θ=-=∑210,sin 02A y YF W W θ=+-=∑ 22121Ay W W F W +=4.3 解:A yF A xF B yA xF A yF B yFBA xF A yF A xF AM(a )受力如图所示0,0.8cos 300AxX F =-=∑0,0.110.80.150.20ABy MF =⨯+⨯-=0,10.8sin 300AyBy Y FF =+--=∑, 1.1,0.3Ax By Ay F F KN F KN ===(b )受力如图所示0,0.40AxX F =+=∑0,0.820.5 1.60.40.720ABy MF =⨯-⨯-⨯-=∑0,20.50AyBy Y F F =+-+=∑ 0.4,0.26,0.24Ax By Ay F K N F K N F K N =-==(c )受力如图所示0,sin 300AxB X F F =-=∑0,383cos 300AB MF =+-=∑0,cos 3040AyB Y FF =+-=∑2.12, 4.23,0.3Ax By Ay F K N F K N F K N ===(d )受力如图所示()()133q x x =- 0,0Ax X F ==∑()()33010,3 1.53A y YF q x dx x dx K N ===-=∑⎰⎰()30,0AA M M xq x dx =+=∑⎰()3013 1.53AMx x dx K N m =-=-∙⎰4.4AyF解:立柱底部A 处的受力如图所示,取截面A 以上的立柱为研究对象0,0AxX F qh =+=∑ 20Ax F qh K N =-=-0,0AyY F G F =--=∑ 100Ay F G F K N =+=0,0hA A M M qxdx Fa =--=∑⎰ 211302AMqh F a K N m =+=⋅4.5解:设A ,B 处的受力如图所示, 整体分析,由:()210,2202AB y MaF qa W a W a e =----=∑415By F K N =0,20Ay By Y F F W qa =+--=∑ 1785A y F K N =取BC 部分为研究对象()0,0CBy Bx M aF F a W a e =+--=∑ 191Bx F K N =-再以整体为研究对象0,191Ax XF KN ==∑4.7。

工程力学(一)习题集及部分解答指导

工程力学(一)习题集及部分解答指导

工程力学学习参考资料第一章静力学基础一、判断题1-1.如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。

()1-2.作用在同一刚体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。

( ) 1-3.静力学公理中,二力平衡公理和加减平衡力系公理仅适用于刚体。

( ) 1-4.二力构件是指两端用铰链连接并且指受两个力作用的构件。

( ) 1-5.对刚体而言,力是滑移矢量,可沿其作用线移动。

()1-6.对非自由体的约束反力的方向总是与约束所能阻止的物体的运动趋势的方向相反。

()1-7.作用在同一刚体的五个力构成的力多边形自行封闭,则此刚体一定处于平衡状态。

()1-8.只要两个力偶的力偶矩相等,则此两力偶就是等效力偶。

()二、单项选择题1-1.刚体受三力作用而处于平衡状态,则此三力的作用线( )。

A、必汇交于一点B、必互相平行C、必都为零D、必位于同一平面内1-2.力的可传性()。

A、适用于同一刚体B、适用于刚体和变形体C、适用于刚体系统D、既适用于单个刚体,又适用于刚体系统1-3.如果力F R是F1、F2二力的合力,且F1、F2不同向,用矢量方程表示为F R= F1+ F2,则三力大小之间的关系为()。

A、必有F R= F1+ F2B、不可能有F R= F1+ F2C、必有F R>F1, F R>F2D、必有F R<F1, F R<F21-4.作用在刚体上的一个力偶,若使其在作用面内转移,其结果是()。

A、使刚体转动B、使刚体平移C、不改变对刚体的作用效果D、将改变力偶矩的大小三、计算题1-1.已知:F1=2000N,F2=150N,F3=200N,F4=100N,各力的方向如图1-1所示。

试求各力在x、y轴上的投影。

解题提示F x= + F cosαF y= + F sinα注意:力的投影为代数量;式中:F x、F y的“+”的选取由力F的指向来确定;α为力F与x轴所夹的锐角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章
习题3-1.求图示平面力系的合成结果,长度单位为m。

解:(1) 取O点为简化中心,求平面力系的主矢:
求平面力系对O点的主矩:
(2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。

习题3-2.求下列各图中平行分布力的合力和对于A点之矩。

解:(1) 平行力系对A点的矩是:
取B点为简化中心,平行力系的主矢是:
平行力系对B点的主矩是:
向B点简化的结果是一个力R B和一个力偶M B,且:
如图所示;
将R B向下平移一段距离d,使满足:
最后简化为一个力R,大小等于R B。

其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。

(2) 取A点为简化中心,平行力系的主矢是:
平行力系对A点的主矩是:
向A点简化的结果是一个力R A和一个力偶M A,且:
如图所示;
将R A向右平移一段距离d,使满足:
最后简化为一个力R,大小等于R A。

其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。

习题3-3.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图:
列平衡方程:
解方程组:
反力的实际方向如图示。

校核:
结果正确。

(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:
列平衡方程:
解方程组:
反力的实际方向如图示。

校核:
结果正确。

(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:
列平衡方程:
解方程组:
反力的实际方向如图示。

校核:
结果正确。

习题3-4.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

解:(1) 研究整体,受力分析(BC是二力杆),画受力图:
列平衡方程:
解方程组:
反力的实际方向如图示。

习题3-5.图示钻井架,G=177kN,铅垂荷载P=1350kN,风荷载q=1.5kN/m,水平力F=50kN;求支座A的约束反力和撑杆CD所受的力。

解:(1) 研究整体,受力分析(CD是二力杆),画受力图:
列平衡方程:
解方程组:
反力的实际方向如图示。

习题3-6.圆柱O重G=1000N放在斜面上用撑架支承如图;不计架重,求铰链A、B、C处反力。

解:(1) 研究圆柱,受力分析,画受力图:
由力三角形得:
(2) 研究AB杆,受力分析(注意BC为二力杆),画受力图:
图中的几何关系是:
(3) 列平衡方程
(4) 解方程组:
反力实际方向如图示;
(5) 研究BC杆,是二力杆,画受力图:
由图知:
习题3-7.静定多跨梁的荷载及尺寸如图所示,长度单位为m;求支座反力和中间铰处压力。

解:(1) 研究BC杆,受力分析,画受力图:
列平衡方程:
解方程组:
研究BC杆,受力分析,画受力图:
列平衡方程:
解方程组:
(2) 研究CD杆,受力分析,画受力图:
列平衡方程:
解方程组:
研究AC杆,受力分析,画受力图:
列平衡方程:
解方程组:
(3) 研究BC杆,受力分析,画受力图:
列平衡方程:
解方程组:
研究铰B,受力分析,画受力图:
列平衡方程:
解方程:
研究AB杆,受力分析,画受力图:
列平衡方程:
解方程组:
习题3-8.组合结构的荷载及尺寸如图所示,长度单位为m;求支座反力和各链杆的内力。

解:(1) 研究整体,受力分析(注意1杆是二力杆),画受力图:
列平衡方程:
解方程组:
(2) 研究1杆(二力杆),受力分析,画受力图:
由图得:
(3) 研究铰C,受力分析,画受力图:
由力三角形得:
杆1和杆3受压,杆2受拉。

习题3-9.图示破碎机传动机构,活动颚板AB=60cm,设破碎时对颚板作用力垂直于AB方向的分力P=1kN,AH=40cm,BC=CD=60cm,
OE=10cm;求图示位置时电机对杆OE作用的转矩M。

解:(1) 研究AB杆,受力分析(注意BC是二力杆),画受力图:
列平衡方程:
(2) 研究铰C,受力分析(注意BC、CD、CE均是二力杆),画受力图:
由力三角形:
其中:
(3) 研究OE,受力分析,画受力图:
列平衡方程:
习题3-10.图示液压升降装置,由平台和两个联动机构所组成,联动机构上的液压缸承受相等的力(图中只画了一副联动机构和一个液压缸)。

连杆EDB和CG长均为2a,杆端装有滚轮B和C,杆AD铰结于
EDB的中点。

举起重量W的一半由图示机构承受。

设W=9800N,
a=0.7m,l=3.2m,求当θ=60o时保持平衡所需的液压缸的推力,并
说明所得的结果与距离d无关。

解:(1) 研究ABC部分,受力分析(注意AC是二力杆),画受力图:
列平衡方程:
解方程组:
(2) 研究滚轮C,受力分析(注意BC、CG是二力杆),画受力图:
由力三角形得:
(3) 研究平台和联动机构,受力分析(注意CG、DH为二力杆),画受力图:
列平衡方程:
解方程得:
可见结果与d无关;
由几何关系知:。

相关文档
最新文档