《平行线的证明》复习指导

合集下载

《平行线的证明》全章复习与巩固(基础)知识讲解

《平行线的证明》全章复习与巩固(基础)知识讲解

平行线的证明要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.ﻫ要点诠释:(1)每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)正确的命题称为真命题,不正确的命题称为假命题.(3)公认的真命题叫做公理.(4) 经过证明的真命题称为定理.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这种演绎推理的过程称为证明.要点诠释:(1)实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论. (2)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(3)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行. (2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.【典型例题】类型一、定义、命题及证明1.指出下列命题的条件和结论,并判断命题的真假,如果是假命题,•请举出反例.如果等腰三角形的两条边长为5和7,那么这个等腰三角形的周长为17.【答案与解析】解:条件:等腰三角形的两条边长为5和7结论:等腰三角形的周长为17是假命题;反例:当腰长为7,底边长为5时,周长为19【总结升华】本题考查了命题与定理的相关知识.关键是明确命题与定理的组成部分,会判断命题的题设与结论.举一反三:【变式1】某工程队,在修建兰定高速公路时,有时需将弯曲的道路改直,•根据什么公理可以说明这样做能缩短路程( ).A.直线的公理B.直线的公理或线段最短公理 C.线段最短公理 D.平行公理【答案】B【变式2】下列命题真命题是( ).A.互补的两个角不相等 B.相等的两个角是对顶角C.有公共顶点的两个角是对顶角 D.同角或等角的补角相等【答案】D2.叙述并证明三角形内角和定理.ﻫ要求写出定理、已知、求证,画出图形,并写出证明过程.【思路点拨】欲证明三角形的三个内角的和为180°,可以把三角形三个角转移到一个平角上,利用平角的性质解答.【答案与解析】定理:三角形的内角和是180°;ﻫ已知:△ABC的三个内角分别为∠A,∠B,∠C;ﻫ求证:∠A +∠B+∠C=180°.证明:如下图,过点A作直线MN,使MN∥BC.∵MN∥BC,ﻫ∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等).ﻫ∵∠MAB+∠NAC+∠BAC=180°(平角定义),∴∠B+∠C+∠BAC=180°(等量代换).即∠A+∠B+∠C=180°.【总结升华】本题考查的是三角形内角和定理,即三角形的内角和是180°.类型二、平行线的判定与性质3.(佳木斯中考)如图所示,请你填写一个适当的条件:________,使AD∥BC.【思路点拨】欲证AD∥BC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件.【答案】∠FAD=∠FBC,或∠ADB=∠CBD,或∠ABC+∠BAD=180°.【解析】解:本题答案不唯一,如:利用“同位角相等,两直线平行”,可添加条件∠FAD=∠FBC;利用“内错角相等,两直线平行”,可添加条件∠ADB=∠CBD;利用“同旁内角互补,两直线平行”,可添加条件∠ABC+∠BAD=180°.【总结升华】这是一道开放性试题,分清题设和结论:结论: AD∥BC,题设可根据平行线的判定方法,逐一寻找即可.4.如图,已知∠ADE =∠B,∠1 =∠2,那么CD∥FG吗?并说明理由.【答案与解析】解:平行,理由如下:因为∠ADE=∠B,所以DE∥BC(同位角相等,两直线平行),所以∠1=∠BCD(两直线平行,内错角相等).又因为∠1=∠2(已知),所以∠BCD=∠2.所以CD∥FG(同位角相等,两直线平行).【总结升华】反复应用平行线的判定与性质,见到角相等或互补,就应该想到判断直线是否平行,见到直线平行就应先想到角相等或角互补.举一反三:【变式】如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.【答案】∠AED=∠ACB,理由如下:∵∠1+∠2=180°,又∠1+∠4=180°,∴∠2=∠4.∴AB ∥EF(内错角相等,两直线平行).∴∠5=∠3.又∠3=∠B,∴∠5=∠B.∴DE ∥B C(同位角相等,两直线平行).∴∠A ED =∠ACB(两直线平行,同位角相等).类型三、三角形的内角和定理及推论5.请你利用“三角形内角和定理”证明“四边形的内角和等于360°”.四边形A BCD 如图所示.【思路点拨】将四边形转化为三角形去解决.【答案与解析】证明:如下图,连接A C ∵∠B+∠BAC+∠ACB=180°,∠D +∠DAC +∠ACD=180°,D C BA∴(∠B+∠BAC+∠ACB)+(∠D+∠DAC+∠ACD)=180°+180°.∴∠B+∠D+(∠BAC+∠DAC)+(∠ACB+∠ACD)=360°.∴∠B+∠C+∠BAD+∠BCD=360°.即四边形ABCD的内角和等于360°.【总结升华】把不熟悉的多边形分成熟悉的三角形,利用三角形的内角和推导多边形的内角和是解题的关键,同理可以得到n边形的内角和公式为:(n-2)×180°.6.已知:如图,在△ABC中,DE∥BC,F是AB上的一点,FE的延长线交BC的延长线于点G.求证:∠EGH>∠ADE.【答案与解析】证明:∵ DE∥BC,∴∠ADE=∠B.∵∠EGH>∠B,∴∠EGH>∠ADE(等量代换).【总结升华】“三角形的内角和定理推论2”是证明角不等关系的重要依据之一.举一反三:【变式】在△ABC中,∠A=50°,∠B=70°,则∠C的外角等于________.【答案】120°。

平行线的有关证明复习一

平行线的有关证明复习一

平行线的有关证明复习一1.在手工制作课上,小明和小华各自用铁丝制作楼梯模型,如图,他们制作模型所用的铁丝一样长吗?请通过计算说明.2.判断下列说法是否正确,并说明理由.(1)小红的数学成绩一向很好,因而后天的竞赛考试中她必然能获一等奖.(2)因为阴天,所以今天一定会下雨.(3)小李买“天天彩”中了奖.大家纷纷劝说小李最近千万不要再买了,因为“天天彩”的中奖率是千分之一,他已经中了一次,最近是不可能中奖的.3.有红、黄、蓝三个箱子,一个苹果放入其中某个箱子内,并且(1)红箱子上写着:“苹果在这个箱子里.”(2)黄箱子上写着:“苹果不在这个箱子里.”(3)蓝箱子上写着:“苹果不在红箱子里.”已知(1)、(2)、(3)中只有一句是真的, 则苹果应在( ).A .红箱子B .黄箱子C .蓝箱子D .不能确定4.已知如图所示的图形是由6个大小一样的正方形拼接而成的,此图形 折 成正方体?(在横线上填“能”或“不能”).5.当n 为整数时,22)1()1(--+n n 的值一定是4的倍数吗?6.如图,已知AB=AC ,∠A=36°,AB 的中垂线MN 交AC 于点D ,交AB 于点M ,下面4 个结论:(1)射线BD 是∠ABC 的平分线; (2)△BCD 是等腰三角形;(3)△BCD 是 等腰三角形;(4)△AMD≌△BCD; (1)判断其中正确的结论是哪几个? (2)从你认为是正确的结论中选一个加以说明.7.下列语句中,是命题的是( ).A.两点确定一条直线吗?B.在线段AB 上任取一点C.作∠A 的平分线AMD.两个锐角的和大于直角8.下列命题中,属于定义的是( ).A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度9.下列命题中,是真命题的是( ).A.内错角相等B.同位角相等,两直线平行C.互补的两角必有一条公共边D.一个角的补角大于这个角10.下列命题中,假命题是( ).A.垂直于同一条直线的两直线平行B.已知直线a、b、c,若a⊥b,a∥c,则 b⊥cC.互补的角是邻补角D.邻补角是互补的角11.命题“对顶角相等”是( ).A.角的定义B.假命题C.公理D.定理12.命题“两直线平行,内错角相等”中,“两直线平行”是命题的________,“内错角相等”是命题的________.13.命题“直角都相等”的条件是________,结论是___________.14.“互补的两个角一定是一个锐角一个钝角”是__命题,可举出反例:__________________.15.________________称为公理,_______ 称为定理,_______________称为证明.16.指出下列命题的题设和结论:(1)若a∥b,b∥c,则a∥c.(2)如果两个角相等,那么这两个角是对顶角.(3)同一个角的补角相等.17.把下列命题改写成“如果……,那么……”的形式:(1)平行于同一直线的两条直线平行.(2)同角的余角相等.(3)绝对值相等的两个数一定相等.18.判断下列命题是真命题,还是假命题;如果是假命题,举一个反例.(1)若a2>b2,则a>b.(2)同位角相等,两直线平行.(3)一个角的余角小于这个角.19.下列命题中是真命题的是().A.平行于同一条直线的两条直线平行B.两直线平行,同旁内角相等C.两个角相等,这两个角一定是对顶角D.相等的两个角是平行线所得的内错角20.下列语句中不是命题的是().A.延长线段ABB.自然数也是整数C.两个锐角的和一定是直角D.同角的余角相等21.下列语句中是命题的是().A.这个问题B.这只笔是黑色的C.一定相等D.画一条线段22.下列命题是假命题的是().A.互补的两个角不能都是锐角;B.若a⊥b,a⊥c,则b⊥cC.乘积是1的两个数互为倒数;D.全等三角形的对应角相等23.填空. (请你将理由补充完整)已知:如图1,∠1=∠2,∠3=∠4,求证:EG ∥FH .证明:∵∠1=∠2(已知)∠AEF =∠1 ( );∴∠AEF =∠2 ( ).∴AB ∥CD ( ).∴∠BEF =∠CFE ( ).∵∠3=∠4(已知);∴∠BEF -∠4=∠CFE -∠3.即∠GEF =∠HFE ( ).∴EG ∥FH ( ). 24.求证:两直线平行,同位角角平分线互相平行本章知识网络:课堂作业:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(1.下列句子中,不属于命题的是( )A.三角形的内角和等于180°B.对顶角相等C.过直线外一点作已知直线的平行线D.两点之间,线段最短2、把命题“等腰三角形的两个底角相等”改写成“如果……那么……”的形式1.下列四个命题中,属于真命题的是( )A.互补的两角必有一条公共边B.同旁内角互补C.同位角不相等,两直线不平行D.一个角的补角大于这个角如果一个角的两条边分别平行于另一个角的两条边,那么这两个角的关系是 .3. 下列说法正确的个数是( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个4.甲、乙、丙、丁四位同学猜测自己的数学成绩,甲说:“如果我得优,那么乙也得优”。

中考数学一轮复习讲义第25讲 平行线的证明

中考数学一轮复习讲义第25讲 平行线的证明

中考数学一轮复习讲义考点二十五:平行线的证明聚焦考点☆温习理解一.命题1.命题:判断一件事情的语句,叫做命题.2.真命题:如果题设成立,那么结论一定成立,这样的命题叫真命题.3.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫假命题.4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题.二、平行线的判定与性质(1)平行线的性质如果两直线平行,那么同位角相等;如果两直线平行,那么内错角相等;如果两直线平行,那么同旁内角互补.(2)平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.平行线的基本事实(即平行公理)经过直线外一点,有且只有一条直线与这条直线平行.名师点睛☆典例分类考点典例一、推理论证【例1】一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中.若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是()A .3B .4C .5D .6【举一反三】1. 某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是( )A .甲、丙B .甲、丁C .乙、丁D .丙、丁2.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y=( )A .2B .3C .6D .x+3 考点典例二、命题的真假【例2】下列命题中,假命题有( )①两点之间线段最短;②到角的两边距离相等的点在角的平分线上;③过一点有且只有一条直线与已知直线平行;④垂直于同一直线的两条直线平行;⑤若⊙O 的弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅.A .4个B .3个 C. 2个 D .1个【举一反三】下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,基中假命题的有 (填序号).考点典例三、平行线的判定【例3】如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠C=∠ABCD .∠A=∠ABE【举一反三】1. 如图,直线,AB CD 被直线EF 所截,155∠=,下列条件中能判定//AB CD 的是()A .235∠=B .245∠=C .255∠=D .2125∠=2. 如图,直线AB ∥CD ,则下列结论正确的是( )A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°3.如图,直线a ,b 被直线e ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ).A. 55°B. 60°C.70°D. 75°d c ba第3考点典例四、平行线的性质【例3】下列四个图形中,不能推出∠2与∠1相等的是()A. B.C D.【举一反三】1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°2.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A.10°B.15°C.20°D.25°课时作业☆能力提升一、选择题1.甲,乙两人在做“报40”的游戏,其规则是:“两人轮流连续数数,每次最多可以连续数三个数,谁先报到40,谁就获胜”.那么采取适当策略,其结果是()A.后说数者胜B.先说数者胜C.两者都能胜D.无法判断2.(2017湖南株洲第3题)如图示直线l1,l2△ABC被直线l3所截,且l1∥l2,则α=()A.41°B.49°C.51°D.59°3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠44. 如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°5.如图,a∥b,点B在直线a上,且AB⊥BC,∠1=35°,那么∠2=()A.45°B.50°C.55°D.60°6.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A. 140°B. 130°C. 120°D. 110°7. 如图,直线a ∥b ,c ⊥a ,则c 与b 相交所形成的∠1的度数为( )A .45°B .60°C .90°D .120°8. 把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为( )A .45°B .30°C .20°D .15°二、填空题9. 将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.10. 命题:“如果m 是整数,那么它是有理数”,则它的逆命题为: .11. 如图,//AB CD ,AE 平分CAB ∠交CD 于点E ,若48C ∠=︒,则AED ∠为 .12. 下面三个命题:①若,x a y b =⎧⎨=⎩是方程组||2,23x x y =⎧⎨-=⎩的解,则1a b +=或0a b +=;②函数2241y x x =-++通过配方可化为22(1)3y x =--+;③最小角等于50︒的三角形是锐角三角形. 其中正确命题的序号为 .学¥科网13. 如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.三、解答题14.A ,B ,C ,D 四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A 队没有全胜,那么A 队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].15.如图,AB ∥CD ,点E 是CD 上一点,∠AEC=42°,EF 平分∠AED 交AB 于点F ,求∠AFE 的度数.。

平行线的证明复习回顾-北师大版八年级数学上册

平行线的证明复习回顾-北师大版八年级数学上册
题只要求证明一步就可以了; ③判断一个命题是真命题,只要举一个例子,
它符合命题的题设,也满足命题的结论就 可以了; ④“相等的角是对顶角”是假命题. A.0个 B.1个 C.2个 D.3个
4.等角的补角相等,改写成“如果…那么…”的形式:
_如__果__两__个__角__相__等__,__那__么__这___两__个__角__的__补__角__相__等__
试判断∠AED和∠C的关系,并证明.
解:∠AED=∠C 理由如下: ∵∠1+∠EFD=1800 (平角的定义)
∠1+∠2=1800 (已知)
D B ︶2
∴∠EFD=∠2(等量代换)
∴ AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
∵∠3=∠B(已知)
∴∠ADE=∠B(等量代换)

2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。

3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
2.掌握平行线的性质定理与判定定理, 明确命题证明的基本步骤.
自学指导1(1分钟)
看课本P165-170 思考下列问题: 1、想一想:什么是定义?什么是命题?命题由哪 两部分组成?
2、什么是真、假命题?如何判断?
3、什么是公理?什么是定理?如何说明一个命 题是真命题?
学生自学,教师巡视(3分钟)
自学检测1(5分钟)
2.下列命题,哪些是真命题?哪些是假命题?如果是真 命题,请写出条件与结论,如果是假命题,请举出反例

平行线的证明复习PPT教案学习

平行线的证明复习PPT教案学习

∠BDF.
证求明证:∵BC∠平1分+∠2D=B1E8.0°, ∠BDC+∠2=180°
A
B 1E
∴∠1=∠BDC
∴AE∥FC ∴∠EBC=∠C
FD 2
C
∵∠A=∠C ∴∠EBC=∠A
∵AD平分∠BDF ∴∠ADF=∠ADB
∴AD∥BC ∴∠ADB=∠CBD
∠ADF=∠C
∴∠CBD=∠C ∴∠CBD=∠EBC ∴BC平分∠DBE
3.内错角相等,两直线平行. 定理
4.同旁内角互补,两直线平行. 定理 5.平行于同一条直线的两条直线互相平行. 定理
6.平面内垂直于同一直线的两条直线平行.真命题
第9页/共24页
自学检测2:(5分钟)
1.已知:如图,∠1=40°,∠D=50°,EF⊥DE.
求证:AB∥CD.
证证明明::((证证法法21)) ∵∵EEFF⊥⊥DDEE ∴∴∠∠DDEEFF==9900°°
一般地,陈述句是命题,疑问句,感叹句,命令性
的句子和表示作法的句子都不是命题.
第4页/共24页
3.将下列命题改写成"如果...那么..."的形式. (1).同角的余角相等. 如果几个角是同一个角的余角,那么这几个角相等.
(2).等角的余角相等. 如果几个角相等,那么这几个角的余角相等.
(3).直角都相等. 如果几个角都是直角,那么这几个角相等. (4).对角线相等的平行四边形是长方形. 如果一个平行四边形的两条对角线相等,那么这个 平行四边形是长方形.
第5页/共24页
4.判断下列命题是真命题还是假命题?若是假命题请举一 个反例加以说明.
(1)两个角的和是180°,则这两个角是邻补角.

北师大版八年级数学第七章平行线的证明复习与巩固

北师大版八年级数学第七章平行线的证明复习与巩固

平行线的证明复习与巩固【学习目标】1.了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;2. 区别平行线的判定与性质,并能灵活运用;3. 理解并能灵活运用三角形的内角和定理及其推论.【知识网络】【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.要点进阶:(1)命题一般由条件和结论组成.(2)正确的命题称为真命题,不正确的命题称为假命题.(3)公认的真命题叫做公理.(4) 经过证明的真命题称为定理.3.证明:除了公理外,其它的真命题的正确性都要通过推理的方法进行证实,这种演绎推理的过程叫做证明.要点进阶:实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点进阶:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点进阶:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°.推论:(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.要点进阶:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.【典型例题】类型一、定义、命题及证明例1.我们知道任何一个命题都由条件和结论两部分组成,•如果我们把一个命题的条件变结论,结论变条件,那么所得的是不是一个命题?试举例说明.举一反三:【变式】下列命题中,真命题有( ) .①若x=a,则x2-(a+b)x+ab=0②直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离③如果242xx--=0,那么x=±2④如果a=b,那么a3=b3A.1个B.2个C.3个D.4个例2.如图所示,O是直线AB上一点,射线OC、OD在AB的两侧,且∠AOC=∠BOD,试证明∠AOC 与∠BOD是对顶角.类型二、平行线的性质与判定例3.将一副三角板中的两根直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=150°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时,CD∥AB,并简要说明理由.例4.如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.举一反三:【变式1】如图:AD∥BC,∠DAC=60°,∠ACF=25°,∠EFC=145°,则直线EF与BC的位置关系是.【变式2】已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.类型三、三角形的内角和定理及推论例5.如图,P 是△ABC 内一点,请用量角器量出∠ABP.∠ACP.∠A 和∠BPC 的大小,再计算一下,∠ABP +∠ACP +∠A 是多少度?这三个角的和与∠BPC 有什么关系?你能用学到的知识来解释其中的道理吗?你能判断∠BPC 和∠A 的大小吗?举一反三:【变式1】如图,△ABC 的两外角平分线交于点P,易证∠P =90°-12∠A ;△ABC•两内角的平分线交于点Q,易证∠BQC =90°+12∠A ;那么△ABC 的内角平分线BM 与外角平分CM•的夹角 ∠M =_____∠A.M QP CB A【变式2】如图,E 是BC 延长线上的点,∠1=∠2.求证:∠BAC >∠B.21E DC BA类型四、实际应用例6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB =30°,你能说出∠EGF的度数吗?【巩固练习】一、选择题1.下列命题中,真命题是().A.任何数的绝对值都是正数 B.任何数的零次幂都等于1C.互为倒数的两个数的和为零D.在数轴上表示的两个数,右边的数比左边的数大2.一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向左拐130°D.第一次向左拐50°,第二次向右拐130°3.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个4.两条平行直线被第三条直线所截时,产生的八个角中,角平分线互相平行的两个角是().A.同位角B.同旁内角C.内错角 D. 同位角或内错角5.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO=98°,则∠C 的度数为( )A .40°B .41°C .42°D .43°6. 如图,已知∠A =∠C ,如果要判断AB ∥CD ,则需要补充的条件是( ).A .∠ABD =∠CEFB .∠CED =∠ADBC .∠CDB =∠CEFD .∠ABD+∠CED =180°7.如图,1753DE //AB,CAE CAB,CDE ,∠=∠∠=65B ∠=,则∠AEB =( ). A .70 B .65 C .60 D .558. 把一张对面互相平行的纸条折成如图所示,EF 是折痕,若∠EFB =32°,则下列结论不正确的有( ).A.32='∠EF C B. ∠AEC =148° C. ∠BGE =64° D. ∠BFD =116° A B FE D CA BC D E A B C 'D ' C DEF G二、填空题9.如图所示,AB∥CD,点E在CB的延长线上.若∠ECD=110°,则∠ABE的度数为________.10.如图,l∥m,∠1=115°,∠2=95°,则∠3=.11.如图所示,AB∥CD,MN交AB、CD于E、F,EG和FG分别是∠BEN和∠MFD的平分线,那么EG与FG的位置关系是.12.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.13.如图所示,∠A=10°,∠ABC=90°,∠ACB=∠DCE,∠ADE=∠EDF,∠CED=∠FEG.则∠F=.14. 我们已经证明了“三角形的内角等于180°”,易证“四边形的内角和等于360°=2×180°,五边形的内角和等于540°=3×180•°,……”试猜想十边形的内角和等于度.15. 五角形的五个内角的和是________.16. 如图,下面四个条件:(1)AD AE =,(2)AC AB =,(3)OC OB =,(4)C B ∠=∠, 请你以其中两个论断为条件,一个论断为结论,组成一个真命题:如果,那么 .(只填序号即可)三、解答题17.如图所示,在平行四边形ABCD 中,AQ ,BN ,CN ,DQ 分别是∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,在不添加其他条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程.(推理过程中用到“平行四边形”和“角平分线”这两个条件)18. 如图所示,已知∠1=50°,∠2=130°,∠4=50°,∠6=130°,试说明a ∥b ,b ∥c ,d ∥e ,a ∥c .19. 如图所示,已知AB ∥CD ,∠1=110°,∠2=125°,求∠x 的大小.DA B CE O20.已知在四边形ABCD中,∠A=∠C=90°.(1)∠ABC+∠ADC=;(2)如图1,若DE平分∠ABC的外角,BF平分∠ABC的外角,请写出DE与BF的位置关系,并证明.(3)如图2,若BE、DE分别四等分∠ABC、∠ADC的外角(即∠CDE=∠CDN,∠CBE=∠CBM),试求∠E的度数.。

初二数学平行线的证明讲义

初二数学平行线的证明讲义

学科教师辅导讲义体系搭建一、知识梳理知识点一:命题、公理、证明1、定义:证明时,为了交流的方便,必须对某些名称和术语形成共同的认识.为此,就要对名称和术语的含义加以描述,作出明确的规定,也就是给出它们的定义.2、命题:判断一件事情的句子,叫做命题.3、条件和结论:一般地,每个命题都是由条件和结论两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.命题通常可以写成“如果……那么……”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论.(1)正确的命题称为真命题;(2)不正确的命题称为假命题;(3)要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.5、公理、证明、定理(1)公认的真命题称为公理;(2)演绎推理的过程称为证明;(3)经过证明的真命题称为定理.6、几个常用的定理(1)同角(等角)的补角相等;(2)同角(等角)的余角相等;(3)三角形的任意两边之和大于第三边;(4)对顶角相等.知识点二:平行线的判定与性质1、平行线的判定定理1:同位角相等,两直线平行定理2:内错角相等,两直线平行.定理3:同旁内角互补,两直线平行.定理4:平行于同一条直线的两条直线平行.2、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.知识点三:三角形内角和与外角和定理1、三角形内角和定理:三角形的内角和等于180°.2、外角:△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.3、定理:三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.4、三角形外角和定理:三角形外角和是360°5、多边形及其内角和(1)在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

(2)n边形的内角和公式:180(n-2);任何n(大于3)边形的外角和等于360。

第八章平行线的有关证明复习课件鲁教版(五四制)数学七年级下册

第八章平行线的有关证明复习课件鲁教版(五四制)数学七年级下册
要点:一般地,用来说明一个名词或者一个术语的意义的语句叫 做定义
例 下列属于定义的是( )
D.内错角相等,两直线平行
知识点一
1.定义常用的叙述方式是“.....叫做.....”,它能够帮助我们理解 并记忆名词所代表的事物的根本特性;
2.定义必须是严格的,应避免使用含糊不清的术语,如“一些、 可能、大概、差不多”等;
知识点七 平行线的性质定理
要点: 平行线的性质定理 1 两条平行直线被第三条直线所截,同位角相等,即两直线平行,同位角相等. 平行线的性质定理 2 两条平行直线被第三条直线所截,内错角相等,即两直线平行,内错角相等. 平行线的性质定理 3 两条平行直线被第三条直线所截,同旁内角互补,即两直线平行,同旁内角互补
变式 如图,AB//CD,∠B= 26°,∠D= 39%,求∠BED 的度数.
知识点八 三角形的外角
要点: 三角形外角的定义: 三角形内角的一条边与另一边的反向延长线组成的角,称为三角形的外角。 三角形外角的特征 (1)顶点是三角形的顶点; (2)一条边是三角形内角的一边; (3)另一条边是该内角另一条边的反向延长线
命题的条件和结论
(1)三条边对应相等的两个三角形全等;
(2)三角形的外角等于和它不相邻的两个内角的和对于任实数x ,x2≥ 0
知识点三
一个命题的条件和结论不够明显时,要认真分析,把命题 改写成“如果......那么......”的形式,再判断条件和结论。
知识点三
变式 写出下列命题的条件和结论. (1)垂直于同一条直线的两条直线平行. (2)同位角相等. (3)角平分线上的点到这个角两边的距离相等.
知识点五
例1 命题“对顶角相等”是( )
A.角的定义
B.假命题

平行线的判定PPT课件(北师大版)

平行线的判定PPT课件(北师大版)
这一定理可简单地说成:
定理:内错角相等,两直线平 行.
•新知探 究
小明用下面的方法作出了平行线,你认为他的
作法对吗?为什么?
•新知探 究
D F 45°
C
B 小明的作法可用右上图表示:
45°
A
E

∠CFE=45°,∠BEF=45°,
则∠CFE= ∠BEF,
而∠CFE=与∠BEF是内错角,且这两个角相等,
第7章 平行线的证明
7.3 平行线的判定
•复习导 入
判别两条直线平行有哪些方法呢?
u 定义:在同一平面内,不相交的两条直线叫做平 行线. u 两条直线都和第三条直线平行,则这两条直线互 相平行. u 同位角相等,两直线平行. u 内错角相等,两直线平行. u 同旁内角互补,两直线平行.
•复习导 入
平行线的判定定理:两条直线被第三条直线所截,
如果同旁内角互补,那么这两条直线平行.
这一定理可简单地写成: 定理:同旁内角互补,两直线平 行.
•探究新 知
(1)已给的公理、定义和已经证明的定理可 以作为根据,用来证明新的结论.
(2)证明过程中,有些上面的步骤刚刚得到 的条件,可以省略(即不用重复写已经得到的).
(3)证明中的每一步推理都要有根据,不能 “想当然”.这些根据可以是已知条件,也可以是定 义、公理、已经学过的定理.
•探究新 证明命题知的一般步骤:
(1)根据题意画出图形(若已给出图形,则可省略); (2)根据题设和结论,结合图形,写出已知和求证; (3)经过分析,找出已知推出求证的途径,写出证 明过程; (4)检查证明过程是否正确完善.
因此可知: CD∥AB.
•新知探 两条直究线被第三条直线所截,如果同旁内角互补,

人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件

人教版七年级下册数学《平行线的判定》相交线与平行线说课研讨复习教学课件

是为什么?
解题秘方:找出AB,CD 被
AE 所截形成的同旁内角,利
用两个角之间的数量关系来
说明这两条直线平行.
感悟新知
解:因为∠ 1= ∠ AOD(对顶角相等),∠ 1=70°, 所以∠ AOD=70°. 又因为∠ A=110°, 所以∠ A+ ∠ AOD=180°. 所以AB ∥ CD(同旁内角互补,两直线平行).
(3)直线l1,l2位置关系如何?
两直线平行
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
.P
A
B
1
相关概念:判定1:同位角相等,两直线平行
平行线判定1:
两条直线被第三条直线所截 ,
如果同位角相等, 课件 课件 课件 课件 课件
2. 表达方式:如图5.2-12, 因为∠ 1+ ∠ 2=180°(已 知), 所以a ∥ b(同旁内角互补, 两直线平行).
感悟新知
特别解读 利用同旁内角说明两直线平行时,同旁内角之
间的关系是互补,不是相等.
感悟新知
例 3 如图5.2-13, 直线AE,CD 相交于点O, 如果
∠ A=110°,∠ 1=70°,就可以说明AB ∥ CD,这
【例1】如图,∠1=∠2=35°,
则AB与CD的关系是___A__B_∥_C_D____,
理课 课 课件 件 件 由课课课件件件 是___同___位__角__相__等__,__两__直__线__平__行__.

北师大版八年级上册数学《平行线的性质》平行线的证明说课教学复习课件

北师大版八年级上册数学《平行线的性质》平行线的证明说课教学复习课件

4 平行线的性质
3.如图,AB∥CD,∠B=42°,∠2=35°,则∠1= ,
∠A=
,∠ACB=
,∠BCD=
.
栏目索引
答案 42°;35°;103°;138°
解析 因为AB∥CD,所以∠1=∠B=42°,∠A=∠2=35°,∠BCD=180°∠B=138°. 易得∠ACB=180°-∠1-∠2=103°.
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135°,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180°(两直线平行,同旁内角互 补),又因为∠DOB=135°,所以∠B=180°-135°=45°,又∠A=∠B,所以 ∠A=45°.
4 平行线的性质
栏目索引
4.如图所示,点A、B、C在同一条直线上,且∠1=∠2,∠3=∠D.试说明 BD∥EC.
4 平行线的性质
证明 ∵∠1=∠2(已知), ∴AD∥BE(内错角相等,两直线平行). ∴∠D=∠DBE(两直线平行,内错角相等). 又∵∠D=∠3(已知), ∴∠3=∠DBE(等量代换), ∴DB∥EC(内错角相等,两直线平行).
则∠1=∠A=120°,∵∠ABC=150°,∴∠2=30°. ∵AE∥CD,∴BF∥CD,∴∠2+∠C=180°,∴∠C=150°.

平行线的证明知识点总结(共10篇)

平行线的证明知识点总结(共10篇)

平行线的证明知识点总结(共10篇) :知识点平行线证明平行线的证明知识树平行线证明定义平行线的证明思维导图篇一:命题与证明的知识点总结命题与证明的知识点总结一、知识结构梳理二、知识点归类知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。

如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。

知识点二命题的概念叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用是教科书是华东师大版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

知识点三命题的结构每个命题都有条件和结论两部分组成。

条件是已知的事项,结论是由已知事项推断出的事项。

一般地,命题都可以写出“如果------,那么-------”的形式。

有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。

如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。

例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。

1、同角的余角相等2、两点确定一条直线知识点四真命题与假命题如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。

知识点五证明及互逆命题的定义1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。

注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。

2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。

第七章《平行线的证明》复习

第七章《平行线的证明》复习
定义 定义 与命题
两个作用—判定和性质
命题
假命题 真命题
结构: 条件 + 结论
如果。。。那么。。。 形式:
判断方法: 举反例 公理 8个公理 定理 推论
判断方法
证明
倒推法-执“果”索“因 1找出条件结论 分析方法 一般 综合法-由“因”导“果 2画图写出已知求证 步骤: 言必有据 证明注意 3写证明过程
一定要
三角形 内角和 平行线的 定理及 性质定理 证明
平行线的 判定定理
因果对应 逻辑有序 三角形 三角形内角和定理和外角的性质 推论 外角3 是进行角的计算和证明的重要依据 个性质 证明关于角的不等关系通常转化 到三角形中利用外角的性质来解决。
作业布置
一定要
三角形 内角和 平行线的 定理及 性质定理 证明
平行线的 判定定理
因果对应 逻辑有序 三角形 三角形内角和定理和外角的性质 推论 外角3 是进行角的计算和证明的重要依据 个性质 证明关于角的不等关系通常转化 到三角形中利用外角的性质来解决。
第二环节 做一做 做一做
1.下列语句是命题的有( 1,3,4 ) (1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角 相等;(4)对应角相等的两个三角形是全等三角形; 2.下列命题,哪些是真命题?哪些是假命题?如果是真命题, 请写出条件与结论,如果是假命题,请举出反例! A (1)同角的补角相等; 真 1 F E (2)同位角相等,两直线平行;真 3 (3)若|a|=|b|,则a=b; 假 2 C B
B
A
B
P C ( 1) A
E
D
E
P
P D ( 2)
A B
C
B
F
C

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)

第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。

(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。

(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。

二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点

八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。

写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。

八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

XXX版八年级上册数学[《平行线的证明》全章复习与巩固(基础版)知识点整理及重点题型梳理]

XXX版八年级上册数学[《平行线的证明》全章复习与巩固(基础版)知识点整理及重点题型梳理]

XXX版八年级上册数学[《平行线的证明》全章复习与巩固(基础版)知识点整理及重点题型梳理]研究目标】1.理解并掌握三角形的内角和定理;2.理解并能灵活运用三角形内角和定理的推论。

要点梳理】要点一、三角形的内角和定理1.三角形的内角和定理:一个三角形的三个内角的度数和等于180度。

2.三角形内角和定理的证明:可以通过将三角形分割成两个直角三角形,并利用直角三角形的内角和为180度来证明。

要点二、三角形内角和定理的推论1.推论1:等腰三角形的底角相等。

2.推论2:直角三角形的两个锐角互补。

3.推论3:在同一直线上的两个角的补角相等。

4.推论4:一个角的补角与其余两个角的和相等。

知识网络】三角形是初中数学中的重要概念之一,研究三角形的内角和定理及其推论是初中数学研究的重点之一。

掌握三角形的内角和定理及其推论,有助于学生在解决三角形相关的问题时,更加得心应手。

欲证明三角形的内角和定理及推论,可以从以下几个方面入手:一、三角形的内角和定理三角形的内角和定理指的是任意一个三角形的三个内角之和等于180度。

可以通过以下方式证明:在三角形ABC中,作角平分线AD,将三角形分成两个小三角形ABD和ACD。

由于角ABD和角ACD是相等的,所以它们的对边BD和CD也是相等的。

又因为角BAD和角CAD是角平分线,所以它们的对边AB和AC也是相等的。

于是可以得到以下等式:XXX化简可得:BD+CD=BC由于BD和CD是三角形BCD的两条边,所以它们的和必须大于第三条边BC的长度,即BD+CD>BC。

因此,角BAD和角CAD不能同时大于90度。

根据这个结论,可以得到三角形ABC的三个内角之和等于180度。

二、三角形内角和推论三角形内角和推论指的是等腰三角形的底角相等、直角三角形的两个锐角互补、钝角三角形的三个内角之和大于180度。

可以通过以下方式证明:1.等腰三角形的底角相等在等腰三角形ABC中,假设AB=AC。

作角平分线AD,将三角形分成两个小三角形ABD和ACD。

北师大版八年级上册数学北师大版八年级上册数学 第七章复习教案精选教案1

北师大版八年级上册数学北师大版八年级上册数学   第七章复习教案精选教案1

第七章 平行线的证明复习目标:1、使学生进一步熟悉平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质等概念;2、培养学生的逻辑思维能力,规范学生的证明格式。

主要问题:如何运用所学的公理、定理解决相关问题。

学习过程:本章知识网络:基础练习:——。

2.下列句子中,不属于命题的是( )A .三角形的内角和等于180°B .对顶角相等C .过直线外一点作已知直线的平行线D .两点之间,线段最短3、把命题“等腰三角形的两个底角相等”改写成“如果……那么……”的形式1.下列四个命题中,属于真命题的是( )A .互补的两角必有一条公共边B .同旁内角互补C .同位角不相等,两直线不平行D .一个角的补角大于这个角4、已知:如图,∠1十∠2=180°,求证:∠3=∠4.}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(5、已知:如图,直线a、b被直线c所截且a∥b,求证:∠1十∠2=180°拓展提高:1、已知:如图,直线a、b被直线c所截,若∠1十∠2=180°,求证:a∥b2、如图,在△ABC中,DE∥BC,∠DBE=30°,∠EBC=30°,求∠BDE 的大小.3、已知:如图,在△ABC中,DE∥BC,F是AB上一点,FE的延长线交BC的延长线于点G,求证:∠EGH>∠ADE4、某城市几条道路的位置关系如图所示,道路AB与道路CD平行,道路AB与道路AE的夹角为45°.城市规划部门想新修一条道路CE,要求∠C=∠E,求∠C的大小.5、如图,潜望镜中的两个镜片都是与水平面成45°角放置的,这样的设计就可以保证下面人的视线和上面的光线是平行的.你能说明其中的道理吗?6、已知:如图,P是△ABC内一点,连接PB,PC.求证:∠BPC>∠A.7、(1)如图(1)所示,在△ABC中,若BD,CD分别是∠ABC,∠ACB的角平分线,1∠A.试说明:∠BDC=90°+2(2) 如图(2)所示,若BD,CD是△ABC的两外角的平分线,试证明:∠1∠A.BDC=90°-2(3) 如图(3)所示,若BE,CE分别是△ABC一内角1∠A.和一外角的平分线,试证明:∠E=28、如图,MN,EF分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,你是如何思考的?9、把长方形ABCD沿对角线Ac折叠,得到如图所示的图形.已知∠BAO=30°,求∠AOC和∠BAC的大小。

新北师大版八年级数学上册第七章平行线的证明知识点复习

新北师大版八年级数学上册第七章平行线的证明知识点复习

AB E P DC F平行线的证明知识点复习知识点1:命题(1)判断一件事情的句子,叫_____________. _______的命题是真命题,不正确的命题是___________.(2)公认的真命题称为____________,经过证明的真命题称为_____________.典型练习:1:判断下列命题是真命题还是假命题,如果是假命题,举出一个反例:①.若a>b ,则ba 11 . ②.两个锐角的和是锐角.③.同位角相等,两直线平行. ④.一个角的邻补角大于这个角. ⑤.两个负数的差一定是负数.2.甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”甲说:“是乙不小心闯的祸.” 乙说:“是丙闯的祸.”丙说:“乙说的不是实话.” 丁说:“反正不是我闯的祸.”如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的( )A.甲B. 乙C.丙D.丁知识点2:平行线(1).平行线的判定:公理:____________相等,两直线平行. 判定定理1:___________相等,两直线平行.判定定理2:_______________,两直线平行. 定理:平行于同一直线的两直线___________.(2).平行线的性质公理:两直线平行,同位角___________. 性质定理1:两直线平行,内错角_________.性质定理2:两直线平行,同旁内角__________.典型练习:1、已知如图∠1=∠2,BD 平分∠ABC ,求证:AB//CD2.已知:BC//EF ,∠B=∠E ,求证:AB//DE 。

3、小明到工厂去进行社会实践活动时,发现工人师傅生产了一种如图所示的零 件,要求AB ∥CD ,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,于是他就说AB 与CD 肯定是平行的,你知道什么原因吗?4.如图,某湖上风景区有两个观望点A,C和两个度假村B,D.度假村D在C的正西方向,度假村B在C的南偏东30°方向,度假村B到两个观望点的距离都等于2km.(1)求道路CD与CB的夹角;(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长;(3)根据题目中的条件,能够判定DC∥AB吗?若能,请写出判断过程;若不能,请你加上一个条件,判定DC∥AB.5.与平行线有关的探究题(1)、利用平行线的性质探究:如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①②③④四个部分,规定线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.当动点P落在第①部分时,小明同学在研究∠PAC、∠APB、∠PBD三个角的数量关系时,利用图1,过点P 作PQ∥BD,得出结论:∠APB=∠PAC+∠PBD.请你参考小明的方法解决下列问题:(1)当动点P落在第②部分时,在图2中画出图形,写出∠PAC、∠APB、∠PBD三个角的数量关系;(2)当动点P落在第③、第○4部分时,在图3、图4中画出图形,探究∠PAC、∠APB、∠PBD之间的数量关系,写出结论并选择其中一种情形加以证明.知识点三:三角形的内角和外角(1)三角形内角和定理:三角形的内角和等于__________.(2) 定理:三角形的一个外角等于和它不相邻的____________________.(3) 定理:三角形的一个外角大于任何一个和它____________________.典型练习:1.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E;(2)图(2)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?说明你的结论的正确性;(3)把图(2)中的点C向上移到BD上时,如图(3)所示,五个角的和(即∠CAD+∠B+ ∠ACE+∠D+∠E)有无变化?说明你的结论的正确性.2..认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠AB C 与∠ACB 的平分线BO 和CO 的交点,通过分析发现∠BOC =90°+21∠A,理由如下: ∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=21∠ABC ,∠2=21∠ACB ∴∠1+∠2=21(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°—∠A∴∠1+∠2=21(180°—∠A )=90°—21∠A ∴∠BOC=180°—(∠1+∠2)=180°—(90°—21∠A ) ∴∠BOC=90°+21∠A 探究2:如图2,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 请说明理由.探究3:如图3,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?(只写结论,不需证明)综合测试题:一、填空题1.如上图,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.2.如上右图,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____.3.如右图,DAE 是一条直线,DE ∥BC ,则∠BAC =_____.4.“一次函数y=kx-2,当k>0时,y 随x 的增大而增大”是一个_______命题(填“真”或“假”)二、选择题1.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交 ,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行2.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交3. 下列句子中,不是命题的是( )A.三角形的内角和等于180度;B.对顶角相等;C.过一点作已知直线的平行线;D.两点确定一条直线.4.如右图,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )A.AD ∥BCB.∠B =∠CC.∠2+∠B =180°D.AB ∥CD5.如右图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°三、解答题1.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.2.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系,为什么?3.如图,如图,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分线,AD⊥BC于D.(1)求∠DAE的度数;(2)判定AD是∠EAC的平分线吗?说明理由.(3)若∠C=α°,∠B=β°,试猜想∠DAE与∠C—∠B有何关系,并证明你的猜想.∠DAE的度数.(∠C>∠B)4.如图,y轴的负半轴平分∠AOB,P为y轴负半轴上的一动点,过点P作x轴的平行线分别交OA、OB 于点M、N.(1)如图1,MN⊥y轴吗?为什么?(2)如图2,当点P在y轴的负半轴上运动到AB与y轴的交点处,其他条件都不变时,等式∠APM=(∠OBA﹣∠A)是否成立?为什么?(3)当点P在y轴的负半轴上运动到图3处(Q为BA、NM的延长线的交点),其他条件都不变时,试问∠Q、∠OAB、∠OBA之间是否存在某种数量关系?若存在,请写出其关系式,并加以证明;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线的证明》复习指导
一、知识点填一填
1.定义与命题
(1)对名称和术语的含义加以描述,作出明确的规定,叫做对它们的_______.如“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的_______.
(2)判断一件事情的句子,叫做_______.命题必须是一个完整的句子,这个句子必须对某件事情作出肯定或否定的判断.如“两直线平行,内错角相等”就是一个命题.命题包括___命题和____命题:
(3)人们公认的真命题称为_______;经过证明了的真命题称为________.
2.平行线
(1)公理:同位角相等,两直线______.
(2)平行线的判定定理:______互补,两直线平行;______相等,两直线平行.(3)平行线的性质公理:两直线平行,_______相等.
平行线的性质定理:两直线平行,______相等;两直线平行,_______互补.
3.三角形的内角和定理及证明
三角形的内角和等于_______.
4.三角形的外角
性质:(1)三角形的一个外角等于和它______的两个内角的和;(2)三角形的一个外角大于任何一个和它_______的内角.
二、疑难点一点
1.判别命题的真假是考试的重点.题目一般和学过的公理、定理和定义有关.解决此类问题的关键是熟练掌握所学过的一些公理、定理及性质等.
2.利用所学过的公理、定理解决证明问题时,当题目是以文字叙述的命题时,要根据已知条件画出符合题意的图形,根据图形写出已知、求证,结合图形进行证明.要考虑可能存在的多种情况;当题目给出图形时,应分清已知条件和证明的结论,应注意挖掘图形中的隐含条件,如对顶角、公共角或公共边等.依据所学的公理或定理正确写出推理过程.
3.在证明的过程,比较难的题目往往需要添加辅助线.添加辅助线时不能盲目添加,而应根据图形特点结合已知条件进行有目的的添加.如图形中出现平行线时,添加辅助线可以思考添加平行线或构造三角形,借助平行线的性质或三角形内角和定理
或推论解决.添加辅助线应使用虚线.
三、典型看一看
例1 在下列命题中,真命题是 ( )
(A )两个钝角三角形一定相似 (B )两个等腰三角形一定相似
(C )两个直角三角形一定相似 (D )两个等边三角形一定相似
分析:本题是和三角形相似的有关命题的识别,真命题就是条件成立,结论正确的
命题.两个三角形是否相似,主要看是否满足下列相似的条件之一:①有两组对应角相
等的两个三角形相似;②两边对应成比例,且夹角相等的两个三角形相似;③三边对
应成比例的两个三角形相似.所给的选项中只有两个等边三角形满足以上条件.
解:选D .
点评:和命题有关的试题,多以选择题的形式出现,以判断真假命题类型题为主要
考点.
例2 如图,∠ABC=∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,∠DBF=∠F ,
求证:EC//DF .
分析:要证明EC//DF ,根据图形可知需要证明∠DBF=∠ECB .
证明:∵BD 平分∠ABC ,CE 平分∠ACB ,
∴∠DBF=21∠ABC ,∠ECB=2
1∠ACB (角平分线的定义), ∵∠ABC=∠ACB (已知),∴∠DBF=∠ECB (等量代换).
又∵∠DBF=∠F (已知),∴∠ECB=∠F (等量代换).
∴EC//DF (同位角相等,两直线平行).
点评:证明两直线平行,主要根据图形找同位角相等或内错角相等或同旁内角互
补.
例3 如图,∠B=42°,∠A+10°=∠1,∠ACD=64°,求证:AB//CD .
分析:要证明AB//CD,根据图形可知只需证明∠A=64°,利用内错角相等,两直线平行证明或证明∠DCB+∠B=180°,根据同旁内角互补,两直线平行证明.为此需要根据三角形的内角和定理求出∠A或∠1即可.
证明:在△ABC中,
∠1+∠A+∠B=180°(三角形的内角和定理)
又∠A+10°=∠1,∠B=42°,
∴(∠A+10°)+∠A+42°=180°,
即2∠A=180°-52°,
∴∠A=64°,
∴∠DCA=∠A=64°,
∴AB//CD(内错角相等,两直线平行).
点评:本题借助“内错角相等,两直线平行”证明两直线平行,在推导角相等时,用到三角形内角和定理.
例4如图,已知△ABC中,∠BAC=90°,AD⊥BC于D,E是AD上一点.求证:∠BED>∠C.
分析:∠BED与∠C没有直接的联系,但∠BED、∠C都与∠BAC有关,因此可以用∠BAC作中间量进行过渡.
证明:在△ABC中,∠ABC+∠C=90°,
∵AD⊥BC,∴∠ADB=90°,
在△ABD中,∠ADB=90°,∴∠ABC+∠BAD=90°,
∴∠C=∠BAD,
∵∠BED>∠BAD(三角形的一个外角大于任何一个和它不相邻的内角),
∴∠BED>∠C.
点评:证明角的不等关系式时一般用到三角形的外角性质“三角形的一个外角大于任何一个和它不相邻的内角”.。

相关文档
最新文档