历年中考数学(全等三角形)
2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)
全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)
中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·长沙)下列长度的三条线段,能组成三角形的是( )A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( )第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( )第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是.(只填一个即可) 7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是.第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.11.(2023·大连)如图,在△ABC和△ADE中,延长BC交DE于点F,BC=DE,AC=AE,∠ACF+∠AED=180°.求证:AB=AD.第11题图12.(2023·聊城)如图,在四边形ABCD中,点E是BC边上一点,且BE=CD,∠B=∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4,求△AED的面积.参考答案1.(2023·长沙)下列长度的三条线段,能组成三角形的是( C)A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( D)第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( C)第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( B)第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( C)第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是(示例)3.(只填一个即可)7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是4.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是(2,5).第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有①②④.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.解:(1)证明:∵AD是△ABC的角平分线由作图知,AE =AF. 在△ADE 和△ADF 中 ⎩⎪⎨⎪⎧AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF(SAS);(2)∵∠BAC =80°,AD 为△ABC 的角平分线 ∴∠EAD =12∠BAC =40°由作图知,AE =AD. ∴∠AED =∠ADE∴∠ADE =12×(180°-40°)=70°∵AB =AC ,AD 为△ABC 的角平分线 ∴AD ⊥BC.∴∠BDE =90°-∠ADE =20°.11.(2023·大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于点F ,BC =DE ,AC =AE ,∠ACF +∠AED=180°.求证:AB =AD.第11题图证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°在△ABC 和△ADE 中 ⎩⎪⎨⎪⎧BC =DE ,∠ACB =∠AED ,AC =AE ,∴△ABC ≌△ADE(SAS) ∴AB =AD.12.(2023·聊城)如图,在四边形ABCD 中,点E 是BC 边上一点,且BE =CD ,∠B =∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE =4,求△AED 的面积.解:(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ∴∠BAE =∠CED 在△ABE 和△ECD 中 ⎩⎪⎨⎪⎧∠BAE =∠CED ,∠B =∠C ,BE =CD ,∴△ABE ≌△ECD(AAS) ∴AE =ED ∴∠EAD =∠EDA ;(2)∵∠AED =∠C =60°,AE =ED ∴△AED 为等边三角形 ∴AE =AD =ED =4 过A 点作AF ⊥ED 于点F.第12题图∴EF =12ED =2∴AF =AE 2-EF 2=42-22=2 3 ∴S △AED =12ED ·AF =12×4×23=4 3.。
中考数学专题复习全等三角形(公共角模型)
中考数学专题复习全等三角形(公共角模型)学校:___________姓名:___________班级:___________考号:___________评卷人得分 一、解答题1.在ABC 中,∠BAC =90°,AB AC =,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为直角边在AD 右侧作等腰直角三角形ADE (90DAE ∠=︒,AD AE =),连接CE . (1)如图1,当点D 在线段BC 上时,猜想:BC 与CE 的位置关系,并说明理由; (2)如图2,当点D 在线段CB 的延长线上时,(1)题的结论是否仍然成立?说明理由;(3)如图3,当点D 在线段BC 的延长线上时,结论(1)题的结论是否仍然成立?不需要说明理由.2.在四边形ABCD 中,∠DAB +∠DCB =180°,AC 平分∠DAB .(1)如图1,求证:BC =CD ;(2)如图2,连接BD 交AC 于点E ,若∠ADB =90°,AE =2DE ,求∠ABD 的度数; (3)如图3,在(2)的条件下,过点C 作CH ∠AB 于点H ,∠BCH 沿BC 翻折,点H 的对应点为点F ,点G 在线段AB 上,连接FG ,若∠CGF =30°,S △CHG =9,求线段CG 的长.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),过点A作AG∠AH且AG=AH,连接GC,HB.(1)证明:AHB∠AGC;(2)如图2,连接GF,HG,HG交AF于点Q.∠证明:在点H的运动过程中,总有∠HFG=90°;∠当AQG为等腰三角形时,求∠AHE的度数.4.如图,我们把对角线互相垂直的四边形叫做“垂美四边形”.(1)性质探究:如图1.己知四边形ABCD中,AC∠BD.垂足为O,求证:AB2+CD2=AD2+BC2;(2)解决问题:已知AB=52.BC=42,分别以∠ABC的边BC和AB向外作等腰Rt∠BCE和等腰Rt∠ABD;∠如图2,当∠ACB=90°,连接DE,求DE的长;∠如图3.当∠ACB≠90°,点G、H分别是AD、AC中点,连接GH.若GH=26,则S△ABC=.5.已知,∠ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度均为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).(1)如图1,连接AQ、CP,相交于点M,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.(2)如图2,当t为何值时,∠PBQ是直角三角形?(3)如图3,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP 交点为M,请直接写出∠CMQ度数.6.(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:∠BCP∠∠DCE;(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.∠若CD=2PC时,求证:BP∠CF;∠若CD=n•PC(n是大于1的实数)时,记∠BPF的面积为S1,∠DPE的面积为S2.求证:S1=(n+1)S2.参考答案:1.(1)BC ∠CE ,见解析;(2)成立,见解析;(3)成立【解析】【分析】(1)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠4=∠5,求出∠4=∠6=45°,∠5=45°即可;(2)先证∠2=∠3,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,求出∠ABC =∠ACB =45°,得出∠ABD =∠ACE =135°即可;(3)先证∠BAD =∠CAE ,再证∠ABD ∠∠ACE (SAS ),得出∠ABD =∠ACE ,再求∠ABC =∠ACB =45°,得出∠ABD =∠ACE =45°.【详解】解:(1)BC 与CE 的位置关系是BC ∠CE ,理由是:∠∠BAC =∠DAE =90°,∠∠BAC -∠1=∠DAE -∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠4=∠5,∠∠BAC =90°,AB =AC ,∠∠4=∠6=45°,∠∠5=45°,∠∠BCE =∠5+∠6=45°+45°=90°,即BC ∠CE ;(2)成立.理由是:∠∠BAC =∠DAE =90°,∠∠BAC-∠1=∠DAE-∠1,即∠2=∠3,在△ABD 和△ACE 中,23AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∠△ABD ∠△ACE (SAS ),∠∠ABD =∠ACE ,∠∠BAC =90°,AB =AC ,∠∠ABC =∠ACB =45°,∠∠ABD =∠ACE =135°,∠∠BCE =∠ACE -∠ACB =135°-45°=90°,即BC ∠CE ;(3)成立∠∠BAC =∠DAE =90°,∠∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD=∠CAE,在△ABD和△ACE中,AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(SAS),∠∠ABD=∠ACE,∠∠BAC=90°,AB=AC,∠∠ABC=∠ACB=45°,∠∠ABD=∠ACE=45°,∠∠BCE=∠ACE+∠ACB=45°+45°=90°.【点睛】本题考查图形变换中结论问题,等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系,掌握等腰直角三角形性质,三角形全等判定与性质,角的和差运用,直线位置关系垂直的证法是解题关键.2.(1)证明见解析;(2)30ABD∠=;(3)CG=6【解析】【分析】(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,证明∠CQD∠∠CPB,即可得到答案;(2)延长ED,让MD=ED,∠AME是等边三角形,然后利用等边三角形的性质和角平分线的定义即可求得答案;(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,通过证明∠CFK∠∠HFL,得到FK=FL,又有直角三角形中30所对的直角边是斜边的一半,求得FK=12GF,根据等腰三角形的三线合一,进一步求得∠FGH=15,从求得到∠GCH=45,然后在直角三角形中利用勾股定理求解即可得答案.【详解】解:(1)过点C作CP∠AB于点P,作CQ∠AD的延长线于点Q,如下图:∠AC平分∠DAB,CP∠AB,CQ∠AD∠CQ=CP在四边形APCQ中,∠APC=∠AQC=90∠∠QAP+∠PCQ=180又∠∠DAB+∠DCB=180°∠∠PCQ=∠DCB∠∠QCD+∠DCP=∠DCP+∠PCB∠∠QCD=∠PCB又∠∠CQD=∠CPB=90∠∠CQD∠∠CPB(ASA)∠CD=CB(2)延长ED,让MD=ED,如下图:∠∠ADB=90°∠AD∠ME又∠MD=ED∠AM=AE,ME=2DE又∠AE=2DE∠ME=AE=AM∠∠AME是等边三角形∠60AED∠=又∠∠ADE=90°∠30DAE∠=∠AC平分∠DAB∠30EAB DAE∠=∠=又∠AED EAB ABD∠=∠+∠∠30ABD∠=(3)延长GC,过点F作FK∠GC的延长线于点K,过点H作HL∠GF于点L,连接HF,如下图:∠在Rt CHB中,90,60CHB CBH ABD CBD∠=∠=∠+∠=∠∠HCB=30又∠折叠∠CH=CF, ∠HCB=∠FCB=30∠∠HCF=60∠∠CHF是等边三角形∠∠CFH=∠CHF=60,CF=HF又∠在Rt GFK△中,∠CGF=30,∠GKF=90∠∠GFK=60∠∠CFH=∠GFK∠∠CFK +∠CFG =∠CFG +∠HFL ∠∠CFK =∠HFL又∠∠CKF =∠LHF =90,CF =HF∠∠CFK ∠∠HFL∠FK =FL又∠在Rt GFK △中,∠CGF =30∠FK =12GF∠FL =12GF∠GL =FL又∠HL ∠GF∠HG =HF∠∠FGH =∠GFH又∠∠CHF =60,∠CHB =90∠∠FHB =∠CHB -∠CHF =30∠∠FGH =15∠∠CGH =∠CGF +∠FGH =45又∠∠CHG =90∠∠GCH =45∠GH =CH ,∠GCH 是等腰直角三角形又∠9CHG S =△∠192GH CH ⋅= ∠2218GH CH ==在Rt CHG 中,由勾股定理得:22236CG GH CH =+=∠CG >0∠CG =6【点睛】本题考查全等三角形的性质和判定,含30︒的直角三角形性质,等边三角形的性质和判定,直角三角形的勾股定理等知识点,能够熟练利用化归的思想和数形结合的思想去解题,是本题的重点.3.(1)见解析;(2)∠见解析;∠当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【解析】【分析】(1)根据SAS可证明∠AHB∠∠AGC;(2)∠证明∠AEH∠∠AFG(SAS),可得∠AFG=∠AEH=45°,从而根据两角的和可得结论;∠分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论.【详解】(1)证明:如图1,由旋转得:AH=AG,∠HAG=90°,∠∠BAC=90°,∠∠BAH=∠CAG,∠AB=AC,∠∠ABH∠∠ACG(SAS);(2)∠证明:如图2,在等腰直角三角形ABC中,∠BAC=90°,∠∠ABC=∠ACB=45°,∠点E,F分别为AB,AC的中点,∠EF是∠ABC的中位线,∠EF∠BC,AE=12AB,AF=12AC,∠AE=AF,∠AEF=∠ABC=45°,∠AFE=∠ACB=45°,∠∠EAH=∠F AG,AH=AG,∠∠AEH∠∠AFG(SAS),∠∠AFG=∠AEH=45°,∠∠HFG=45°+45°=90°;∠分两种情况:i)如图3,AQ=QG时,∠AQ=QG,∠∠QAG=∠AGQ,∠AG∠AH且AG=AH,∠∠AHG=∠AGH=45°,∠∠AHG=∠AGH=∠HAQ=∠QAG=45°,∠∠EAH=∠F AH=45°,∠AE=AF,AH=AH,∠∠AEH∠∠AFH(SAS),∠∠AHE=∠AHF,∠∠AHE+∠AHF=180°,∠∠AHE=∠AHF=90°;ii)如图4,当AG=QG时,∠GAQ=∠AQG,∠∠AEH=∠AGQ=45°,∠∠GAQ=∠AQG=180452︒-︒=67.5°,∠∠EAQ=∠HAG=90°,∠∠EAH=∠GAQ=67.5°,∠∠AHE=∠AQG=67.5°;∠H为线段EF上一动点(不与点E,F重合),∠不存在AG=AQ的情况.综上,当∠AQG为等腰三角形时,∠AHE的度数为67.5°或90°.【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,第二问要注意分类讨论,不要丢解.4.(1)见解析;(2)∠146;∠7 2【解析】【分析】(1)根据AC∠BD可以得到,AOB =∠COD=90°即可得到AB²=AO²+OB²,CD²=DO²+OC²即AB²+CD²=AO²+OB²+DO²+OC² 同理可以得到AD²+BC²=AO²+OB²+DO²+OC² 即可得到答案;(2)连DC、AE相交于点F,先证明∠ABE ∠∠DBC得到∠CDB=∠BAE 从而证得AE∠CD 再利用勾股定理和(1)中的结论求解即可得到答案;(3)连DC、AE相交于点F,作CP∠BD交DB延长线于点P,BP²+CP²=BC²=(42)²=32,DP²+PC²=DC²=(46)²=96,(DP²+PC²)-(BP²+CP²)=96-32=64,DP²-BP²=64从而求出BP=7210,再证明AB∠PC则S△ABC=12AB×BP.【详解】解:(1)证明:∠AC∠BD∠,AOB=90°在Rt∠AOB中AB²=AO²+OB²∠,COD=90°在Rt∠COD中CD² =DO²+OC²∠AB²+CD²=AO²+OB²+DO²+OC²同理AD²+BC²=AO²+OB²+DO²+OC² ∠ AB2+CD2=AD2+BC ²(2)∠解:连DC、AE相交于点F ∠Rt∠BCE和Rt∠ABD是等腰三角形∠BE=BC AB=BD∠CBE=∠ABD=90°∠∠ABE=∠DBC=90°+∠ABC∠∠ABE ∠∠DBC∠∠CDB=∠BAE∠∠ABD=90°∠∠CDB+∠CDA+∠DAB=90°∠∠BAE+∠CDA+∠DAB=90°∠∠AFD=90°∠AE∠CD∠AB=52,BC=42∠ACB=90° ∠AC=2232AB BC-=∠AB=52,BD=52∠ABD=90°∠AD=2210AB BD+=∠BC=42,BE=42∠CBE=90°∠CE=228BC BE+=由(1)中结论AD²+EC²=AC²+DE²∠(10)²+(8)²=(32)²+DE²∠DE=146∠连DC、AE相交于点F∠点G、H分别是AD、AC中点,GH=26∠ DC=2GH =46作CP∠BD交DB延长线于点PBP²+CP²=BC²=(42)²=32DP²+PC²=DC²=(46)²=96∠(DP²+PC²)-(BP²+CP²)=96-32=64∠DP²-BP²=64∠(BD+BP)²-BP²=64∠(52+BP)²-BP²=64∠BP=7210∠∠PBA=90°,∠P=90°,∠∠PBA+∠P=90°+90°=180°则S △ABC =12AB ×BP =12×52×772=102【点睛】本题主要考查了四边形的综合问题,等腰直角三角形的性质,全等三角形的性质与判定,勾股定理,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.5.(1)不变,60°;(2)43或83;(3)120°. 【解析】【分析】(1)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)需要分类讨论:分∠PQB =90°和∠BPQ =90°两种情况;(3)通过证∠ABQ ∠∠CAP 得到∠BAQ =∠ACP ,所以由三角形外角定理得到∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【详解】(1)不变.在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠ACP +∠CAM =∠BAQ +∠CAM =∠BAC =60°;(2)设时间为t ,则AP =BQ =t ,PB =4-t ,∠当∠PQB =90°时,∠∠B =60°,∠4-t =2t ,43t =; ∠当∠BPQ =90°时,∠∠B =60°,∠BQ =2BP ,∠ t =2(4-t ),t =83; ∠当第43秒或第83秒时,∠PBQ 为直角三角形; (3)在∠ABQ 与∠CAP 中,∠60AB AC B CAP AP BQ =⎧⎪∠=∠=︒⎨⎪=⎩,∠∠ABQ ∠∠CAP (SAS ),∠∠BAQ =∠ACP ,∠∠CMQ =∠BAQ +∠APC =∠ACP +∠APC =180°-∠BAC =120°.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.6.(1)证明见解析;(2)∠证明见解析;∠证明见解析.【解析】【分析】(1)由SAS 即可证明∠BCP ∠∠DCE .(2)∠在(1)的基础上,再证明∠BCP ∠∠CDF ,进而得到∠FCD +∠BPC =90°,从而证明BP ⊥CF ;∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1,分别求出S 1与S 2的值,得()()11112S n n =+-,()2112S n =-,所以S 1=(n +1)S 2结论成立. 【详解】证明:(1)∠在∠BCP 与∠DCE 中,90BC CD BCP DCE CP CE =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠DCE (SAS ).(2)∠∠CP =CE ,∠PCE =90°,∠∠CPE =45°,∠∠FPD =∠CPE =45°,∠∠PFD =45°,∠FD =DP .∠CD =2PC ,∠DP =CP ,∠FD =CP .∠在∠BCP 与∠CDF 中,90BC CD BCP CDF CP FD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠BCP ∠∠CDF (SAS ),∠∠FCD =∠CBP .∠∠CBP +∠BPC =90°,∠∠FCD +∠BPC =90°,∠∠PGC =90°,即BP ⊥CF .∠设CP =CE =1,则BC =CD =n ,DP =CD -CP =n -1 易知∠FDP 为等腰直角三角形,∠FD =DP =n -1.∠()1111222BCDF BCP FDP S S S S BC FD CD BC CP FD DP ∆∆=--=+⋅-⋅-⋅梯形 ()()()()()221111111111122222n n n n n n n n =+-⋅-⋅--=-=+- ()()2111111222S DP CE n n =⋅=-⋅=- ∠S 1=(n +1)S 2.【点睛】本题是几何综合题,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形、图形的面积等知识点,试题的综合性强,难度较大.。
【2019-2020年度】中考数学 专题19 全等三角形试题(含解析)
【2019-2020年度】中考数学专题19 全等三角形试题(含解析)☞解读考点【2015年题组】1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【答案】D.【解析】试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.利用ASA判定△ABC≌△DCB,故此选项不符合题意;D.SSA不能判定△ABC≌△DCB,故此选项符合题意;故选D.考点:全等三角形的判定.2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【答案】B.考点:全等三角形的判定与性质.3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D.【解析】试题分析:在△ADC和△ABC中,∵AD=AB,DC=BC,AC=AC,∴△ADC≌△ABC (SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.考点:全等三角形的应用.4.(2015泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【答案】D.考点:1.全等三角形的判定;2.线段垂直平分线的性质;3.等腰三角形的性质;4.综合题.5.(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()12 A.0个 B.1个 C.2个 D.3个【答案】D.【解析】试题分析:在△ABD与△CBD中,∵AD=CD,AB=BC,DB=DB,∴△ABD≌△CBD (SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,∵AD=CD,∠ADB=∠CDB,OD=OD,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D.考点:1.全等三角形的判定与性质;2.新定义;3.阅读型.6.(2015宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【答案】C.考点:全等三角形的判定.7.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【答案】D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.综合题;4.压轴题.8.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH12其中,正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;2∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.9.(2015柳州)如图,△ABC≌△DEF,则EF= .【答案】5.【解析】试题分析:∵△ABC≌△DEF,∴BC=EF,则EF=5.故答案为:5.考点:全等三角形的性质.10.(2015盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.【答案】DC=BC或∠DAC=∠BAC.考点:1.全等三角形的判定;2.开放型.11.(2015贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.【答案】30°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质;3.正方形的性质;4.综合题.12.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.13.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是【答案】.1考点:1.旋转的性质;2.全等三角形的判定与性质;3.角平分线的性质;4.等边三角形的判定与性质;5.等腰直角三角形;6.综合题.14.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.12【答案】4.考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.综合题.15.(2015长春)如图,在平面直角坐标系中,点P 在函数()的图象上.过点P 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D .则△APD 的面积为 .6y x =0x >【答案】6.【解析】试题分析:∵PB⊥y 轴,PA⊥x 轴,∴=|k|=6,在△PBC 与△DOC 中,∵∠PBC=∠DOC=90°,BC=BC ,∠PCB=∠DCO,∴△PBC≌△DOC,∴S△APD=S 矩形APBO=6.故答案为:6.APBD S 矩形考点:1.反比例函数系数k 的几何意义;2.全等三角形的判定与性质.16.(2015)如图,OP 平分∠MON,PE⊥OM 于E ,PF⊥ON 于F ,OA=OB ,则图中有 对全等三角形.【答案】3.考点:1.全等三角形的判定;2.角平分线的性质;3.综合题.17.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan∠α=.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 (填入正确结论的序号).34214245【答案】②③.若△BDE 为直角三角形,则有两种情况:(1)若∠BED=90°,∵∠BDE=∠CAD ,∠B=∠C ,∴△BDE ∽△CAD ,∴∠CDA=∠BED=90°,∴AD ⊥BC ,∵AB=AC ,∴BD=BC=12;12(2)若∠BDE=90°,如图2,设BD=x ,则DC=24-x ,∵∠CAD=∠BDE=90°,∠B=∠C=∠α,∴cos ∠C=cosB=,∴,解得:,∴若△BDE 为直角三角形,则BD 为12或,故③正确;45154245AC DC x ==-214x =214设BE=x ,CD=y ,∵△BDE ∽△CAD ,∴,∴,∴,∴,∴,∴,∴0<BE ≤,∴故④错误;BE CD BD CA =2415x y y =-21524x y y =-215144(12)x y =--15144x ≤485x ≤485故答案为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.18.(2015南宁)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,且AE=CF ,(1)求证:△ADE≌△CB F ;(2)若∠DEB=90°,求证:四边形DEBF 是矩形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定.19.(2015崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .【答案】证明见试题解析.【解析】试题分析:根据两边及其夹角对应相等可以判断△ADE≌△AEB,再由全等三角形对应边相等可说明结论.证明:在△ADE和△AEB中,∵AB=AC,∠A=∠A,AD=AE,∴△ADE≌△AEB,∴BE=CD.考点:全等三角形的判定与性质.20.(2015来宾)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21.(2015百色)如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.【答案】(1)证明见试题解析;(2)能,△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.考点:1.全等三角形的判定与性质;2.几何变换的类型;3.网格型.22.(2015常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【解析】试题分析:(1)根据平行四边形的性质得到∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,根据等边三角形的性质得到BE=BC,DF=CD,∠EBC=∠CDF=60°,即可证出∠ABE=∠FDA,AB=DF,BE=AD,由SAS证明△ABE≌△FDA,得出对应边相等即可;(2)根据全等三角形的性质得到∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.试题解析:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,∵AB=DF,∠ABE=JIAO FDA,BE=AD,∴△ABE≌△FDA(SAS),∴AE=AF;(2)∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.23.(2015乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【答案】(1)证明见试题解析;(2)试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴,∴CE=,∴BE=BC﹣EC=.222-=EC EC CD(2)33考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质;3.综合题.24.(2015潜江)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.【答案】(1)①MN=BM+DN;②成立;(2)直角三角形.(2)如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.先证明△AMN≌△AEN.得到MN=EN.由DN,DE,NE为直角三角形的三边,得到以线段BM,MN,DN的长度为三边长的三角形是直角三角形.②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:延长NC到点P,使DP=BM,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM与△ADP中,∵AB=AD,∠ABM=∠ADP,BM=DP,∴△ABM≌△ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,∵AM=AP,∠MAN=∠PAN,AN=AN,∴△ANM≌△ANP(SAS),∴MN=PN,∵PN=DP+DN=BM+DN,∴MN=BM+DN;(2)以线段BM,MN,DN的长度为三边长的三角形是直角三角形.理由如下:如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得:DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.∵∠MAN135°,∴∠EAN360°∠MAN∠EAM =135°,∴∠EAN =∠MAN.在△AMN与△AEN中,∵AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN.∴MN=EN.∵DN,DE,NE为直角三角形的三边,∴以线段BM,MN,DN的长度为三边长的三角形是直角三角形.==--考点:1.几何变换综合题;2.全等三角形的判定与性质;3.勾股定理的逆定理;4.和差倍分;5.探究型;6.综合题;7.压轴题.【2014年题组】1.(2014年贵州黔西南)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【答案】C.考点:全等三角形的判定.2.(2014年湖南益阳)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .AE=CFB .BE=FDC .BF=DED .∠1=∠2【答案】A .【解析】试题分析:根据平行四边形的性质以及全等三角形的判定分别作出判断:A 、当AE=CF 时,构成的条件是SSA ,无法得出△ABE≌△CDF,故此选项符合题意;B 、当BE=FD 时,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;C 、当BF=ED 时,由等量减等量差相等得BE=FD ,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;D 、当∠1=∠2时,构成的条件是ASA ,可得△ABE≌△CDF,故此选项不符合题意.故选A .考点:1.平行四边形的性质;2.全等三角形的判定.3.(2014年江苏连云港)如图,若△ABC 和△DEF 的面积分别为、,则( )1S 2SA .B .C .D .1212S S =1272S S =12S S =1285S S = 【答案】C .考点:1.全等三角形的判定和性质;2.等底等高三角形的性质.4.(2014年福建福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使..若AB=10,则EF 的长是_______ .12CF BC =【答案】5.【解析】∵在Rt△ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,AB=10,∴AD=5,AE=EC ,,∠AED=90°.12DE BC =∵,∴DE=FC .12CF BC =在Rt△ADE 和Rt△EFC 中,∵AE=EC ,DE=FC ,∴Rt△ADE≌Rt△EFC (SAS ).∴EF=AD=5.考点:1.三角形中位线定理;2.全等三角形的判定和性质.5.(2014年湖南长沙)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF= __________ .【答案】6.考点:1.平行的性质;2.全等三角形的判定和性质.6.(2014年湖南常德)如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,AD=AO ,若∠BAC=80°,则∠BCA 的度数为______.【答案】60°.【解析】试题分析:∵△ABC 三个内角的平分线交于点O ,∴∠ACO=∠BCO.在△COD 和△COB 中,∵CD=CB,∠OCD=∠OCB,CO=CO ,∴△COD≌△COB (SAS ).∴∠D=∠CBO.∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°.∴∠DAO=140°.∵AD=AO,∴∠D=20°.∴∠CBO=20°.∴∠ABC=40°.∴∠BCA=60°.考点:1.角的平分线定义;2.全等三角形的判定和性质;3.等腰三角形的性质.7、(2014年福建福州7分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见试题解析.考点:全等三角形的判定和性质.8.(2014年湖北宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD 平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.【答案】(1)30°;(2)证明见试题解析.【解析】试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.(2)由ASA证明△ACD≌△ECD来推知DA=DE.试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.12(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°.∴∠ACD=∠ECD.在△ACD与△ECD中,∵AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD(SAS).∴DA=DE.考点:1.直角三角形两锐角的关系;2.全等三角形的判定与性质.☞考点归纳归纳 1:全等三角形的性质基础知识归纳:全等三角形的对应边相等,对应角相等基本方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题注意问题归纳:利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.【例1】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.【答案】60°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质.归纳 2:全等三角形的判定方法基础知识归纳:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).基本方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.注意问题归纳:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例2】如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【答案】C.考点:全等三角形的判定与性质.归纳 3:角平分线基础知识归纳:角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.基本方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意问题归纳:注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.【例3】如图所示,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【答案】证明见试题解析.考点:1.全等三角形的判定和性质;2.角平分线的性质.☞1年模拟1.(2015届中考二模)用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A O B AOB'''∠=∠A .(SAS )B .(SSS )C .(AAS )D .(ASA )【答案】B .【解析】试题分析:由题意可知,利用尺规作图法,可知OC=O ′C ′,OD=O ′D ′,CD=C ′D ′,根据全等三角形的判定定理(SSS )可得△OCD ≌△O ′C ′D ′,得出.故选B .A O B AOB '''∠=∠考点:1.全等三角形的判定;2.尺规作图.2.(2015届中考二模)如图,等边△ABC 的边AB 上一点P ,作PE⊥AC 于E ,Q 为BC 延长线上的一点,当PA=CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD=DQB .DE=AC C .AE=CQD .PQ ⊥AB2121 【答案】D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.3.(2015届中考模拟)如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .下列结论:(1)图中有三对相似而不全等的三角形;(2)m•n=2;(3)BD2+CE2=DE2;(4)△ABD≌△ACE;(5)DF=AE .其中正确的有( )A 、2个B 、3个C 、4个D 、5个【答案】A .(5)当AF 与AB 重合时,AE=AF ,AB=AF ,得到DF ≠AF ,于是由AE 与DF 不一定相等;12212试题解析:(1)△ABE ∽△DAE ,△ABE ∽△DCA ,故(1)错误;(2)∵△ABE ∽△DCA ,∴,由题意可知CA=BA=, ∴,∴m=,∴mn=2;(1<n <2); 故(2)正确;BE BAAC CD =n =2n (3)证明:将△ACE 绕点A 顺时针旋转90°至△ABH 的位置,则CE=HB ,AE=AH ,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD ,在△EAD 和△HAD 中, ∵AE=AH ,∠HAD=∠EAH-∠FAG=45°=∠EAD ,AD=AD , ∴△EAD ≌△HAD ,∴DH=DE .又∠HBD=∠ABH+∠ABD=90°, ∴BD2+CE2=DH2, 即BD2+CE2=DE2; 故(3)正确;(4)若△ABC固定不动,△AFG绕点A旋转,∴∠BAD≠∠CAE,∴△ABD与△ACE不一定全等,∴(4)错误;(5)当AF与AB重合时,AE=AF,AB=AF,∴DF≠AF,∴AE与DF不一定相等;∴(5)错误.故选A.121 2考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.4.(2015届中考二模)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5【答案】A.考点:1.平行四边形的性质;2.全等三角形的判定与性质.5.(2015届中考模拟二)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A.考点:1.角平分线的性质;2.全等三角形的判定与性质.6.(2015届中考二模)如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.【答案】证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF ,∴∠A=∠E .在△ABC 和△DEF 中,,∴△ABC ≌△EDF .A E C F AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AC=EF .考点:全等三角形的判定与性质.7.(2015届中考二模)如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,连接DF 并延长至E ,使得EF=DF ,连接AE 和EC .(1)求证:四边形ADCE 为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2).2+(2)解:如图,过点F 作FG ⊥DC 与G .∵四边形ADCE 为平行四边形,∴AE ∥CD .∴∠FDG=∠AED=45°,在Rt △FDG 中,∠FGD=90°,∠FDG=45°,DF=,∵cos ∠FDG=,∴DG=GF===2.DG DFcos DF FDG ⋅∠cos45︒ 在Rt △FCG 中,∠FGC=90°,∠FCG=30°,GF=2,∵tan ∠FCG=,∴,FGGC 2tan tan30FG CG FCG ===∠︒∴DC=DG+GC=.2+考点:1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.8.(2015届中考二模)如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案;(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由;(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3)(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°,∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上,∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE,∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE,∴DE=2CM,∴AE=BE+2CM.(3)点A到BP考点:1.作图—旋转变换;2.探究型;3.和差倍分;4.全等三角形的判定与性质.9.(2015届中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC ,AB 于E ,F ,连接BE ,CF ,分别交DF ,DE 于点N ,M ,连接MN .试判断△DMN 的形状,并说明理由.【答案】△DMN 为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.10.(2015届中考一模)如图,已知,在△ABC 中,CA=CB ,∠ACB=90°,E ,F 分别是CA ,CB 边的三等分点,将△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN,连接AM ,BN .(1)求证:AM=BN ;(2)当MA∥CN 时,试求旋转角α的余弦值.【答案】(1)证明见解析;(2).13(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cos α=.13CM CE AC AC == 考点:1.全等三角形的判定与性质;2.旋转的性质;3.锐角三角函数的定义.11.(2015届中考模拟)已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .当∠MBN 绕B 点旋转到AE=CF 时(如图1),易证AE+CF=EF ;当∠MBN 绕B 点旋转到AE≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,不需证明.【答案】证明见解析.∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;121 2∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;121 2则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,BK BEKBF EBF BF BF⎪∠⎪⎩∠⎧⎨===∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE-CF=EF.考点:1.全等三角形的判定与性质;2.和差倍分;3.存在型;4.探究型;5.综合题.12.(2015届中考一模)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.12【答案】(1)证明见解析,(2)四边形ABCD是矩形,理由见解析.考点:1.全等三角形的判定与性质;2.平行四边形的判定与性质;3.矩形的判定;4.探究型.13.(2015届九年级下学期4月中考模拟)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【答案】(1)BD=DP成立.证明见解析;(2)BD=DP.证明见解析.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,,∴△BDF≌△PDA(ASA),∴BD=DP .⎪⎩⎪⎨⎧︒=∠=∠=∠=∠4521DAP DFB DA DF(2)BD=DP .证明如下:如答图3,过点D 作DF ⊥MN ,交AB 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA=DF .在△BDF 与△PDA 中,,∴△BDF ≌△PDA (ASA ),∴BD=DP .⎪⎩⎪⎨⎧∠=∠=︒=∠=∠PDA BDF DA DF PAD F 45考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.平行四边形的性质;4.探究型.14.(2015届初中毕业班综合测试)如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO=DO .求证:∠C=∠D.【答案】证明见解析.考点:全等三角形的判定与性质.15.(2015届中考一模)已知:如图,在▱ABCD 中,线段EF 分别交AD .AC .BC 于点E 、O 、F ,EF⊥AC,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).【答案】(1)证明见解析;(2)EF ⊥AC .考点:1.平行四边形的性质;2.全等三角形的判定与性质.16.(2015届中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.。
初二数学 三角形全等中考真题含解析
DEF一、选择题1.如图所示, ∠E = ∠F = 90,∠B = ∠C , AE = AF ,结论:① EM = FN ;② CD = DN ;③ ∠FAN = ∠EAM ;④△ACN ≌△ABM .其中正确的有A.1 个 B .2 个 C .3 个 D .4 个【答案】C2.如图 2 所示,AB = AC ,要说明△ADC≌△AEB,需添加的条件不.能.是( )BCA .∠B =∠CB. AD = AEC .∠ADC=∠AEBD. DC = BE【答案】D3.如图 2 所示,在Rt ∆ABC 中, ∠A = 90︒ , BD 平分∠ABC , 交 AC 于点 D ,且AB = 4, BD = 5 ,则点D 到 BC 的距离是:(A )3(B )4(C )5(D )6【答案】A4.如图3,Rt△ABC 中,∠C=90°,∠ABC 的平分线BD交AC 于D,若CD=3cm,则点D 到AB 的距离DE 是A.5cm B.4cm C.3cm D.2cm【答案】C5.如图,△A BC≌△D E F,BE=4,A E=1,则DE的长是()A.5 B.4 C.3 D.2【答案】A二、填空题1.如图,已知AC=FE,BC=DE,点A、D、B、F 在一条直线上,要使△ ABC ≌△ FDE ,还需添加一.个.条件,这个条件可以是.ADCB EF第(13)题【答案】∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB)2.(2010 广西钦州市)如图,在△ABC 和△BAD 中,BC = AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是_ ▲ _(只填一个).C DA B第8 题【答案】AC =BD 或∠CBA=∠DAB三、解答题CF1.如图,C 是线段 AB 的中点,CD 平分∠ACE ,CE 平分 ∠BCD ,CD=CE .(1) 求证:△ ACD ≌△ BCE ;(2)若∠D=50°,求∠B 的度数.【答案】2.如图,已知:点 B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明 AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一.个.合.适.的.条.件.,添加到已知条件中,使 AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个):①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .ABED(第 25 题)FDE ( 第 18 题⎨⎩【答案】解:由上面两条件不能证明AB//ED.有两种添加方法.第一种:FB=CE,AC=DF 添加①AB=ED证明:因为FB=CE,所以BC=EF,又AC=EF,AB=ED,所以ABC≅DEF所以∠ABC=∠DEF 所以AB//ED第二种:FB=CE,AC=DF 添加③∠ACB=∠DFE证明:因为FB=CE,所以BC=EF,又∠ACB=∠DFE AC=EF,所以ABC ≅DEF 所以∠ABC=∠DEF 所以AB//ED3.如图,在△ABC 中,D是BC 边上的点(不与B,C 重合),F,E 分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△B D E≌△C A D F (不再添加其它线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:▲; B C(2)证明:【答案】解:(1)BD=DC(或点D是线段BC 的中点),FD=ED,CF=BE中任选一个即可﹒(2)以BD =DC 为例进行证明:∵CF∥BE,∴∠FCD﹦∠EBD.又∵ BD =DC ,∠FDC﹦∠EDB,∴△BDE≌△CDF.4.(1)如图,点B、E、C、F 在一条直线上,BC=EF,AB∥DE,∠A=∠D.求证:△ABC≌△DEF.(第 17(1)题)【答案】证明:∵ AB∥DE.∴ ∠B=∠DEF.在△ABC 和△DEF 中,⎧∠B =∠DEF,⎪∠A =∠D,⎪BC =EF.∴ △ABC ≌△DEF .5.如图,分别过点 C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分 别为 E 、F .求证:BF =CE .【答案】∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为 BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△C D E (AAS ),∴BF =CE . 6.如图,已知 AD 是△A BC 的角平分线,在不添加任何辅助线的前提下,要使△AE D≌△AFD ,需添加一个条件是:,并给予证明.ABD C【答案】解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE=AF ,∠EAD=∠FAD,AD =AD ,∴△AED≌△AFD(SAS ).解法二:添加条件:∠EDA=∠FDA,证明:在△AED 与△AFD 中,∵∠EAD=∠FAD,AD =AD ,∠EDA=∠FDA ∴△AED≌△AFD(ASA ).EF⎨⎩7.如图,B,F,C,E 在同一条直线上,点A,D在直线BE 的两侧,AB∥DE,AC∥DF,BF=CE.求证:AC=DF【答案】证明:∵AB∥DE,∴∠ABC=∠DEF∵AC∥DF,∴∠ABC=∠DEF∵BF=CE,∴BC=EF∴△ABC≌△DEF∴AC=DF8.已知:如图,点C 是线段 AB 的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.【答案】证明:∵点 C 是线段 AB 的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,题 20 图⎧AC =BC在△ACE 和△BCD 中,⎪∠ACE =∠BCD ,⎪CE∴△A CE≌△BCD(SAS),∴AE=BD.=CD9.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.⎨⎩EBCD⎨ ⎩【答案】证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD ∴∠A =∠D =90° 在△EAC 与△FDB 中⎧EA = FD ⎪∠A = ∠D ⎪AC = DB ∴△EAC ≌△FDB ∴∠ACE =∠DBF .10.如图,点 A 、E 、B 、D 在同一条直线上,AE =DB ,AC =DF ,AC ∥DF .请探索 BC 与 EF 有怎样的位置关系?并说明理由.FAD【答案】解:BC ∥EF .理由如下:∵AE =DB ,∴AE +BE =DB +BE ,∴AD =DE .∵AC ∥DF , ∴∠A =∠D ,∵AC =DF , ∴△ACB ≌△DFE ,∴∠FED =∠CBA ,∴BC ∥EF . 11.如图,点 B 、D 、C 、F 在一条直线上,且 BC = FD ,A B = E F .(1) 请你只添加一个条件(不再加辅助线),使△A BC ≌△E FD ,你添加的条件是 ; (2) 添加了条件后,证明△ABC ≌△EFD.ABFE【答案】(1)∠B = ∠F 或 AB ∥EF 或 AC = ED .(2)证明:当∠B = ∠F 时在△ABC 和△EFD 中⎧A B = E⎪∠B = ∠F ⎪BC = FD求证:⑴ △ABC ≌△DEF ;⑵ BE =CF .∴△ABC ≌△EFD (SAS)12.如图 4,已知 AC ∥DF ,且 BE =CF . (1) 请你只添加一.个.条件,使△ ABC ≌△D EF ,你添加的条件是;(2)添加条件后,证明△ ABC ≌△DEF.【答案】(1)添加的条件是 AC =DF (或 AB ∥D E 、∠B =∠D E F 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ ABC 和△ DEF 中,⎧BC = EF ⎪⎨∠ACB = ∠F ⎪⎩AC = DF ,∴△ABC ≌△DEF. 13.如图, ∠BAC = ∠ABD .(1) 要使OC = OD ,可以添加的条件为:或 ;(写出 2 个符合题意的条件即可)(2) 请选择(1)中你所添加的一个条件,证明OC = OD .CD【答案】解:(1)答案不唯一. 如∠C = ∠D ,或∠ABC = ∠BAD ,或∠OAD = ∠OBC ,或 AC = BD . ……4 分说明:2 空全填对者,给 4 分;只填 1 空且对者,给 2 分. (2)答案不唯一. 如选 AC = BD 证明 OC=OD.证明: ∵ ∠BAC = ∠ABD ,∴ OA=OB. ……………………6 分 DC又 AC = BD , O∴ AC-OA=BD-OB ,或 AO+OC=BO+OD. AB∴ OC = OD......................................................... 8 分14.已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥ DF .O AB⎨⎩【答案】证明:(1)∵AC ∥DF∴∠ACB =∠F ...................................................................................................... 2 分 在△ABC 与△DEF 中⎧∠ACB = ∠F ⎪∠A = ∠D ⎪ AB = DE ∴△ABC≌△DEF ................................................... 6 分(2) ∵△ABC≌△DEF∴BC=EF ∴BC–EC=EF –EC即 BE=CF ......................................................... 10 分 15.如图,已知点E ,C 在线段 BF 上, BE = CF ,请在下列四个等式中,①AB =DE ,②∠ACB =∠F ,③∠A =∠D ,④AC =DF .选出两.个.作为条件,推出 △ABC ≌△DEF .并予以证明.(写出一种即可)已知: , . 求证: △ABC≌△DEF .证明:A DBECF【答案】解:已知:①④(或②③、或②④) .........3 分AD证明:若选①④ ∵ BE = CFB EC C ∴ BE + EC = CF + EC ,即BC = EF . .............................. 5 分在△ABC 和△DEF 中AB =DE ,BC =EF ,AC =DF . ..................... 8 分∴ △ABC ≌△DEF . .......................... 9 分 16.八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:⎨⎩(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点 P 介于射线 OA 、OB 之间,移动角尺使角尺两边相同的刻度与 M 、N 重合,即 PM=PN ,过角尺顶点 P 的射线 OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边 OA 、OB 上分别取 OM=ON ,将角尺的直角顶点 P 介于射线 OA 、OB 之间,移动角尺使角尺两边相同的刻度与 M 、N 重合,即 PM=PN ,过角尺顶点 P 的射线 OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由. (2) 在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使 PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. …………………………… 2 分(2)方案(Ⅱ)可行 ...................... 3 分证明:在△OPM 和△OPN 中⎧OM = OP ⎪PM = PN ⎪ OP = OP ∴△OPM≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) ............................................. 5 分(3)当∠AOB 是直角时,此方案可行 ...................... 6 分∵四边形内角和为 360°,又若 PM⊥OA,PN⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°,∴∠AOB=90° ∵若 PM⊥OA,PN⊥OB, 且 PM=PN∴OP 为∠AOB 的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB 不为直角时,此方案不可行 .......... 8 分 17.如图,AB 是∠D AC 的平分线,且 AD =AC 。
全等三角形(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)全等三角形(优选真题60道)一.选择题(共14小题)1.(2023•凉山州)如图,点E、点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是()A.∠A=∠D B.∠AFB=∠DEC C.AB=DC D.AF=DE【分析】根据BE=CF求出BF=CE,再根据全等三角形的判定定理进行分析即可.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∴当∠A=∠D时,利用AAS可得△ABF≌△DCE,故A不符合题意;当∠AFB=∠DEC时,利用ASA可得△ABF≌△DCE,故B不符合题意;当AB=DC时,利用SAS可得△≌△DCE,故C不符合题意;当AF=DE时,无法证明△ABF≌△DCE,故D符合题意;故选:D.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL等.2.(2023•长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA'、BB'的中点,只要量出A'B'的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C .两条直线被一组平行线所截,所得的对应线段成比例D .两点之间线段最短【分析】根据点O 为AA '、BB '的中点得出OA =OA ',OB =OB ',根据对顶角相等得到∠AOB =∠A 'OB ',从而证得△AOB 和△A 'OB '全等,于是有AB =A 'B ',问题得证.【解答】解:∵点O 为AA '、BB '的中点,∴OA =OA ',OB =OB ',由对顶角相等得∠AOB =∠A 'OB ',在△AOB 和△A 'OB '中,{OA =OA′∠AOB =∠A′OB′OB =OB′,∴△AOB ≌△A 'OB '(SAS ),∴AB =A 'B ',即只要量出A 'B '的长度,就可以知道该零件内径AB 的长度,故选:A .【点评】本题考查了三角形全等的判定与性质,正确运用三角形全等的判定定理是解题的关键.3.(2022•成都)如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,AC ∥DF ,AC =DF ,只添加一个条件,能判定△ABC ≌△DEF 的是( )A .BC =DEB .AE =DBC .∠A =∠DEFD .∠ABC =∠D【分析】先根据平行线的性质得到∠A =∠D ,加上AC =DF ,则可根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AC ∥DF ,∴∠A =∠D ,∵AC =DF ,∴当添加∠C =∠F 时,可根据“ASA ”判定△ABC ≌△DEF ;当添加∠ABC=∠DEF时,可根据“AAS”判定△ABC≌△DEF;当添加AB=DE时,即AE=BD,可根据“SAS”判定△ABC≌△DEF.故选:B.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键,选用哪一种方法,取决于题目中的已知条件.4.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【分析】由OB平分∠AOC,得∠DOE=∠FOE,由OE=OE,可知∠ODE=∠OFE,即可根据AAS得△DOE≌△FOE,可得答案.【解答】解:∵OB平分∠∴∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意,故选:D.【点评】本题考查全等三角形的判定,解题的关键是掌握全等三角形判定定理并会应用.5.(2022•金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO 的依据是()A .SSSB .SASC .AASD .HL【分析】根据题目中的条件和全等三角形的判定方法,可以得到判定△ABO ≌△DCO 的依据.【解答】解:在△AOB 和△DOC 中,{OA =OD∠AOB =∠DOC OB =OC,∴△AOB ≌△DOC (SAS ),故选:B .【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,写出△AOB 和△DOC 全等的证明过程.6.(2022•扬州)如图,小明家仿古家具的一块三角形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC ,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A .AB ,BC ,CA B .AB ,BC ,∠B C .AB ,AC ,∠BD .∠A ,∠B ,BC【分析】直接利用全等三角形的判定方法分析得出答案.【解答】解:A .利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B .利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C .AB ,AC ,∠B ,无法确定三角形的形状,故此选项符合题意;D .根据∠A ,∠B ,BC ,三角形形状确定,故此选项不合题意;故选:C .【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022•湘西州)如图,在Rt △ABC 中,∠A =90°,M 为BC 的中点,H 为AB 上一点,过点C 作CG ∥AB ,交HM 的延长线于点G ,若AC =8,AB =6,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .18【分析】通过证明△BMH ≌△CMG 可得BH =CG ,可得四边形ACGH 的周长即为AB +AC +GH ,进而可确定当MH ⊥AB 时,四边形ACGH 的周长有最小值,通过证明四边形ACGH 为矩形可得HG 的长,进而可求解.【解答】解:∵CG ∥AB ,∴∠B =∠MCG ,∵M 是BC 的中点,∴BM =CM ,在△BMH 和△CMG 中,{∠B =∠MCGBM =CM ∠BMH =∠CMG,∴△BMH ≌△CMG (ASA ),∴HM =GM ,BH =CG ,∵AB =6,AC =8,∴四边形ACGH 的周长=AC +CG +AH +GH =AB +AC +GH =14+GH ,∴当GH 最小时,即MH ⊥AB 时四边形ACGH 的周长有最小值,∵∠A =90°,MH ⊥AB ,∴GH ∥AC ,∴四边形ACGH 为矩形,∴GH =8,∴四边形ACGH 的周长最小值为14+8=22,故选:B .【点评】本题主要考查全等三角形的判定与性质,确定GH 的值是解题的关键.8.(2021•攀枝花)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.9.(2021•重庆)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB 全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D【分析】根据证明三角形全等的条件AAS,SAS,ASA,SSS逐一验证选项即可.【解答】解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.【点评】本题主要考查三角形全等的判定,熟练掌握三角形全等的判定是解题的关键.10.(2021•重庆)如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD【分析】根据全等三角形的判定方法,可以判断添加各个选项中的条件是否能够判断△ABC≌△DEF,本题得以解决.【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法,利用数形结合的思想解答.11.(2021•盐城)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M 的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据全等三角形的判定定理SSS 推出△COM ≌△DOM ,根据全等三角形的性质得出∠COM =∠DOM ,根据角平分线的定义得出答案即可.【解答】解:在△COM 和△DOM 中{OC =ODOM =OM MC =MD,所以△COM ≌△DOM (SSS ),所以∠COM =∠DOM ,即OM 是∠AOB 的平分线,故选:D .【点评】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL ,全等三角形的对应角相等.12.(2021•青海)如图,在四边形ABCD 中,∠A =90°,AD =3,BC =5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .8B .7.5C .15D .无法确定【分析】过D 点作DE ⊥BC 于E ,如图,根据角平分线的性质得到DE =DA =3,然后根据三角形面积公式计算.【解答】解:过D 点作DE ⊥BC 于E ,如图,∵BD 平分∠ABC ,DE ⊥BC ,DA ⊥AB ,∴DE =DA =3,∴△BCD 的面积=12×5×3=7.5.故选:B .【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.13.(2021•哈尔滨)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF 的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.【点评】本题主要考查全等三角形的性质,由全等三角形的性质求解∠ACD的度数是解题的关键.14.(2021•台湾)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC【分析】由△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,可得∠A=∠D=40°,AC=DF,∠ACB=∠DFE,可得EF=EC;∠CED=35°,∠D=40°可得∠D>∠CED,由大角对大边可得CE >CD;利用AC=DF,可得AC﹣CE<DF﹣CD,即AE<FC,由上可得正确选项.【解答】解:∵△ABC≌△DEF,∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,∵∠ACB=∠DFE,∴EF=EC.∵∠CED=35°,∠D=40°,∴∠D>∠CED.∴CE>CD.∵AC=DF,∴AC﹣CE<DF﹣CD,即AE<FC.∴AE≠FC.∴EF=EC,AE≠FC.故选:B.【点评】本题主要考查了全等三角形的性质.利用全等三角形对应角相等,对应边相等是解题的关键.二.填空题(共16小题)15.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.【分析】根据全等三角形的对应边相等得到EF=BC=8,计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.16.(2022•黑龙江)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=.【分析】过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB=√AC2+BC2=√62+82=10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=12AC•CD+12AB•DE=12AC•BC,即12×6•CD+12×10•CD=12×6×8,解得CD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.17.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.【分析】方法一:根据OM⊥AB,ON⊥BC,可知∠OMB=∠ONB=90°,从而可证Rt△OMB≌Rt△ONB (HL),根据全等三角形的性质可得∠OBM=∠OBN,即可求出∠ABO的度数.方法二:根据角平分线的判定定理求解即可.【解答】解:方法一:∵OM⊥,ON⊥BC,∴∠OMB=∠ONB=90°,在Rt△OMB和Rt△ONB中,{OM=ON,OB=OB∴Rt△OMB≌Rt△ONB(HL),∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.方法二:∵OM⊥AB,ON⊥BC,又∵OM=ON,∴OB平分∠ABC,∴∠OBM=∠OBN,∵∠ABC=30°,∴∠ABO=15°.故答案为:15.【点评】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等特有的方法(HL)是解题的关键.18.(2022•牡丹江)如图,CA=CD,∠ACD=∠BCE,请添加一个条件,使△ABC≌△DEC.【分析】根据等式的性质可得∠DCE=∠ACB,然后再利用全等三角形的判定方法SAS,ASA或AAS即可解答.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵CA=CD,CB=CE,∴△ABC≌△DEC(SAS),故答案为:CB=CE.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.19.(2022•南通)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,要使△ABC≌△DEF,只需添加一个条件,则这个条件可以是.【分析】根据平行线的性质可得∠B=∠E,∠ACB=∠DFE,然后再利用全等三角形的判定方法即可解答.【解答】解:∵AB∥ED,∴∠B=∠E,∵AC∥DF,∴∠ACB=∠DFE,∵AB=DE,∴△ABC≌△DEF(AAS),故答案为:AB=DE(答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.20.(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=12×2×1=1.故答案为:1.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.21.(2022•宁夏)如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)【分析】根据全等三角形的判定方法,即可解答.【解答】解:∵OB =OD ,∠AOB =∠COD ,OA =OC ,∴△AOB ≌△COD (SAS ),∴要使△AOB ≌△COD ,添加一个条件是OA =OC ,故答案为:OA =OC (答案不唯一).【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.22.(2022•黑龙江)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA =OC ,请你添加一个条件 ,使△AOB ≌△COD .【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是OD ,理由是:在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,∴△AOB ≌△COD (SAS ),故答案为:OB =OD (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.23.(2022•湖北)如图,已知AB ∥DE ,AB =DE ,请你添加一个条件 ,使△ABC ≌△DEF .【分析】添加条件:∠A =∠D ,根据ASA 即可证明△ABC ≌△DEF .【解答】解:添加条件:∠A =∠D .∵AB ∥DE ,∴∠B =∠DEC ,在△ABC 和△DEF 中,{∠A =∠DAB =DE ∠B =∠DEC,∴△ABC ≌△DEF (ASA ),故答案为:∠A =∠D .(答案不唯一)【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.24.(2021•福建)如图,AD 是△ABC 的角平分线.若∠B =90°,BD =√3,则点D 到AC 的距离是 .【分析】由角平分线的性质可求DE =BD =√3,即可求解.【解答】解:如图,过点D 作DE ⊥AC 于E ,∵AD 是△ABC 的角平分线.∠B =90°,DE ⊥AC ,∴DE =BD =√3,∴点D 到AC 的距离为√3,故答案为√3.【点评】本题考查了角平分线的性质,掌握角平分线上的点到角的两边距离相等是解题的关键.25.(2021•齐齐哈尔)如图,AC =AD ,∠1=∠2,要使△ABC ≌△AED ,应添加的条件是 .(只需写出一个条件即可)【分析】利用∠1=∠2得到∠BAC=∠EAD,由于AC=AD,然后根据全等三角形的判定方法添加条件.【解答】解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决此类问题的关键.26.(2021•长沙)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为.【分析】由角平分线的性质可知CD=DE=1.6,得出BD=BC﹣CD=4﹣1.6=2.4.【解答】解:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴CD=DE,∵DE=1.6,∴CD=1.6,∴BD=BC﹣CD=4﹣1.6=2.4.故答案为:2.4【点评】本题主要考查了角平分线的性质,熟记角平分线上的点到角两边的距离相等是解题的关键.27.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于12MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.【分析】由题目作图知,AD是∠CAB的平分线,过点D作DH⊥AB,则CD=DH=1,进而求解.【解答】解:过点D作DH⊥AB,则DH=1,由题目作图知,AD是∠CAB的平分线,则CD=DH=1,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=√2HD=√2,则BC=CD+BD=1+√2,故答案为:1+√2.【点评】本题考查的是角平分线的性质,涉及到几何作图、等腰直角三角形的性质等,有一定的综合性,难度适中.28.(2021•德州)如图,点E,F在BC上,BE=CF,∠A=∠D.请添加一个条件,使△ABF≌△DCE.【分析】求出BF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,添加∠B =∠C ,在△ABF 和△DCE 中,{∠B =∠C∠A =∠D BF =CE,∴△ABF ≌△DCE (AAS ),故答案为:∠B =∠C (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.29.(2021•常德)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若CD =3,BD =5,则BE 的长为 .【分析】根据角的平分线上的点到角的两边的距离相等,得DE =DC =3,再由勾股定理求得BE 的长即可.【解答】解:∵AD 平分∠CAB ,又∵DE ⊥AB ,DC ⊥AC ,∴DE =DC =3,∵BD =5,∴BE =√BD 2−DE 2=√52−32=4,故答案为4.【点评】本题考查了角平分线的性质.角平分线上的任意一点到角的两边距离相等.比较简单,属于基础题.30.(2021•济宁)如图,四边形ABCD 中,∠BAC =∠DAC ,请补充一个条件 ,使△ABC ≌△ADC .【分析】本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是AD =AB ,理由是:在△ABC 和△ADC 中{AC =AC∠BAC =∠DAC AD =AB,∴△ABC ≌△ADC (SAS ),故答案为:AD =AB (答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .三.解答题(共30小题)31.(2023•长沙)如图,AB =AC ,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E .(1)求证:△ABE ≌△ACD ;(2)若AE =6,CD =8,求BD 的长.【分析】(1)利用“AAS ”可证明△ABE ≌△ACD ;(2)先利用全等三角形的性质得到AD =AE =6,再利用勾股定理计算出AC ,从而得到AB 的长,然后计算AB ﹣AD 即可.【解答】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠AEB =∠ADC =90°,在△ABE 和△ACD 中,{∠AEB =∠ADC∠BAE =∠CAD AB =AC ,∴△ABE ≌△ACD (AAS );(2)解:∵△ABE ≌△ACD ,∴AD =AE =6,在Rt △ACD 中,AC =√AD 2+CD 2=√62+82=10,∵AB =AC =10,∴BD =AB ﹣AD =10﹣6=4.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.32.(2023•吉林)如图,点C 在线段BD 上,△ABC 和△DEC 中,∠A =∠D ,AB =DE ,∠B =∠E .求证:AC =DC .【分析】由两个三角形的全等判定ASA 直接可判断两个三角形全等,得出结论.【解答】解:在△ABC 和△DEC 中,{∠A =∠DAB =DE ∠B =∠E,∴△ABC ≌△DEC (ASA ),∴AC =DC .【点评】本题考查了三角形全等的判定ASA ,掌握ASA 判定两个三角形全等的方法是解题的关键.33.(2023•大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于F .BC =DE ,AC =AE ,∠ACF +∠AED =180°.求证:AB =AD .【分析】由“SAS ”可证△ABC ≌△ADE ,可得结论.【解答】证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°,∴∠ACB =∠AED ,在△ABC 和△ADE 中,{BC =DE∠ACB =∠AED AC =AE,∴△ABC ≌△ADE (SAS ),∴AB =AD .【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.34.(2023•福建)如图,OA =OC ,OB =OD ,∠AOD =∠COB .求证:AB =CD .【分析】根据角的和差求得∠AOB =∠COD ,根据全等三角形的判定和性质定理即可得到结论.【解答】证明:∵∠AOD =∠COB ,∴∠AOD ﹣∠BOD =∠COB ﹣∠BOD ,即∠AOB =∠COD .在△AOB 和△COD 中,{OA =OC∠AOB =∠COD OB =OD,∴△AOB ≌△COD (SAS ),∴AB =CD .【点评】本题考查了等式的基本性质、全等三角形的判定与性质,熟练掌握全等三角形的判定和性质定理是解题的关键.35.(2023•聊城)如图,在四边形ABCD 中,点E 是边BC 上一点,且BE =CD ,∠B =∠AED =∠C .(1)求证:∠EAD =∠EDA ;(2)若∠C =60°,DE =4时,求△AED 的面积.【分析】(1)利用AAS 证明∴△ABE ≌△ECD ,即可证明结论;(2)先证明△AED 为等边三角形,可得AE =AD =ED =4,过A 点作AF ⊥ED 于F ,利用等边三角形的性质可得EF =2,再根据勾股定理求得AF 的长,利用三角形的面积公式可求解.【解答】(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ,∴∠BAE =∠CED ,在△ABE 和△ECD 中,{∠BAE =∠CED∠B =∠C BE =CD,∴△ABE ≌△ECD (AAS ),∴AE =ED ,∴∠EAD =∠EDA ;(2)解:∵∠AED =∠C =60°,AE =ED ,∴△AED 为等边三角形,∴AE =AD =ED =4,过A 点作AF ⊥ED 于F ,∴EF =12ED =2,∴AF =√AE 2−EF 2=√42−22=2√3,∴S △AED =12ED •AF =12×4×2√3=4√3.【点评】本题主要考查全等三角形的判定与性质,等边三角形的判定与性质,勾股定理,三角形的面积等知识的综合运用,证明△ABE ≌△ECD 是解题的关键.36.(2023•陕西)如图,在△ABC 中,∠B =50°,∠C =20°.过点A 作AE ⊥BC ,垂足为E ,延长EA 至点D .使AD =AC .在边AC 上截取AF =AB ,连接DF .求证:DF =CB .【分析】利用三角形内角和定理得∠CAB 的度数,再根据全等三角形的判定与性质可得结论.【解答】证明:在△ABC 中,∠B =50°,∠C =20°,∴∠CAB =180°﹣∠B ﹣∠C =110°.∵AE ⊥BC .∴∠AEC =90°.∴∠DAF =∠AEC +∠C =110°,∴∠DAF =∠CAB .在△DAF 和△CAB 中,{AD =BC∠DAF =∠CAB AF =AB,∴△DAF ≌△CAB (SAS ).∴DF =CB .【点评】此题考查的是全等三角形的判定与性质,掌握其性质定理是解决此题的关键.37.(2023•乐山)如图,已知AB 与CD 相交于点O ,AC ∥BD ,AO =BO ,求证:AC =BD .【分析】由平行线的性质可得∠A =∠B ,∠C =∠D ,利用AAS 即可判定△AOC ≌△BOD ,从而得AC =BD .【解答】证明:∵AC ∥BD ,∴∠A =∠B ,∠C =∠D ,在△AOC 和△BOD 中,{∠C =∠D∠A =∠B AO =BO,∴△AOC ≌△BOD (AAS ),∴AC =BD .【点评】本题主要考查全等三角形的判定与性质,解答的关键是熟记全等三角形的判定定理与性质并灵活运用.38.(2023•苏州)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:△ADE ≌△ADF ;(2)若∠BAC =80°,求∠BDE 的度数.【分析】(1)由角平分线定义得出∠BAD =∠CAD .由作图知:AE =AF .由SAS 可证明△ADE ≌△ADF ;(2)由作图知:AE =AD .得出∠AED =∠ADE ,由等腰三角形的性质求出∠ADE =70°,则可得出答案.【解答】(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD .由作图知:AE =AF .在△ADE 和△ADF 中,{AE =AF∠BAD =∠CAD AD =AD,∴△ADE ≌△ADF (SAS );(2)解:∵∠BAC =80°,AD 为△ABC 的角平分线,∴∠EAD =12∠BAC =40°,由作图知:AE =AD .∴∠AED =∠ADE ,∴∠ADE =12×(180°﹣40°)=70°,∵AB =AC ,AD 为△ABC 的角平分线,∴AD ⊥BC .∴∠BDE =90°﹣∠ADE =20°.【点评】本题考查了全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,熟练掌握全等三角形的判定是解题的关键.39.(2023•宜宾)已知:如图,AB ∥DE ,AB =DE ,AF =DC .求证:∠B =∠E .【分析】由AF =DC ,得AC =DF ,由AB ∥DE ,得∠A =∠D ,即可证△ABC ≌△DEF (SAS ),故∠B =∠E .【解答】证明:∵AF =DC ,∴AF +CF =DC +CF ,即AC =DF ,∵AB ∥DE ,∴∠A =∠D ,在△ABC 和△DEF 中,{AB =DE∠A =∠D AC =DF,∴△ABC ≌△DEF (SAS ),∴∠B =∠E .【点评】本题考查三角形全等的判定与性质,解题的关键是掌握三角形全等的判定定理.40.(2023•云南)如图,C 是BD 的中点,AB =ED ,AC =EC .求证:△ABC ≌△EDC .【分析】求出BC =DC ,根据全等三角形的判定定理证明即可.【解答】证明:∵C 是BD 的中点,∴BC =DC ,在△ABC 和△EDC 中,{AB =EDAC =EC BC =DC,∴△ABC ≌△EDC (SSS ).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL .41.(2023•泸州)如图,点B 在线段AC 上,BD ∥CE ,AB =EC ,DB =BC .求证:AD =EB .【分析】由平行线的性质可得∠A =∠EBC ,由“AAS ”可证△ABD ≌△BEC ,可得BD =EC .【解答】证明:∵BD ∥CE ,∴∠ABD =∠C ,在△ABD 和△ECB 中,{AB =EC ,∠ABD =∠C ,DB =BC ,∴△ABD ≌△ECB (SAS ),∴AD =EB .【点评】本题考查了全等三角形的判定和性质,涉及到平行线的性质,熟练运用全等三角形的判定是解题的关键.42.(2022•益阳)如图,在Rt △ABC 中,∠B =90°,CD ∥AB ,DE ⊥AC 于点E ,且CE =AB .求证:△CED ≌△ABC .【分析】由垂直的定义可知,∠DEC =∠B =90°,由平行线的性质可得,∠A =∠DCE ,进而由ASA 可得结论.【解答】证明:∵DE ⊥AC ,∠B =90°,∴∠DEC =∠B =90°,∵CD ∥AB ,∴∠A =∠DCE ,在△CED 和△ABC 中,{∠DCE =∠ACE =AB ∠DEC =∠B,∴△CED ≌△ABC (ASA ).【点评】本题主要考查全等三角形的判定,垂直的定义和平行线的性质,熟知全等三角形的判定定理是解题基础.43.(2022•长沙)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(1)求证:△ABC ≌△ADC ;(2)若AB =4,CD =3,求四边形ABCD 的面积.【分析】(1)由AC 平分∠BAD ,得∠BAC =∠DAC ,根据CB ⊥AB ,CD ⊥AD ,得∠B =90°=∠D ,用AAS 可得△ABC ≌△ADC ;(2)由(1)△ABC ≌△ADC ,得BC =CD =3,S △ABC =S △ADC ,求出S △ABC =12AB •BC =6,即可得四边形ABCD 的面积是12.【解答】(1)证明:∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵CB ⊥AB ,CD ⊥AD ,∴∠B =90°=∠D ,在△ABC 和△ADC 中,{∠B =∠D∠BAC =∠DAC AC =AC,∴△ABC ≌△ADC (AAS );(2)解:由(1)知:△ABC ≌△ADC ,∴BC =CD =3,S △ABC =S △ADC ,∴S △ABC =12AB •BC =12×4×3=6,∴S △ADC =6,∴S 四边形ABCD =S △ABC +S △ADC =12,答:四边形ABCD 的面积是12.【点评】本题考查全等三角形的判定与性质,解题的关键是掌握全等三角形的判定定理.44.(2022•西藏)如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD ≌△ACD .【分析】由角平分线的定义得∠BAD =∠CAD ,再利用SAS 即可证明△ABD ≌△ACD .【解答】证明:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,{AB =AC∠BAD =∠CAD AD =AD,∴△ABD ≌△ACD (SAS ).【点评】本题主要考查了全等三角形的判定,角平分线的定义等知识,熟练掌握全等三角形的判定定理是解题的关键.45.(2022•衡阳)如图,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,且BD =CE .求证:AD =AE .【分析】由“SAS ”可证△ABD ≌△ACE ,可得AD =AE .【解答】证明:∵AB =AC ,∴∠B =∠C ,在△ABD 和△ACE 中,{AB =AC∠B =∠C BD =CE,∴△ABD ≌△ACE (SAS ),∴AD =AE .【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,掌握全等三角形的判定方法是解题的关键.46.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB =AE ,AC =AD ,∠BAD =∠EAC ,∠C =50°,求∠D 的大小.【分析】由∠BAD =∠EAC 可得∠BAC =∠EAD ,根据SAS 可证△BAC ≌△EAD ,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD =∠EAC ,∴∠BAD +∠CAD =∠EAC +∠CAD ,即∠BAC =∠EAD ,在△BAC 与△EAD 中,{AB =AE∠BAC =∠EAD AC =AD,∴△BAC ≌△EAD (SAS ),∴∠D =∠C =50°.【点评】本题考查了全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.47.(2022•衢州)已知:如图,∠1=∠2,∠3=∠4.求证:AB =AD .【分析】根据邻补角的定义得出∠ACB =∠ACD ,利用ASA 证明△ACB ≌△ACD ,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB =∠ACD ,在△ACB 和△ACD 中,{∠1=∠2AC =AC∠ACB =∠ACD ,∴△ACB ≌△ACD (ASA ),∴AB =AD .【点评】此题考查了全等三角形的判定与性质,利用ASA 证明△ACB ≌△ACD 是解题的关键.48.(2022•福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .【分析】利用SAS 证明△ABC ≌△DEF ,根据全等三角形的性质即可得解.【解答】证明:∵BF =EC ,即BC =EF ,在△ABC 和△DEF 中,{AB =DE ∠B =∠EBC =EF ,∴△ABC ≌△DEF (SAS ),∴∠A =∠D .【点评】此题考查了全等三角形的判定与性质,利用SAS 证明△ABC ≌△DEF 是解题的关键.49.(2022•乐山)如图,B 是线段AC 的中点,AD ∥BE ,BD ∥CE .求证:△ABD ≌△BCE .【分析】根据ASA 判定定理直接判定两个三角形全等.【解答】证明:∵点B 为线段AC 的中点,∴AB =BC ,∵AD ∥BE ,∴∠A =∠EBC ,∵BD ∥CE ,∴∠C =∠DBA ,在△ABD 与△BCE 中,{∠A =∠EBCAB =BC ∠DBA =∠C,∴△ABD ≌△BCE .(ASA ).【点评】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.50.(2022•陕西)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .。
中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题
全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。
中考数学专题复习全等三角形
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE
中考数学一轮复习《全等三角形》练习题(含答案)
中考数学一轮复习《全等三角形》练习题(含答案)(建议答题时间:60分钟)基础过关1. 如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=()A. ∠BB. ∠AC. ∠EMFD. ∠AFB第1题图第2题图2. (人教八上第44页11题改编)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A. AB=DEB. AC=DFC. ∠A=∠DD. BF=EC3. 如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对第3题图第4题图第5题图4. 注重开放探究(2017怀化)如图,AC=DC,BC=EC,请你添加一个适当的条件:____________________________,使得△ABC≌△DEC.5. 如图,AB∥CF,E为DF的中点,AB=10,CF=6,则BD=________.6. 如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________.第6题图7. (2017福建)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.第7题图8. (2017武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.第8题图9. (2017南充)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.第9题图10. (2017重庆巴南区期中检测)如图,在四边形ABCD中,点E在对角线AC上,AB∥DE,∠ACB=∠ADE,AB=EA,求证:AC=ED.第10题图11. (人教八上第44页4题改编)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是________________;(2)请写出证明过程.第11题图12. (2017重庆一中期中考试)如图,AF∥DE,点B、C在线段AD上,且∠E=∠F,连接FC、EB,延长EB交AF于点G.(1)求证:BE∥CF;(2)若CF=BE,求证:AB=CD.第12题图13. (2017苏州)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.第13题图14. (2017哈尔滨)已知,△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE =90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图①,求证:AE=BD;(2)如图②,若AC=DC,在不添加任何辅助线的情况下,请直接写出图②中四对全等的直角三角形.第14题图满分冲关1. (2017滨州)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 1第1题图第2题图2. (2018原创) 如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A. 4个B. 3个C. 2个D. 1个3. (2017新疆建设兵团)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD互相平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=12AC·BD,正确的是________.(填写所有正确结论的序号)第3题图4. (2017温州)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC =AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.第4题图5. (2017荆门)如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,DE=2,求BC的长.第5题图6. (2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.第6题图7. (2017德阳)如图,在平行四边形ABCD中,E、F分别是AB、BC的中点,CE ⊥AB,垂足为E,AF⊥BC,垂足为F,AF与CE相交于点G.(1)证明:△CFG≌△AEG;(2)若AB=4,求四边形AGCD的对角线GD的长.第7题图8. (2017北京)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示);(2)用等式表示线段MB与PQ之间的数量关系,并证明.第8题图9. (2018原创)已知△ABC和△ADE都是等边三角形,点B,D,E在同一条直线上.(1)如图①,当AC⊥DE,且AD=2时,求线段BC的长度;(2)如图②,当CD⊥BE时,取线段BC的中点F,线段DC的中点G,连接DF,EG,求证:DF=EG.第9题图答案基础过关 1. A 2. C3. D 【解析】∵AB =AC ,D 为BC 中点,∴CD =BD ,∠BDO =∠CDO =90°,在△ABD 和△ACD 中,⎩⎨⎧AB =AC AD =AD BD =CD ,∴△ABD ≌△ACD (SSS ),∵EF 垂直平分AC ,∴OA =OC ,AE =CE ,在△AOE 和△COE 中,⎩⎨⎧OA =OCOE =OE AE =CE ,∴△AOE ≌△COE (SSS ); 在△BOD 和△COD 中,⎩⎨⎧BD =CD∠BDO =∠CDO OD =OD ,∴△BOD ≌△COD (SAS );在△AOC和△AOB 中,⎩⎨⎧AC =ABOA =OA OC =OB,∴△AOC ≌△AOB (SSS ).4. AB =DE (答案不唯一)5. 4 【解析】∵AB ∥CF ,∴∠ADE =∠CFE ,∵E 是DF 的中点,∴DE =EF ,在△ADE 与△CFE 中,⎩⎨⎧∠ADE =∠CFEDE =FE∠AED =∠CEF,∴△ADE ≌△CFE (ASA ),∴AD =CF ,∵AB =10,CF =6,∴BD =AB -AD =10-6=4.6. 120° 【解析】∵△ACD 和△BCE 均为等边三角形,∴∠DCA =∠BCE =60°,AC =DC ,BC =EC ,∴∠DCB =∠DCA +∠ACB =∠BCE +∠ACB =∠ACE ,∴△DCB ≌△ACE (SAS ),∴∠CDB =∠CAE ,∴∠AOB =∠DAO +∠ADO =∠DAC +∠CAE +∠ADC -∠CDB =∠ADC +∠DAC =120°.7. 证明:∵BE =CF , ∴BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE AC =DF BC =EF,∴△ABC ≌△DEF (SSS ), ∴∠A =∠D .8. 解:CD ∥AB ,CD =AB . 证明: ∵CE =BF , ∴CF =BE ,又∵∠CFD =∠BEA ,DF =AE , ∴△CFD ≌△BEA (SAS ), ∴CD =AB ,∠C =∠B , ∴CD ∥AB .9. 证明:∵DE ⊥AB ,CF ⊥AB , ∴∠BED =∠AFC =90°, 又∵AE =BF , ∴AE +EF =BF +EF , ∴AF =BE .在△ACF 和△BDE 中,⎩⎨⎧AF =BE∠AFC =∠BED CF =DE,∴△ACF ≌△BDE (SAS ), ∴∠A =∠B , ∴AC ∥BD .10. 证明:∵AB ∥DE , ∴∠BAC =∠AED ,在△ABC 和△EAD 中,⎩⎨⎧∠ACB =∠ADE∠BAC =∠AED AB =EA,∴△ABC ≌△EAD (AAS ), ∴AC =ED .11. (1)解:∠B =∠C 或∠ADB =∠ADC 等;(2)证明:若添加的条件为∠B =∠C ,在△ABD 和△ACD 中,⎩⎨⎧∠B =∠C∠1=∠2AD =AD,∴△ABD ≌△ACD (AAS ), ∴AB =AC ;若添加的条件为∠ADB =∠ADC ,在△ABD 和△ACD 中,⎩⎨⎧∠1=∠2AD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD (ASA ), ∴AB =AC .12. 证明:(1)∵AF ∥DE , ∴∠E =∠AGE , ∵∠E =∠F , ∴∠F =∠AGE , ∴BE ∥CF ; (2)∵AF ∥DE ∴∠A =∠D ,在△ACF 和△DBE 中,⎩⎨⎧∠A =∠D∠F =∠E CF =BE,∴△ACF ≌△DBE (AAS ), ∴AC =DB , ∴AB =CD .13. (1)证明:∵AE 和BD 相交于点O , ∴∠AOD =∠BOE ,在△AOD 和△BOE 中,∠A =∠B , ∴∠BEO =∠2, 又∵∠1=∠2, ∴∠1=∠BEO , ∴∠AEC =∠BED ,在△AEC 和△BED 中,⎩⎨⎧∠A =∠BAE =BE ∠AEC =∠BED,∴△AEC ≌△BED (ASA ); 解:(2)∵△AEC ≌△BED , ∴EC =ED ,∠C =∠BDE ,在△EDC 中 ,∵EC =ED ,∠1=42°, ∴∠C =∠EDC =69°, ∴∠BDE =∠C =69°.14. (1)证明:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°, ∴AC =BC ,DC =EC ,∠ACB +∠ACD =∠DCE +∠ACD , ∴∠BCD =∠ACE , ∴△ACE ≌△BCD (SAS ), ∴AE =BD ;(2)解:△ACB ≌△DCE ,△AON ≌△DOM ,△AOB ≌△DOE ,△NCB ≌△MCE . 满分冲关1. B 【解析】如解图,过点P 分别作OA 、OB 的垂线PC 、PD ,根据角平分线的性质可得PC =PD ,∵OP 一定,∴OC =OD .∵∠AOB 是定角,∠MPN 与∠AOB 互补,∴∠MPN 也为定角.∵∠CPD 与∠AOB 也互补,∴∠MPN =∠CPD ,∴∠MPC =∠NPD ,∴△MPC ≌△NPD (ASA ),∴CM =DN ,MP =NP .故(1)正确;∵OM +ON =OC +CM +OD -DN ,∴OM +ON =OC +OD ,∵OC =OD 为定长,∴OM +ON 为定长.故(2)正确;∵△MPC ≌△NPD ,∴S四边形MONP=S △CMP +S四边形CONP=S △NPD +S 四边形CONP =S 四边形CODP .∴四边形MONP 面积为定值.故(3)正确;∵Rt △MPC 中,MP 为斜边,CP 为直角边,∴可设MP =kCP ,∴PN =kDP ,∵∠MPN =∠CPD ,∴△MPN ∽△CPD ,其相似比为k ,∴MN =kCD ,当点M 与点C 重合,点N 和点D 重合时,MN =CD ,当点M 与点C 不重合,点N 与点D 不重合时,MN ≠CD ,∴MN 的长度在发生变化.故(4)错误.第1题解图2. A 【解析】∵BF ∥AC ,∴∠C =∠CBF ,∵BC 平分∠ABF ,∴∠ABC =∠CBF ,∴∠C =∠ABC ,∴AB =AC ,∵AD 是△ABC 的角平分线,∴BD =CD ,AD ⊥BC ,故②③正确,在△CDE 与△BDF 中,⎩⎨⎧∠C =∠CBF CD =BD ∠EDC =∠BDF,∴△CDE ≌△BDF (ASA ),∴DE =DF ,CE =BF ,故①正确;∵AE =2BF ,∴AC =3BF ,故④正确.故选A .3. ①④【解析】在△ABC 与△ADC 中,⎩⎨⎧AB =ADBC =DC AC =AC,∴△ABC ≌△ADC (SSS ),∴∠ABC =∠ADC ,故①正确;∵△ABC ≌△ADC ,∴∠BAC =∠DAC ,∠BCA =∠DCA ,∴AC 平分∠BAD 、∠BCD ,故③错误;又∵AB =AD ,∠BAC =∠DAC ,∴OB =OD ,∴AC ,BD 互相垂直,但不平分,故②错误;∵AC ,BD 互相垂重,∴四边形ABCD 的面积S =12AC ·BO +12AC ·OD =12AC ·BD .故④正确,综上所述,正确的结论是①④. 4. (1)证明:∵AC =AD , ∴∠ACD =∠ADC ,∴∠BCD -∠ACD =∠EDC -∠ADC 即∠BCA =∠EDA ,在△ABC 与△AED 中,BC =ED ,∠BCA =∠EDA ,AC =AD , ∴△ABC ≌△AED (SAS ); (2)解:∵△ABC ≌△AED , ∴∠E =∠B =140°,∵五边形ABCDE 内角和为(5-2)×180°=540°,∴∠BAE =540°-2×90°-2×140°=80°. 5. (1)证明:∵点E 是CD 的中点, ∴DE =CE , ∵AB ∥CF , ∴∠BAF =∠AFC ,在△ADE 与△FCE 中,⎩⎨⎧∠DAE =∠CFE ∠AED =∠FEC DE =CE,∴△ADE ≌△FCE (AAS ); (2)解:由(1)知CD =2DE , ∵DE =2, ∴CD =4,在Rt △ABC 中,点D 为AB 的中点, ∴AB =2CD =8,AD =CD =12AB . ∵AB ∥CF ,∴∠BDC =180°-∠DCF =180°-120°=60°, ∴∠DAC =∠ACD =12∠BDC =12×60°=30°, ∴在Rt △ABC 中,BC =12AB =12×8=4. 6. (1)证明:∵AD ⊥BC , ∴∠ADB =∠ADC =90°,在△BDG 和△ADC 中,⎩⎨⎧BD =AD∠BDG =∠ADC DG =DC,∴△BDG ≌△ADC (SAS ), ∴BG =AC ,∠BGD =∠C ,∵∠ADB =∠ADC =90°,E ,F 分别是BG ,AC 的中点, ∴DE =12BG =EG ,DF =12AC =AF ,∴DE =DF ,∠EDG =∠EGD ,∠FDA =∠F AD , ∴∠EDG +∠FDA =90°,∴DE ⊥DF ; (2)解:∵AC =10, ∴DE =DF =5,由勾股定理得,EF =DE 2+DF 2=5 2. 7. (1)证明:∵E 是AB 的中点,且CE ⊥AB , ∴CA =CB .∵F 是BC 的中点,且AF ⊥BC , ∴AB =AC , ∴AB =AC =BC ,∴12AB =12BC ,∴AE =CF ,在△CFG 和△AEG 中,⎩⎨⎧∠CGF =∠AGE∠CFG =∠AEG CF =AE,∴△CFG ≌△AEG (AAS ); (2)解:如解图,连接GD ,第7题解图∵AB =AC =BC ,∴△ABC 为等边三角形,从而△CAD 也为等边三角形, ∵AF ⊥BC ,∴∠GAC =∠EAF =30°, 又∵AE =12AB =2, ∴在Rt △AEG 中,AG =23AE =433, ∵∠GAD =∠GAC +∠CAD =90°,∴在Rt △ADG 中,根据勾股定理得:GD 2=AG 2+AD 2,即GD 2=(433)2+42,∴GD 2=643, ∴GD =833.8. 解:(1) ∵∠ACP =90°,∴在Rt △ACP 中,∠CAP +∠APC =90°, ∵HQ ⊥AP ,∴在Rt △HPQ 中,∠Q +∠HPQ =90°, 又∵∠APC =∠HPQ ,∠CAP =α, ∴∠Q =α,又∵在等腰Rt △ABC 中,∠B =∠BAC =45°, ∴∠AMQ =∠B +∠Q =45°+α; (2)PQ =2BM .证明:如解图,连接AQ ,过点M 作MN ⊥BQ 于点N .第8题解图∵∠ACP =90°,CQ =CP ,∠CAP =α, ∴∠CAQ =∠CAP =α,AP =AQ ,PQ =2CP , 又∵∠BAC =45°,∴∠MAQ =∠BAC +∠CAQ =45°+α=∠AMQ , ∴AQ =MQ , ∴AP =MQ , 又∵MN ⊥BQ , ∴∠ACP =∠QNM =90°.在Rt △APC 和Rt △QMN 中,⎩⎨⎧∠CAP =∠NQM∠ACP =∠QNM =90°AP =MQ,∴Rt △APC ≌Rt △QMN (AAS ), ∴CP =MN ,∴PQ =2MN , 又∵在Rt △BMN 中,∠B =45°, ∴BM =2MN ,∴PQ =2BM .9. (1)解:∵△ABC 和△ADE 都是等边三角形,AC ⊥DE ,AD =2, ∴BC =AC ,DE =AD =2,DF =12DE =1,AF =CF , ∴AF =AD 2-DF 2=3, ∴AC =2AF =23,∴BC =23; (2)证明:连接CE ,FG ,如解图所示:第9题解图∵△ABC 和△ADE 都是等边三角形,点B ,D ,E 同一在一条直线上. ∴AB =AC ,AD =AE ,∠BAC =∠DAE =∠AED =60°, ∴∠ADB =120°,∠BAD =∠CAE ,在△ABD 和△ACE 中,⎩⎨⎧AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴BD =CE ,∠AEC =∠ADB =120°, ∴∠CED =∠AEC -∠AED =60°, ∵CD ⊥BE , ∴∠DCE =30°, ∴DE =12CE ,∵线段BC的中点为F,线段DC的中点为G,∴FG∥BD,FG=12BD,∴FG∥DE,FG=DE,∴四边形DFGE是平行四边形,∴DF=EG.。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
中考复习数学真题汇编18:三角形全等(含答案)
1. (2015江苏泰州,6,3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是 A .1对 B .2对 C .3对 D .4对【答案】D2. (2015浙江省绍兴市,7,4分)如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。
则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS第7题【答案】D【解析】本题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形常见判定方法.由图和条件可知:AB=AD ,BC=DC ,AC 是公共边,即AC=AC ,根据三角形全等的判定方法可得这两个三角形全等的依据是“边边边”,因此,本题的正确答案为D .3. (2015义乌7,3分)如图,小敏做了一个角平分仪 ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可说明△ABC ≌△ADC ,这样就有∠QAE =∠P AE .则此两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS【答案】D(第6题图)CAFODE1. (2015江西省,第9题,3分)如图,OP 平分∠MON ,PE ⊥OM 于E ,PF ⊥ON 于F ,OA =OB .则图中有 对全等三角形.【答案】3【解析】∵∠POE=∠POF, ∠PEO=∠PFO=90°OP=OP,∴△POE ≌△POF(AAS), 又OA=OB,∠POA=∠POB,OP=OP,∴△POA ≌△POB(AAS), ∴PA=PB,∵PE=PF, ∴Rt △PAE ≌Rt △PBF(HL). ∴图中共有3对全的三角形. 故答案为32. (2015娄底市,13,3分)已知AB=BC ,要使△ABD ≌△CBD ,还需要加一个条件,你添加的条件是 .(只需写一个,不添加辅助线)【答案】AD=CD 或∠ABD=∠CBD 【解析】解:△ABD 和△CBD 中,AB=BC ,BD=BD ,根据全等三角形的判定定理可知AD=CD 或∠ABD=∠CBD 时,两三角形全等.3. (2015湖南省永州市,15,3分)如下图,在△ABC 中,己知∠1=∠2,BE =CD ,AB =5,AE =2,则CE=__ __12FA BCE D(第15题图)【答案】CE =3.【解析】解:∵∠1=∠2,∠A =∠A ,BE =CD ,∴△ABE ≌△ACD .∴AD =AE =2,AB =AC =5.∴CE =AC -AE=5-2=3.三、解答题1. (2015年四川省宜宾市,18,6分)如图,AC =DC ,BC =EC ,∠ACD =∠BCE 。
中考数学全等三角形压轴几何题(讲义及答案)含答案
中考数学全等三角形压轴几何题(讲义及答案)含答案一、全等三角形旋转模型1.如图1,四边形ABCD 中,BD ⊥AD ,E 为BD 上一点,AE =BC ,CE ⊥BD ,CE =ED(1)已知AB =10,AD =6,求CD ;(2)如图2,F 为AD 上一点,AF =DE ,连接BF ,交BF 交AE 于G ,过G 作GH ⊥AB 于H ,∠BGH =75°.求证:BF =22EG .答案:B解析:(1)2;(2)证明见解析【分析】(1)由勾股定理得出BD 22-AB AD 8,由HL 证得Rt △ADE ≌Rt △BEC ,得出BE =AD ,则CE =ED =BD ﹣BE =BD ﹣AD =2,由等腰直角三角形的性质即可得出结果; (2)连接CF ,易证AF =CE ,AD ∥CE ,得出四边形AECF 是平行四边形,则AE =CF ,AE ∥CF ,得出∠CFD =∠EAD ,∠CFB =∠AGF ,由Rt △ADE ≌Rt △BEC ,得出∠CBE =∠EAD ,推出∠CBE =∠CFD ,证得△BCF 是等腰直角三角形,则BF 2BC 2CF =2AE ,∠FBC =∠BFC =45°,推出∠AGF =45°,∠AGH =60°,∠GAH =30°,则AG =2GH ,得出BF 2AE 2(AG+EG ),即可得出结论.【详解】(1)解:∵BD ⊥AD ,∴BD 22-AB AD 22106-=8,∵CE ⊥BD ,∴∠CEB =∠EDA =90°,在Rt △ADE 和Rt △BEC 中,AE BC ED CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL ),∴BE =AD ,∴CE =ED =BD ﹣BE =BD ﹣AD =8﹣6=2,∴2=CE =2;(2)解:连接CF ,如图2所示:∵AF=DE,DE=CE,∴AF=CE,∵BD⊥AD,CE⊥BD,∴AD∥CE,∴四边形AECF是平行四边形,∴AE=CF,AE∥CF,∴∠CFD=∠EAD,∠CFB=∠AGF,由(1)得:Rt△ADE≌Rt△BEC,∴∠CBE=∠EAD,∴∠CBE=∠CFD,∵∠FBD+∠BFC+∠CFD=90°,∴∠FBD+∠BFC+∠CBE=90°,∴∠BCF=90°,∵AE=BC,∴BC=CF,∴△BCF是等腰直角三角形,∴BF2BC2CF2AE,∠FBC=∠BFC=45°,∴∠AGF=45°,∵∠BGH=75°,∴∠AGH=180°﹣45°﹣75°=60°,∵GH⊥AB,∴∠GAH=30°,∴AG=2GH,∴BF2AE2(AG+EG),∴BF=22EG.【点睛】本题考查了等腰直角三角形的判定与性质、含30°角直角三角形的判定与性质、全等三角形的判定与性质、平行线的判定与性质、平行四边形的判定与性质等知识,熟练掌握直角三角形的性质、作辅助线构建平行四边形是解题的关键.2.(1)如图1,在OAB和OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.求:①AC BD 的值; ②∠AMB 的度数. (2)如图2,在OAB 和OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)在(2)的条件下,将OCD 点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=2,OB=23,请直接写出当点C 与点M 重合时AC 的长.答案:A解析:(1)①1,②40°;(2)AC BD 3∠AMB=90°,见解析;(3)33【分析】 (1)①根据已知条件证明△COA ≌△DOB ,即可证明AC=BD ;②根据△COA ≌△DOB 可得∠CAO=∠DBO ,根据已知条件可得∠OAB+∠ABO=140°,然后在△AMB 中,根据等角的转换即可得到答案;(2)根据已知条件证明△AOC ∽△BOD ,可得∠CAO=∠DBO ,进而可得∠MAB=∠OAB+∠DBO ,最后可得∠AMB=180°-(∠OAB+∠ABM+∠DBO )=90°;(3)分两种情况讨论,根据题(2),同理可得OAC OBD △△,90AMB ∠=︒,3AC BD=,设BD=x ,则3AC x = 用x 表示出AM 、BM 的长,在Rt AMB 中,根据勾股定理222AM BM AB +=列出方程,求解即可.【详解】 解:(1)①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB ,∵OC=OD ,OA=OB ,∴△COA ≌△DOB (SAS ),∴AC=BD , ∴AC BD =1, ②∵△COA ≌△DOB ,∴∠CAO=∠DBO ,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB 中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD )=180°﹣(∠DBO+∠OAB+∠ABD )=180°﹣140°=40°,(2)如图2,AC BD=3,∠AMB=90°,理由是:在Rt △COD 中,∠DCO=30°,∠DOC=90°,∴3tan 303OD OC =︒=,同理得:3tan 303OB OA =︒=, ∴OD OB OC OA=, ∵∠AOB=∠COD=90°,∴∠AOC=∠BOD ,∴△AOC ∽△BOD ,∴AC OC BD OD==3,∠CAO=∠DBO , 在△AMB 中,∠AMB=180°﹣(∠MAB+∠ABM )=180°﹣(∠OAB+∠ABM+∠DBO )=90°;(3)AC 的长为23或43.①如图,点C 与点M 重合,同理可得:OAC OBD △△,90AMB ∴∠=︒,3AC BD =设BD=x ,则3AC x =,在Rt ODC 中,30OCD ∠=︒,OD=2,4CD ∴=,在Rt AOB 中,30OAB ∠=︒,33AB ∴=,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x ++=,解得:x=2或-4(舍),323x =②如图,点C 与点M 重合,同理可得:90AMB ∠=︒,3AC BD =, 设BD=x ,则AC=3x ,在Rt COD 中, 90OCD ∠=︒,OD=2,4CD ∴=,4BC x =-,在Rt AOB 中,30OAB ∠=︒,23OB =,243AB OB ∴==,在Rt AMB 中,222AM BM AB +=,即222(3)(4)(43)x x +-=,解得:x=4或-2(舍),AC=343x =,综上所述,AC 的长为23或43.【点睛】本题主要考查三角形的综合运用,涉及全等三角形与相似三角形的性质和判定、勾股定理、解一元一次方程、图形旋转证明、特殊角的三角函数值等知识点,难度较大,第(1)题证明△COA ≌△DOB 是关键,第(2)题证明△AOC ∽△BOD 是关键,第(3)题要特别注意分情况讨论.3.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒, 90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==,PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.4.△CDE 和△AOB 是两个等腰直角三角形,∠CDE =∠AOB =90°,DC =DE =1,OA =OB =a (a >1).(1)将△CDE 的顶点D 与点O 重合,连接AE ,BC ,取线段BC 的中点M ,连接OM . ①如图1,若CD ,DE 分别与OA ,OB 边重合,则线段OM 与AE 有怎样的数量关系?请直接写出你的结果;②如图2,若CD 在△AOB 内部,请你在图2中画出完整图形,判断OM 与AE 之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE 绕点O 任意转动,写出OM 的取值范围(用含a 式子表示);(2)是否存在边长最大的△AOB ,使△CDE 的三个顶点分别在△AOB 的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a 的值;如果不存在,请说明理由.答案:A解析:(1)①OM =12AE ;②OM =12AE ,证明详见解析;③12a -≤OM ≤12a +;(2)5【分析】(1)①利用△CDE ≌△AOB 得出BC =AE ,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF ≌△EOA 及三角形中位线得出OM =12AE . ③分两种情况,当OC 与OB 重合时OM 最大,当OC 在BO 的延长线上时OM 最小,据此求出OM 的取值范围.(2)分两种情况:当顶点D 在斜边AB 上时,设点C ,点E 分别在OB ,OA 上.由DM +OM ≥OF 求出直角边a 的最大值;当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上时,利用△EHD ≌△DOC ,得出OD =EH ,在Rt △DHE 中,运用勾股定理ED 2=DH 2+EH 2,得出方程,由△判定出a 的最大值.【详解】解:(1)①∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =B 0,∠CDE =∠AOB ,在△CDE 和△AOB 中,CD ED CDE AOB AO BO =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△AOB (SAS ),∴BC =AE∵M 为BC 中点,∴OM =12BC , ∴OM =12AE . ②猜想:OM =12AE . 证明:如图2,延长BO 到F ,使OF =OB ,连接CF ,∵M 为BC 中点,∴OM =12CF , ∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =BO =OF ,∠CDE =∠AOB ,∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM =12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM =11122a a -++= Ⅱ、如图4,当OC 在BO 的延长线上时,OM 最小,OM =12a +﹣1=12a -, 所以12a -≤OM ≤12a +, (2)解:根据△CDE 的对称性,只需分两种情况:①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB=2a,OF=12AB=22a,∴CE=2,DM=12CE=22,在RT△COE中,OM=12CE=22,在RT△DOM中,DM+OM≥OD,又∵OD≥OF,∵DM+OM≥OF,即22+22≥22a,∴a≤2,∴直角边a的最大值为2.②如图6,当顶点D在直角边AO上时,点C,点E分别在OB,AB上,作EH⊥AO于点H.∵∠AOB=∠CDE=∠DHE=90°,∵∠HED+∠EDH=∠CDO+∠EDH=90°,∴∠HED=∠CDO,∵DC=DE,在△EHD和△DOC中,EHD COD HED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS )设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x ,在Rt △DHE 中,ED 2=DH 2+EH 2,∴1=x 2+(a ﹣2x )2,整理得,5x 2﹣4ax +a 2﹣1=0,∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0,∴a 2≤5,∴a 2的最大值为5,∴a 的最大值为5.综上所述,a 的最大值为5.【点睛】本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.5.综合与探究问题情境在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 是射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°至AE ,连接DE ,CE .探究发现(1)如图1,BD =CE ,BD ⊥CE ,请证明;探究猜想;(2)如图2,当BD =2DC 时,猜想AD 与BC 之间的数量关系,并说明理由; 探究拓广(3)当点D 在BC 的延长线上时,探究并直接写出线段BD ,DC ,AD 之间的数量关系. 答案:B解析:(1)证明见解析;(2)10AD BC =,理由见解析;(3)2222BD CD AD +=.【分析】(1)根据题意计算得∠BAD =∠CAE ;再根据旋转的性质,通过证明△BAD ≌△CAE ,从而完成求解;(2)结合(1)的结论,通过△BAD ≌△CAE ,得CE ;通过勾股定理,得DE =;再通过勾股定理计算,记得得到答案;(3)过点A 作AM BC ⊥交BC 于点M ;根据等腰三角形三线合一的性质,得BM CM =,再根据直角三角形斜边中线的性质,得12AM BM CM BC ===;根据勾股定理的性质,通过计算,即可得到线段BD ,DC ,AD 之间的数量关系.【详解】(1)由题意得,∠BAC =∠DAE =90°∵∠BAD +∠CAD =∠CAE +∠CAD∴∠BAD =∠CAE∵线段AD 绕点A 逆时针旋转90°至AE∴AD=AE又∵AB=AC ,∴△BAD ≌△CAE∴BD=CE ,∠B =∠ACE =45°∴∠ECD =90°,BD ⊥CE .(2)由(1)得:△BAD ≌△CAE∴BD=CE ,∠B =∠ACE =45° ∵13CD BC =,BD =2DC ,即23BD BC =, ∴23BD CE BC ==,∵AD=AE ∴DE ==∴∠B =∠ACB =45°∴∠BCE =∠ACB+∠ACE =90°∴CD 2+CE 2=DE 2,即22212()()233BC BC AD +=,∴AD BC =;(3)如图,过点A 作AM BC ⊥交BC 于点M∵∠BAC =90°,AB =AC ∴12BM CM BC == ∴12AM BM CM BC ===∴()1122AM BC BD CD ==-,()1122DM CM CD BC CD BD CD =+=+=+ ∵222AM DM AD += ∴()()2221122BD CD BD CD AD ⎡⎤⎡⎤-++=⎢⎥⎢⎥⎣⎦⎣⎦∴2222BD CD AD +=.【点睛】本题考查了旋转、等腰直角三角形、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握旋转、等腰三角形三线合一、勾股定理、直角三角形斜边中线的性质,从而完成求解.6.问题提出(1)如图①,在ABC 中,AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,则ABD ACD S S = .问题探究(2)如图②,在正方形ABCD 中,边长为8,点E 是AB 的中点,作∠EDF =45°,交BC 于点F ,求DEF 的面积.问题解决(3)如图③,某市为迎接城市运动会,打造融体育、文化、饮食、旅游为一体的综合商业品牌,规划了如图所示的矩形ABCD 观光区,如图,在矩形ABCD 中,AB =16km ,AD =12km ,要求在边AB 上确定一点E 为观光区的南门,在边BC 上确定一点F 为观光区的东门,且∠EDF =30°,同时为了方便市民游览,还要修建一条观光通道FG ,使FG ∥AB ,交DE 于点G (观光带的宽度不计),为了节约成本,要使FG 的长度最小,那么是否存在符合条件的修建方案?若存在,请求出FG 的最小值;若不存在,请说明理由.答案:B解析:3(2)803,(3) 323. 【分析】(1)根据∠BAD =45°,∠DAC =30°,求出BD 、AD 、DC 的关系即可;(2)将△DCF 绕点D 顺时针旋转90°得到△DAG ,可证△DEF ≌△DEG ,得到EF =CF +AE ,求出CF 长即可;(3) 作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q ,求出△DEF 的面积最小值,再用面积求FG 最小值.【详解】解:(1)∵AD 是BC 边上的高,若∠BAD =45°,∠DAC =30°,∴AD =BD ,AD = tan 603DC DC ︒=,12312ABD ACD BD AD SS CD AD ⋅==⋅ (2) 将△DCF 绕点D 顺时针旋转90°得到△DAG ,∵∠DAG =∠C =90°,∠DAE =90°,∴G 、A 、E 三点共线,由旋转可知,∠FDG =∠CDA =90°,DF =DG ,∴∠GDE =∠FDE =45°,DE =DE ,∴△GDE ≌△FDE ,∴GE =EF ,∴EF =AE +CF ,设EF 为x ,则CF =x -4,BF =12-x ,2224(12)x x +-=, 解得,x =203, DEF 的面积=DEG 的面积=120808233⨯⨯=;(3)作DM ⊥DF ,交BA 延长线于点M ,作EN ⊥DF 于N ,EH ⊥DM 于H ,作△DME 的外接圆⊙O ,连接OD 、OE 、OM ,作OQ ⊥ME 于Q ,∵∠FDM =∠CDA =90°,∴∠ADM =∠CDF ,∵∠C =∠DAM =90°,∴△ADM ∽△CDF , ∴34MD AD DF DC ==, ∵∠FDE =30°,∴∠EDM =60°, ∵1sin 302EN DE DE =︒=,3sin 602EH DE DE =︒=, ∴3EH EN =,143212DEF DME DF EN S S DM EH ⋅==⋅ 设⊙O 的半径为R ,∵∠MDE =60°,∴∠MOE =120°,∠MOQ =60°,3sin 60R MQ OM =︒=ME 3R ,OQ =12R , OD +OQ ≥AD , 1122R R +≥,解得,8R ≥, 138122DME S ≥⨯,即483DME S ≥DME S △的最小值为483DEF S △的最小值为4348364=, 1()62DEF DGF EGF S S S FG CF BF FG =+=+=,FG的最小值为6432 63=.【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角形的外接圆,解直角三角形等,解题关键是充分理解题意,恰当的构建全等三角形、相似三角形和外接圆.7.如图1,在等腰Rt△ABC中,∠ABC=90°,AB=BC=6,过点B作BD⊥AC交AC于点D,点E、F分别是线段AB、BC上两点,且BE=BF,连接AF交BD于点Q,过点E作EH⊥AF交AF于点P,交AC于点H.(1)若BF=4,求△ADQ的面积;(2)求证:CH=2BQ;(3)如图2,BE=3,连接EF,将△EBF绕点B在平面内任意旋转,取EF的中点M,连接AM,CM,将线段AM绕点A逆时针旋转90°得线段AN,连接MN、CN,过点N作NR⊥AC 交AC于点R.当线段NR的长最小时,直接写出△CMN的周长.答案:A解析:(1)1.8;(2)证明见解析;(3)32633510 22+.【分析】(1)利用等腰直角三角形的性质求出1322BD AD CD AC====积相等和勾股定理分别求出AQ和QD,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线∴12BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQBFQ S S ∆∆==, ∴32AQ FQ =,∵AF ===∴35AQ AF ==∴QD ===,∴1 1.825ADQ S ∆=⨯⨯=, ∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌ ∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∴BD ∥CG ,∵D 点是AC 的中点,且BD ∥CG , ∴DQ 是ACG ∆的中位线, ∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+, ∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB , ∴∠NAH +∠HAM =∠HAM +∠BAM =90°, ∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌, ∴HN =BM ,∵BE =BF =3,∠EBF =90°,∴232EF BE ==∴由M 点是EF 的中点,可得122BM EF ==,∴NH =,∴N 点在以H 点为圆心,2为半径的圆上, 如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,为2NR HR HN HR =-=-, ∵∠BAC =45°,∴∠HAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=,∴HR AR ===,∴NR HR ==, ∵AC == ∴CR AC AR =-=∴CN AN === ∵∠MAN =90°,AM =AN ,∴MN ==∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=,∴MC ==∴2MC MN CN ++=+∴△CMN 的周长为2+.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等. 8.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.答案:G解析:(1) GE=2CE,(2)存在,证明见解析,(3)258或210或16或4.【分析】(1)连接GC,证△CDG≌△CBE,得出△GCE为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD≌△AEB,再证△CDG≌△CBE,得出△GCE为等腰直角三角形即可;(3)根据E、F是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC,∵AE=AF,AD=AB,∴DF=BE,,∵DG DF∴DG = BE,∵∠GDC=∠B=90°,DC=BC,∴△CDG≌△CBE,∴CE=CG,∠GCD=∠ECB,∵∠ECB+∠DCE=90°,∴∠GCE=∠GCD+∠DCE=90°,∴GE=2CE;故答案为:GE=2CE;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB=5,∴AC=52,CE=52-32=22,GE=2EC=4;如图2,E在CA延长线上,同理可得,EC2,GE2EC=16;当∠EFG =90°时,如图3,∠AFD =∠EFG +∠AFE =135°,由(2)得,∠AFD =∠AEB =135°,DF =BE ,所以,B 、E 、F 在一条直线上,作AM ⊥EF ,垂足为M , ∵5,32AB AE ==,∴EF =6,AM =ME =MF =3,224BM AB AM =-=,BE =DF =1,FG =2,22210GE FG EF =+=;如图4,同图3,BE =DF =7,FG =14,EF =6,22258GE FG EF =+=,综上,GE 的长为258或210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.9.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)CM=2BN .【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到BQ=2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.10.在平面直角坐标系中,点A 在y 轴正半轴上,点B 在x 轴负半轴上,BP 平分∠ABO . (1)如图1,点T 在BA 延长线上,若AP 平分∠TAO ,求∠P 的度数;(2)如图2,点C 为x 轴正半轴上一点,∠ABC =2∠ACB ,且P 在AC 的垂直平分线上. ①求证:AP //BC ;②D 是AB 上一点,E 是x 轴正半轴上一点,连接AE 交DP 于H .当∠DHE 与∠ABE 满足什么数量关系时,DP =AE .给出结论并说明理由.答案:D解析:(1)45°;(2)①见解析;②∠DHE +∠ABE =180°,理由见解析【分析】(1)由三角形的外角性质和角平分线的性质可得∠AOB =2∠P =90°,可求解;(2)①过点P 作PE ⊥AB 交BA 延长线于E ,过点P 作PF ⊥BC 于F ,连接PC ,由角平分线的性质可得PE =PF ,由垂直平分线的性质可得PA =PC ,由“HL ”可证Rt △APE ≌Rt △CPF ,可得∠EPA =∠CPF ,由四边形内角和定理可得∠EBF +∠EPF =180°,由角的数量关系可证∠ACB =∠PAC ,由平行线的判定可证AP ∥BC ;②如图3,在OE 上截取ON =OB ,连接AN ,通过证明△ADP ≌△NEA ,可得DP =AE .【详解】解:(1)∵BP 平分∠ABO ,AP 平分∠TAO ,∴∠PBT =12∠ABO ,∠TAP =12∠TAO , ∵∠TAO =∠ABO+∠AOB ,∠TAP =∠P+∠ABP ,∴∠AOB =2∠P =90°,∴∠P =45°;(2)①如图2,过点P 作PE ⊥AB 交BA 延长线于E ,过点P 作PF ⊥BC 于F ,连接PC ,又∵PB 平分∠ABC ,∴PE =PF ,∵P 在AC 的垂直平分线上,∴PA =PC ,∴∠PAC =∠PCA ,在Rt △APE 和Rt △CPF 中,AP PC PE PF =⎧⎨=⎩, ∴Rt △APE ≌Rt △CPF (HL ),∴∠EPA =∠CPF ,∴∠EPF =∠APC ,在四边形BEPF 中,∠EBF+∠BEP+∠EPF+∠PFB =180°,∴∠EBF+∠EPF =180°,∴∠ABC+∠APC =180°,∵∠APC+∠PAC+∠PCA =180°,∴∠ABC =∠PAC+∠PCA =2∠PAC ,∵∠ABC =2∠ACB ,∴∠ACB =∠PAC ,∴AP ∥BC ;②当∠DHE+∠ABE =180°时,DP =AE ,理由如下:如图3,在OE 上截取ON =OB ,连接AN ,∵OB =ON ,AO ⊥BE ,∴AB =AN ,∴∠ABN =∠ANB ,∵AP ∥BE ,BP 平分∠ABE ,∴∠APB =∠PBE =∠ABP ,∠ABN+∠BAP =180°,∴AP =AB ,∴AP =AN ,∵∠ANB+∠ANE =180°,∴∠BAP =∠ANE ,∵∠DHE+∠ABE =180°,∠DHE+∠ABE+∠BDH+∠BEH =360°,∴∠BDH+∠BEH =180°,∵∠ADP+∠BDP =180°,∴∠ADP =∠AEN ,在△ADP 和△NEA 中,DAP ANE ADP AEN AP AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△NEA (AAS ),∴DP =AE .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,四边形内角和定理等知识,添加恰当辅助线构造全等三角形是本题的关键. 11.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。
中考数学专项复习命题点8 全等三角形的性质与判定(必考)
证明: ∵ = ,∴ ∠ = ∠ ,
∵ ∠ = ∠ ,
∴ ∠ + ∠ = ∠ + ∠ ,
∴ ∠ = ∠ ,
∴ = .
又 ∵ = , ∠ = ∠ ,
∴△ ≌△ , ∴ ∠ = ∠ .
是平行四边形, // .
求证: = .
证明: ∵ 四边形 是平行四边形,
∴ = , // ,
∴ ∠ = ∠ .
∵ // , ∴ ∠ = ∠ ,
∴△ ≌△ ,
∴ = .
第8题图
9.(创新考法)[2023陕西]如图,在 △ 中, ∠ = 50∘ , ∠ = 20∘ .
河南数学
第四章 三角形
命题点8 全等三角形的性质与判定(必考)
数学
A 基础达标练
考向1 全等三角形的性质
1.如图,若 △ ≌△ ,则下列结论中一定成立
的是(
)
A. =
B. ∠ = ∠
√
C. =
D. ∠ = ∠
第1题图
2.[2023成都]如图,已知 △ ≌△ ,点 , ,
第11题图
B 强化提升练
12.(多解法)[2023丽水]如图,在四边形 中,
// , ∠ = 45∘ ,以 为腰作等腰直角三角形
,顶点 恰好落在 边上,若 = 1 .则 的长
是(
A.
√
)
2
B.
2
2
C. 2
第12题图
D. 1
【解析】 解法1:如解图①,过点 作 ⊥ 交 延长线于 ,过点
∵ // , ∴ ∠ = ∠ = ∠ = ∘ , ∴ = = ,
2024河南中考数学真题分类卷 第十四讲 全等三角形 (含答案)
2024河南中考数学真题分类卷第十四讲全等三角形命题点1全等三角形的判定与性质类型一平移型1.(2023益阳)如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C 作CF∥DE,交AB的延长线于点F,则BF的长为()第1题图A.5B.4C.3D.22.(2023乐山)如图,B是线段AC的中点,AD∥BE,BD∥CE.求证:△ABD≌△BCE.第2题图3.(2023柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)________(只需选一个条件,多选不得分),你判定△ABC≌△DEF 的依据是________(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.第3题图类型二轴对称型4.(2023金华)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()第4题图A.SSSB.SASC.AASD.HL5.(2023云南)如图,OB平分∠AOC,D,E,F分别是射线OA,射线OB,射线OC上的点,D,E,F与O点都不重合,连接ED,EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()第5题图A.OD=OEB.OE=OFC.∠ODE=∠OEDD.∠ODE=∠OFE6.(2023兰州)如图①是小军制作的燕子风筝,燕子风筝的骨架图如图②所示,AB=AE,AC =AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.第6题图7.(2023衡阳)如图,在△ABC中,AB=AC,D,E是BC边上的点,且BD=CE.求证:AD =AE.第7题图8.(2023南充)如图,在菱形ABCD中,点E,F分别在边AB,BC上,BE=BF,DE,DF 分别与AC交于点M,N.求证:(1)△ADE≌△CDF;(2)ME=NF.第8题图类型三旋转型考向1共顶点旋转9.(2022宜宾)如图,已知OA=OC,OB=OD,∠AOC=∠BO D.求证:△AOB≌△CO D.第9题图10.(2020徐州)如图,AC⊥BC,DC⊥EC,AC=BC,DC=EC,AE与BD交于点F.(1)求证:AE=BD;(2)求∠AFD的度数.第10题图11.(2022北京)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.第11题图考向2不共顶点旋转12.(2023成都)如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC =DF,只添加一个条件,能判定△ABC≌△DEF的是()第12题图A.BC=DEB.AE=DBC.∠A=∠DEFD.∠ABC=∠D源自北师七下P94第12题13.(2023青岛)如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知________(从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=B C.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)第13题图类型四三垂直型14.(2022陕西)如图,AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若AC=6cm,CD⊥BC,则线段CE的长度为()第14题图A.6cmB.7cmC.62cmD.8cm15.(2023益阳)如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=A B.求证:△CED≌△AB C.第15题图16.(2023恩施州)如图,已知四边形ABCD是正方形,G为线段AD上任意一点,CE⊥BG 于点E,DF⊥CE于点F.求证:DF=BE+EF.第16题图其他类型17.(2023包头)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,D为AB边上一点,且BD=BC,连接CD,以点D为圆心,DC的长为半径作弧,交BC于点E(异于点C),连接DE,则BE的长为________.第17题图18.(2023陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=B C.第18题图19.(2020温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.(1)求证:△ABC≌△DCE;(2)连接AE,当BC=5,AC=12时,求AE的长.第19题图命题点2全等三角形的实际应用20.(2023扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据.配出来的玻璃不一定...符合要求的是()第20题图A.AB,BC,CAB.AB,BC,∠BC.AB,AC,∠BD.∠A,∠B,BC21.(2022柳州)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?请结合解题过程,完成本题的证明.证明:在△DEC和△ABC中,,∴△DEC≌△ABC(SAS),∴________.第21题图参考答案与解析1.C【解析】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠A=∠CBF,∵DE∥CF,∴∠DEA=∠CFB,∴△ADE≌△BCF(AAS),∴BF=AE=3.2.证明:∵AD∥BE,BD∥CE,∴∠A=∠EBC,∠DBA=∠C,∵B是线段AC的中点,∴AB=BC,在△ABD和△BCE中,A=∠EBC=BCDBA=∠C,∴△ABD≌△BCE(ASA).3.(1)解:①,SSS或②,SAS;(2)证明:由△ABC≌△DEF得∠BAC=∠EDF,∵点A,D,C,F在同一条直线上,∴AB∥DE(同位角相等,两直线平行).4.B【解析】在△ABO与△DCO=ODAOB=∠DOC=OC,∴△ABO≌△DCO(SAS).5.D【解析】由题意得:∠AOB=∠BOC,OE=OE,若使△DOE≌△FOE,则需OD=OF或除已知外的一组对应角相等即可.根据选项可知∠ODE=∠OFE.6.解:∵∠BAD=∠EAC,∴∠BAD+∠DAC=∠EAC+∠DAC,∴∠BAC=∠EAD.在△ABC和△AED =AEBAC=∠EAD=AD,∴△ABC≌△AED(SAS).∴∠C=∠D=50°.7.证明:∵AB=AC,∴△ABC为等腰三角形,∴∠B=∠C,又∵BD=CE,∴在△ABD和△ACE =ACB=∠C=CE,∴△ABD≌△ACE(SAS),∴AD=AE.8.证明:(1)∵四边形ABCD是菱形,∴DA=DC=AB=CB,∠DAE=∠DCF,又∵BE=BF,∴AB-BE=CB-BF,∴AE=CF,在△ADE和△CDF中,=CDDAE=∠DCF=CF,∴△ADE≌△CDF(SAS);(2)∵四边形ABCD是菱形,∴∠DAB=∠DCB,AC平分∠DAB,∠DCB,∴∠EAM=∠FCN,又∵△ADE≌△CDF,∴∠AEM=∠CFN,又∵AE=CF,∴△MAE≌△NCF,∴ME=NF.9.证明:∵∠AOC=∠BOD,∴∠AOC-∠AOD=∠BOD-∠AOD,∴∠DOC=∠BOA.在△AOB和△COD中,=OC,BOA=∠DOC=OD∴△AOB≌△COD(SAS).10.(1)证明:∵AC⊥BC,DC⊥EC,∴∠ACB=∠DCE=90°,∴∠ACB+∠BCE=∠DCE+∠BCE,∴∠ACE=∠BCD,在△ACE和△BCD中,=BC,ACE=∠BCD=CD∴△ACE≌△BCD(SAS),∴AE=BD;(2)解:如解图,设BC与AE交于点N,∵∠ACB=90°,∴∠A+∠ANC=90°,∵△ACE≌△BCD,∴∠A=∠B,∵∠ANC=∠BNF,∴∠B+∠BNF=∠A+∠ANC=90°,∴∠AFD=∠B+∠BNF=90°.第10题解图11.解:(1)∠BAE=∠CAD,BM=BE+MD.证明:由旋转的性质得,∠DAE=α,AE=AD,∵∠BAC=α,∴∠DAE=∠BAC,∴∠BAE+∠BAD=∠CAD+∠BAD,∴∠BAE=∠CAD.∵AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD.∵M是BC的中点,∴BM=CM=CD+MD=BE+MD;(2)NE=ND.证明:如解图,连接AM、AN,∵AB=AC,M是BC的中点,∴AM⊥BC,即∠AMB=∠AMC=90°,∴∠AMN+∠BMN=90°.∵MN⊥AB,∴∠ABC+∠BMN=90°,∴∠AMN=∠ABC.∵AB=AC,AD=AE,∠BAC=∠DAE=α,∴∠ABC=∠ADE,∴∠AMN=∠ADN,∴A、D、M、N四点共圆,∴∠AND=∠AMD=90°.∵AD=AE,∴NE=ND.第11题解图12.B13.(1)证明:∵BE=FD,∴BE+EF=FD+EF,即BF =DE .∵AB ∥CD ,∴∠ABF =∠CDE .在△ABF 和△CDE BAF =∠DCEABF =∠CDE =DE,∴△ABF ≌△CDE (AAS);(2)解:若选择条件①:四边形AECF 是菱形,证明:如解图①,由(1)可知△ABF ≌△CDE ,第13题解图①∴AF =CE ,∠AFB =∠CED ,∴AF ∥CE ,∴四边形AECF 是平行四边形.∵∠BAF =90°,∠ABD =30°,∴AF =12BF ,∵BE =EF ,∵AE 为△ABF 的中线,∴AE =12AF ,∴AE =AF ,∴平行四边形AECF 是菱形.若选择条件②:四边形AECF 是菱形.证明:如解图②,连接AC 交BD 于点O ,第13题解图②由(1)可知△ABF ≌△CDE ,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形.∴AO=CO.∵AB=BC,∴BO⊥AC,即EF⊥AC,∴平行四边形AECF是菱形.14.D【解析】如解图,分别过点B、D作BF⊥AC于点F,DG⊥CE于点G,∴∠BFC=∠CGD=90°,∴∠1+∠2=90°.∵CD⊥BC,∴∠2+∠3=90°,∴∠1=∠3.∵AB=BC=CD=5,AC=6,∴CF=3,△BCF≌△CDG,∴CG=BF=BC2-CF2=4,∴CE=8.第14题解图15.证明:∵CD∥AB,∴∠DCE=∠A,∵DE⊥AC,∴∠DEC=∠B=90°,∵CE=AB,∴△CED≌△ABC(ASA).16.证明:∵CE⊥BG,DF⊥CE,∴∠BEC=∠CFD=90°,∴∠EBC+∠BCE=90°,∵四边形ABCD是正方形,∴∠BCE+∠DCF=90°,BC=CD,∴∠EBC=∠FCD,在△EBC和△FCD中,BEC=∠CFD=90°,EBC=∠FCD=CD∴△EBC≌△FCD,∴BE=CF,CE=DF,∴CE=CF+EF=BE+EF,∴DF=BE+EF.17.32-3【解析】∵AC=BC=3,∠ACB=90°,∴AB=32,∠A=∠B,∵BD=BC,∴∠BDC=∠DCB,∵DC=DE,∴∠DCB=∠DEC,∴∠BDC=∠DEC,∴∠ADC=∠DEB,∴△ADC≌△BED(AAS),∴AD=BE=AB-DB=AB-BC=32-3.18.证明:∵DE∥AB,∴∠EDC=∠B.又∵CD=AB,∠DCE=∠A,∴△CDE≌△ABC(ASA).∴DE=BC.19.(1)证明:∵AB∥DE,∴∠BAC=∠D,又∵∠B=∠DCE=90°,AC=DE,∴△ABC≌△DCE(AAS);(2)解:由(1)得CE=BC=5,∵∠ACE=90°,AC=12,∴AE=AC2+CE2=144+25=13.20.C【解析】逐项分析如下:选项逐项分析正误A 已知AB,BC,CA,根据SSS,得到三角形与原三角形全等√B 已知∠B是AB,BC的夹角,根据SAS,得到三角形与原三角形全等√C 已知∠B不是AB,AC的夹角,无法得到三角形与原三角形全等×D 已知∠A,∠B,BC,根据AAS,得到三角形与原三角形全等√21.解:CA,∠DCE=∠ACB,CB,DE=AB.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年中考数学“全等三角形复习”
全等三角形是研究图形的重要工具,只有掌握好全等三角形的有关知识,并能灵活应用才能学好四边形、圆等后续内容,全等三角形也是中考的重要考点之一。
一、知识要点
1. 两个能够重合的三角形叫做全等三角形,全等三角形的对应边相等,对应角相等。
2. 全等三角形的判定方法有(1)SAS;(2)ASA:(3)AAS;(4)SSS。
对直角三角形全等的判定除以上方法外,还有HL。
3. 两个三角形的两边和一角对应相等,或两个三角形的三个角对应相等,这两个三角形不一定全等。
二、复习指导
l. 应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:
(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角)。
全等三角形的对应边和对应角可以依据字母的对应位置来确定,当书写正确时,如若,说明A与D,B与E,C与F是对应点,则∠ABC与∠DEF是对应角,
边AC与边DF是对应边。
2. 判定两个三角形全等的解题思路:
3. 运用三角形全等可以证明两线段或两角相等,在直接找不到两个全等三角形时,可考虑添加辅助线构造全等三角形。
三、思想方法
1. 转化思想:应用全等三角形的知识解决测河宽、测池塘宽、测工件内径等实际问题就是转化思想的运用。
2. 运动变化思想:在研究三角形全等时,经常会出现三角形按照某种特定的规律变化,需要运用运动变化的思想进行解决。
3. 构造图形法:在直接找不到两个全等三角形时,常常通过平移、对称、旋转等图形变换的方法构造全等三角形。
4. 分析综合法:从已知条件出发探索解题途径的方法叫综合法;从结论出发不断寻找使结论成立的条件与已知条件关系的方法叫分析法;两头凑的方法就是综合运用分析综合法去寻找证题的一种方法。
四、中考新题型
(一)添加条件型
例1. 如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。
所添条件为______________,你得到的一对全等三角形是_______________。
解析:本题是一道条件和结论同时开放的试题。
所添条件为CE=DE,∠CAB=∠DAB,
BC=BD等条件中的一个。
可得到。
证明过程略
(二)结论开放型
例 2. 如图,中,∠ACB=90°,AC=BC,将绕点C逆时针旋转角。
得到,连接。
设交AB于D,分别交AB、AC于E、F。
(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(与全等除外);
(2)当是等腰三角形时,求。
解析:(1)是一道结论开放的试题,由题目所隐含的条件易得,或或。
以证为例。
,。
(2)30°
(三)阅读归纳型
例3. 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等。
那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等。
对于这两个三角形均为钝角三角形,可证它们全等(证明略)。
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:、均为锐角三角形,。
求证:(请你将下列证明过程补充完整)
证明:分别过点B,作于D
于。
则∠。
(2)归纳与叙述;由(1)可得到一个正确结论,请你写出这个结论。
解:(1)又。
,又,。
(2)若、均为锐角三角形或均为直角三角形或均为钝角三角形。
,则。
说明:本题的问题情境新颖,既有阅读又有补充证明过程,既有类比又有归纳,突出考查学生的综合素质,别具一格。
(四)探究猜想型
例4. 如图a,是两个大小不等的等边三角形,且有一个公共顶点C,连接
AF和BE。
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图a中的绕点C旋转一定的角度,请你画出一个变换后的图形c(草
图即可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现。
解:(1)。
证明:是等边三角形,。
(2)成立。
理由:是等边三角形,
(3)如图,(1)中的结论仍成立。
(4)根据以上证明、说明、画图,归纳如下:
如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有。
说明:本题让学生经历观察、操作、猜想、验证的探究过程,发展学生分析、概括、综合、逻辑推理的能力,体现了新课程标准强调学生主动参与、勤于动手、乐于探究、经历学习过程的新理念。
(五)组合探索型
例5. 如图,在和中,B、E、C、F在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明:①,②,③∠ABC=∠DEF,④BE=CF。
解:已知:。
求证:∠ABC=∠DEF。
证明:,。
,
,。
说明:这类问题条件和结论都不确定,需要答题者认定条件和结论,然后组合成一个新命题,再按题目具体要求给出必要的证明,本题可以构造三个不同命题,而且正确的命题不止一个。