第十四章 图的基本概念

合集下载

图论--图的基本概念

图论--图的基本概念

图论--图的基本概念1.图:1.1⽆向图的定义:⼀个⽆向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。

E是⽆序积V&V的有穷多重⼦集,称作边集,其元素称作⽆向边,简称边。

注意:元素可以重复出现的集合称作多重集合。

某元素重复出现的次数称作该元素的重复度。

例如,在多重集合{a,a,b,b,b,c,d}中,a,b,c,d的重复度分别为2,3,1,1。

从多重集合的⾓度考虑,⽆元素重复出现的集合是各元素重复度均为1的多重集。

1.2有向图的定义:⼀个有向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。

E是笛卡尔积V✖V的有穷多重⼦集,称作边集,其元素为有向边,简称为边。

通常⽤图形来表⽰⽆向图和有向图:⽤⼩圆圈(或实⼼点)表⽰顶点,⽤顶点之间的连线表⽰⽆向边,⽤带箭头的连线表⽰有向边。

与1.1,1.2有关的⼀些概念和定义:(1)⽆向图和有向图统称为图,但有时也把⽆向图简称作图。

通常⽤G表⽰⽆向图,D表⽰有向图,有时也⽤G泛指图(⽆向的或有向的)。

⽤V(G),E(G)分别表⽰G的顶点集和边集,|V(G)|,|E(G)|分别是G的顶点数和边数,有向图也有类似的符号。

(2)顶点数称作图的阶,n个顶点的图称作n阶图。

(3)⼀条边也没有的图称作零图,n阶零图记作N n。

1阶零图N1称作平凡图。

平凡图只有⼀个顶点,没有边。

(4)在图的定义中规定顶点集V为⾮空集,但在图的运算中可能产⽣顶点集为空集的运算结果,为此规定顶点集为空集的图为空图,并将空图记作Ø。

(5)当⽤图形表⽰图时,如果给每⼀个顶点和每⼀条边指定⼀个符号(字母或数字,当然字母还可以带下标),则称这样的图为标定图,否则称作⾮标定图。

(6)将有向图的各条有向边改成⽆向边后所得到的⽆向图称作这个有向图的基图。

(7)若两个顶点v i与v j之间有⼀条边连接,则称这两个顶点相邻。

图论(1)--图的基本概念

图论(1)--图的基本概念

图论(1)--图的基本概念有向图和⽆向图的建⽴以及赋权图引⼊Q:什么是图论?A:图论是数学的⼀个分⽀。

它以图为研究对象。

图论中的图是由若⼲给定的点及连接两点的线所构成的图形,这种图形通常⽤来描述某些事物之间的某种特定关系,⽤点代表事物,⽤连接两点的线表⽰相应两个事物间具有这种关系。

现在我们来探讨⽆向图和有向图的概念以及如何去建⽴最基本的图的模型什么是图对于初⼊图论的⼈来说,复杂的定义可能会直接劝退他们,现在我来举⼀个⾮常简单的例⼦。

这就是最常见的图,由于它没有指向,即没有明确的⽅向,它被称为⽆向图。

图是由顶点和边组成的,你应该很容易就知道那些元素是顶点,那些是边。

下⾯的具有⽅向的便是有向图:若有的边有向,有的边⽆向,则称为混合图。

接下来我们将引⼊更多的概念:若两个顶点有边相连,则称两个顶点相相邻,两个点称为起点/终点或端点如1指向2,则这两个顶点相邻,这两个顶点被称为断点,⽽1被称为起点,2被称为终点。

仅含⼀个顶点的边称为⾃环在⽆向图中,包含顶点v的边的个数,称为顶点的度。

在有向图中,以v为起点的边的个数,称为点的出度,以v为终点的边的个数,称为顶点的⼊度。

⽆向图的建⽴建⽴简单⽆向图,我们使⽤Matlab,版本为R2017a。

% 函数graph(s,t):可在 s 和 t 中的对应节点之间创建边,并⽣成⼀个图% s 和 t 都必须具有相同的元素数;这些节点必须都是从1开始的正整数,或都是字符串元胞数组。

s1 = [1,2,3,4]; %s为顶点,必须保证连续且从1开始的正整数t1 = [2,3,1,1]; %边 s与t之间是⼀⼀对应的G1 = graph(s1, t1);plot(G1) %画出效果图效果图:带汉字的⽆向图:% 注意字符串元胞数组是⽤⼤括号包起来的哦s2 = {'学校','电影院','⽹吧','酒店'};t2 = {'电影院','酒店','酒店','KTV'};G2 = graph(s2, t2);plot(G2, 'linewidth', 2) % 设置线的宽度% 下⾯的命令是在画图后不显⽰坐标set( gca, 'XTick', [], 'YTick', [] );效果图:有向图的建⽴:% ⽆权图 digraph(s,t)s = [1,2,3,4,1];t = [2,3,1,1,4];G = digraph(s, t);plot(G)set( gca, 'XTick', [], 'YTick', [] );注意边的顺序和⽅向,依次为1指向2,2指向3,3指向1,4指向1和1指向4效果图:赋权图的建⽴:赋权图,每条边都有⼀个⾮负实数对应的图。

图论导引参考答案

图论导引参考答案

图论导引参考答案图论导引参考答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图由节点和边组成,节点表示对象,边表示对象之间的连接关系。

图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。

本文将介绍图论的基本概念和常见算法,并提供一些参考答案来帮助读者更好地理解和应用图论。

一、图的基本概念1.1 有向图和无向图图可以分为有向图和无向图两种类型。

有向图中,边有方向,表示节点之间的单向关系;而无向图中,边没有方向,表示节点之间的双向关系。

1.2 路径和环路径是指图中一系列节点和边的连续序列,路径的长度为路径中边的数量。

如果路径的起点和终点相同,则称之为环。

1.3 连通图和连通分量在无向图中,如果任意两个节点之间都存在路径,则称该图为连通图。

连通图中的极大连通子图称为连通分量。

1.4 强连通图和强连通分量在有向图中,如果任意两个节点之间都存在路径,则称该图为强连通图。

强连通图中的极大强连通子图称为强连通分量。

二、图的存储方式2.1 邻接矩阵邻接矩阵是一种常见的图的存储方式,使用一个二维矩阵来表示图中节点之间的连接关系。

矩阵的行和列分别表示节点,矩阵中的元素表示节点之间是否存在边。

2.2 邻接表邻接表是另一种常见的图的存储方式,使用一个数组和链表的结构来表示图中节点之间的连接关系。

数组中的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。

三、常见图算法3.1 深度优先搜索(DFS)深度优先搜索是一种用于遍历图的算法。

从图中的一个节点开始,沿着一条路径一直深入直到无法继续为止,然后回溯到上一个节点,继续深入其他路径。

DFS可以用于判断图的连通性、寻找路径等问题。

3.2 广度优先搜索(BFS)广度优先搜索也是一种用于遍历图的算法。

从图中的一个节点开始,先访问其所有相邻节点,然后再依次访问这些节点的相邻节点,以此类推。

BFS可以用于计算最短路径、寻找连通分量等问题。

3.3 最小生成树算法最小生成树算法用于求解一个连通图的最小生成树,即包含图中所有节点且边的权重之和最小的子图。

计算机中图的名词解释

计算机中图的名词解释

计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。

图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。

本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。

1. 图的基本概念图由节点(Node)和边(Edge)组成。

节点表示对象或实体,边表示节点之间的连接关系。

图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。

在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。

2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。

邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。

邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。

3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。

常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。

深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。

4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。

其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。

该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。

5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。

在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。

第14章-图基本概念

第14章-图基本概念
环(长为1的圈)的长度为1,两条平行边构成的圈长度为 2,无向简单图中,圈长3,有向简单图中圈的长度2.
不同的圈(以长度3的为例) ① 定义意义下 无向图:图中长度为l(l3)的圈,定义意义下为2l个 有向图:图中长度为l(l3)的圈,定义意义下为l个 ② 同构意义下:长度相同的圈均为1个
试讨论l=3和l=4的情况
v 的关联集 I( v ) { e |e E ( G ) e 与 v 关 } 联 ② vV(D) (D为有向图)
v的后继D 元 (v)集 {u|uV(D)v,u E(D)uv} v的先驱D 元 (v)集 {u|uV(D)u,v E(D)uv} v的邻域ND(v)D (v)D (v) v的闭邻N域 D(v)ND(v){v}
2 m d (v) d (v) d (v)
v V
v V 1
v V 2
由于2m, d(v) 均为偶数,所以 d(v) 为偶数,但因为V1中
vV2
vV1
顶点度数为奇数,所以|V1|必为偶数.
12
握手定理应用
补例1 无向图G有16条边,3个4度顶点,4个3度顶点,其 余顶点度数均小于3,问G的阶数n为几? 解 本题的关键是应用握手定理. 设除3度与4度顶点外,还有x个顶点v1, v2, …, vx, 则
8
多重图与简单图
定义14.3 (1) 无向图中的平行边及重数:如果关联一对顶点的无向边多
于1条,则称这些边为平行边,平行边的条数称为重数。 (2) 有向图中的平行边及重数(注意方向性) 如果关联一对顶点的有向边多于1条,并且这些边的始点与
终点相同,则称这些边为平行边,平行边的条数称为重数。 (3) 多重图:含平行边的图称为多重图。 (4) 简单图:既不含平行边也不含有环的图。 在定义14.3中定义的简单图是极其重要的概念

图论讲义-图的基本概念

图论讲义-图的基本概念

到目前为止,判断两图同构 还只能从定义出发。判断过 程中不要将两图同构的必要 条件当成充分条件。
注意:在研究图的过程中,顶点的位置以及边的曲直长短 都是无关紧要的。而且也没有假定这些顶点和边都要在一 个平面上(正方体的顶点和棱也可构成图)。我们研究的 只是顶点的多少及这些边是连接那些顶点的。
五、顶点的度
若e=(u,v),则表示u到v的一条边(Edge),此时的
图称为无向图(Undigraph)。
有向图(Digraph)、无向图(Undigraph)
V1 V4
V1
V5 V2 V3 V2 V3
V4
有向图(Digraph)、无向图(Undigraph)
例1、设V={v1,v2,v3,v4,},E={e1,e2,e3,e4,e5},满足e1=(v1,v2),
六、路与图的连通性
v1 v2 v5
图G中,取Γ1=v1v2v3,
v3
v4
G
Γ2=v1v2v3v4v2, Γ3=v1v2v3v2v3v4 则 Γ1,Γ2,Γ3依次为长为2,4,5的 通路,其中Γ1与Γ2为简单通路, Γ1为基本通路。 由定义可看出,G中v1v2v5v1为 长为3的圈,v1v2v3v4v2v5v1为 长为6的简单回路。
e2=(v2,v3),e3=(v2,v3),e4=(v3,v4),e5=(v4,v4),则G=(V,E)是一个图。图 中边集E的边也可直接由点对表示,而将E作为多重集(即允许E中有相同元素的 集合)。 例2、设V={v1,v2,v3,v4},E={(v1,v2),(v1,v2),(v2,v3)},则H=(V,E)是 一个图。 e
d (V ) 2m
i 1 i
n
五、顶点的度
推论:任何图(无向图或有向图)中,度为奇数的顶点个

离散数学中的图论代表知识点介绍

离散数学中的图论代表知识点介绍

离散数学中的图论代表知识点介绍离散数学是数学的一个分支,它主要研究离散对象以及其离散性质和离散结构。

图论作为离散数学的重要组成部分,以图为研究对象,研究了图的基本概念、图的表示方法以及图的性质和应用。

本文将介绍离散数学中的图论代表知识点。

1. 图的基本概念图是由顶点集合和边集合组成的离散结构,用V表示顶点集合,E表示边集合。

图可以分为有向图和无向图两种类型。

有向图中的边是有方向的,而无向图中的边是无方向的。

图中的顶点可以表示为V={v1, v2, v3, ...},边可以表示为E={(vi, vj)}。

在图中,两个顶点之间有边相连时,称这两个顶点是相邻的。

2. 图的表示方法图可以用多种方式来表示。

常见的表示方法有邻接矩阵和邻接表。

邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。

邻接表则是通过链表的方式来表示图的结构,每个顶点都对应一个链表,链表中存储着与该顶点相邻的顶点。

3. 图的性质图论研究了图的许多性质和特性。

其中一些重要的性质包括连通性、路径、回路、度数、树和连通分量等。

连通性是指图中任意两个顶点之间是否存在路径。

如果图中任意两个顶点都存在路径相连,则图被称为连通图。

反之,如果存在无法通过路径相连的顶点对,则图为非连通图。

连通图中的任意两个顶点之间至少存在一条路径。

路径是指从一个顶点到另一个顶点的顶点序列。

路径的长度是指路径上边的数量。

最短路径是指两个顶点之间边的数量最少的路径。

回路是指路径起点和终点相同的路径。

如果回路中除起点和终点以外的顶点不重复出现,则称为简单回路。

度数是指图中顶点的边的数量。

对于有向图来说,度数分为入度和出度,分别表示指向该顶点的边和从该顶点指出的边的数量。

树是一种无回路的连通图,它具有n个顶点和n-1条边。

树是图论中一个重要的概念,它有广泛的应用。

连通分量是指图中的极大连通子图,即在该子图中的任意两个顶点都是连通的,且该子图不能再加入其他顶点使其连通。

图的基本概念与握手定理

图的基本概念与握手定理

定理2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
n
n
n
d(vi ) 2m, 且
d (vi ) d (vi ) m
i 1
i 1
i 1
15
握手定理推论及应用
推论 任何图 (无向或有向) 中,奇度顶点的个数是 偶数.
例1 无向图G有16条边,3个4度顶点,4个3度顶 点,其余顶点度数均小于3,问G的阶数n为几?
解 设除3度与4度顶点外,还有x个顶点v1, v2, …, vx, 则 d(vi) 2,i =1, 2, …, x,
于是 32 24+2x
得 x 4, 阶数 n 4+4+3=11.
16
五、图的同构
定义 设G1=<V1,E1>, G2=<V2,E2>为两个图(有向或 无向图), (1)若存在双射函数f:V1V2, 对于vi,vjV1,
分别为D的最大出度、最小出度、最大入度、最小 入度。简记作△、、 △+、+ 、 △- 、- 。
14
四、握手定理
定理1 设G=<V,E>为任意无向图,V={v1,v2,…,vn},
|E|=m, 则
n
d(vi ) 2m
i 1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
13
三、 结点的度数
在无向图G中,令 △(G)=max{d(v)|v∈V(G)} (G)= min{d(v)| v∈V(G) }
称△(G)和 (G)分别为G的最大度和最小度。
在有向图D中,类似定义△(D)、(G)。另外,令 △+(G) = max{d+(v)| v∈V(D) } +(G) = min{d+(v)| v∈V(D) } △-(G) = max{d-(v)| v∈V(D) } -(G) = min{d-(v)| v∈V(D) }

1图的基本概念

1图的基本概念

(或若边<vi,vj>∈E,当且仅当 边<f(vi),f(vj)>∈E’),则称G与
G’同构,记作G≌G’. (同构a图 要保持b 边的“1 关联”4关系)
例如:右边所示的两个图: c
d
3
2
G=<V,E> G’=<V’,E’>
构造映射f:VaV1’ b 2 c 3 d 4
a 1 b 2 c 3 d 4
degi(a)=2 degi(b)=2 degi(c)=1 degi(d)=1
dego(a)=2 dego(b)=3 dego(c)=1 dego(d)=0
定理8-1.3 G=<V,E>是有向图, 则G的所有结点的出度之和
等于入度之和.
证明: 因为图中每条边对应一个出度和一个入度. 所以所
有结点的出度之和与所有结点的入度之和都等于有向边
如果可能,请试画出它的图. 哪些可能不是简单图?
a) (1,2,3,4,5)
b) (2,2,2,2,2)
c) (1,2,3,2,4)
2.已知无向简单图G中,有10条边,4个3度结点,其余结点的
度均小于或等于2,问G中至少有多少个结点?为什么?
1. a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4)
足够的。例如“目”的图形就是满足条件的例子。
七. 有向图结点的出度和入度:(in degree out degree)
G=<V,E>是有向图,v∈V v的出度: 从结点v射出的边数.
记作deg+(v) 或 dego(v)
a
b
c d
v的入度: 射入结点v的边数. 记作deg-(v) 或 degi(v)

离散数学第讲7

离散数学第讲7

无向图 <V,E> (2) 若|V(G)| 、|E(G)|均为有限数,则称G为有限图。
一个 为A与B的无序积,记作A&B.
是一个有序的二元组
,记作G, 其中
1 , vi可达vj
第十四章 图的(基1本)概念V≠φ称为顶点集,其元素称为顶点或结点。
第十四章 图的基本概念
第十四章 图的(基2本)概念E称为边集,它是无序积V&V的多重子集,其元素称为
所有边互不相同),则称此回路为基本回路或者初级 则V1∪ V2 =V, V1∩V2= φ,由握手定理知
若回路中的所有边e1,e2,…,ek互不相同,则称此回路为简单回路或一条闭迹;
回路、圈。 26 设有向图D=<V,E>中无环, V={v1,v2,…,vn}, E={e1,e2,…,em}, 令aij(1)为顶点vi与邻接到顶点vj边的条数,称(aij(1))n×n为D的邻接矩
第十四章 图的基本概念
例14.1 画出下列 图形。
v1。
。v2
(1) G=<V,E>,其中
V={v1,v2,v3,v4,v5},
v3

(1)
E={(v1,v1), (v1,v2), (v2,v3),
v4 。
。v5
(v2,v3), (v1,v5),
(v2,v5), (v4,v5)}。
(2) D=<V,E>,其中
顶点的度数均小于3,问G中至少有多少个顶点?
第十四章 图的基本概念
定义14.5完全图
1. 设G=<V,E>为一个具有n个结点的无向简单图,如 果G中任一个结点都与其余n-1个结点相邻接,则称 G为无向完全图,简称G为完全图,记为Kn。

第十四章 图的基本概念

第十四章 图的基本概念
n i 1
(5)(4,4,3,3,2,2)
v4 v1
v3 v2 v1
v6
v2 v3
v6
v5
v4
v5
在画图时,由于顶点位置的不同,边的直、 曲不同,同一个图可能画出不同的形状。 像这种形状不同,但本质上是同一个图的现 象称为图同构。 定 义 1 4 . 5 设 两 个 无 向 图 G1=<V1,E1>, G2=<V2,E2>,如果存在双射函数f:V1→V2, 使得对于任意的e=(vi,vj)E1当且仅当e’=( f(vi),f(vj))E2,并且e与e’的重数相同,则称 G1和G2是同构的,记作G1≌G2。 对于有向图可类似定义。
d (vi ) 2m且 d (vi ) d (vi ) m
i 1 i 1 i 1 n n n
推论 任何图(无向的或有向的)中,奇度顶 点的个数是偶数。
定义 设G=<V,E>是n阶无向图,V={v1,v2,… ,vn},称d(v1),d(v2),…,d(vn)为G的度数列.对于顶点 标定的无向图,它的度数列是唯一的. 同样可定义有向图的度数列、出度列和入度列。 图G的度数列为 4,4,2,1,3 图D的度数列为 5,3,3,3 出度列为4,0,2,1 入度列为1,3,1,2
定义14.1(无向图) 一个无向图是一个有序的二元组<V,E>, 记作G,即G=<V,E>,其中 ⑴ V={v1,v2,…,vn}是非空集合,称为G 的顶点集,V中元素称为顶点或结点; ⑵ E={e1,e2,…,en}是无序积V&V的一个 多重子集,称为的边集,E中的元素称为无向边 ,简称边。 由定义知,图G中的边ek是V的两个元素vi, vj的无序对(vi ,vj),称vi,vj是ek的端点. 当vi=vj时,称ek为环(loop).

数据结构——图

数据结构——图

数据结构——图图是一种重要的数据结构,它以顶点和边的方式来表示数据之间的关系。

在计算机科学和信息技术领域,图被广泛应用于解决各种问题,如网络路由、社交网络分析和数据挖掘等。

本文将介绍图的基本概念、表示方法和常见算法,以及图在实际应用中的一些案例。

一、图的基本概念图是由顶点集合和边集合组成的有序对,用G=(V,E)表示,其中V表示顶点集合,E表示边集合。

图可以分为有向图和无向图两种类型,有向图的边具有方向性,无向图的边没有方向性。

1. 顶点(Vertex):图中的一个元素,可以用来表示某个实体。

2. 边(Edge):顶点之间的连接关系,可以用来表示实体之间的关联。

3. 路径(Path):在图中顶点之间经过的一系列边和顶点构成的序列。

4. 环(Cycle):在图中由一个顶点开始经过若干边后再回到该顶点的路径。

5. 连通图(Connected Graph):图中任意两个顶点之间存在路径。

二、图的表示方法图可以使用邻接矩阵和邻接表两种方式进行表示。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中数组元素表示顶点之间的边,若两个顶点之间存在边,则对应元素为1或权重值,否则为0或无穷大。

2. 邻接表:邻接表由一个顶点数组和一个边链表组成,顶点数组存储顶点的信息,边链表存储每个顶点的邻接顶点。

三、常见图算法图的常见算法包括深度优先搜索(DFS)和广度优先搜索(BFS)、最短路径算法(Dijkstra算法和Floyd算法)以及最小生成树算法(Prim算法和Kruskal算法)等。

1. 深度优先搜索(DFS):从图的一个顶点出发,沿着一条路径一直深入直到没有未访问过的邻接顶点,然后返回并查找其他路径。

DFS 可以用于查找连通图中的所有顶点以及判断图中是否存在环等。

2. 广度优先搜索(BFS):从图的一个顶点出发,首先访问其所有邻接顶点,然后按照相同的方式访问每个邻接顶点的邻接顶点,直到所有顶点都被访问。

BFS可以用于查找最短路径、拓扑排序以及解决迷宫等问题。

什么是图的基本概念和特征

什么是图的基本概念和特征

什么是图的基本概念和特征图是一种数学结构,用于表示多个对象之间的关系。

图由节点(vertex)和边(edge)组成,节点表示对象,边表示节点之间的关系。

图的基本概念和特征包括节点的度、路径、连通性、连通分量等。

1. 节点的度:节点的度是指与该节点相连的边的数量。

对于有向图来说,节点的度分为入度和出度,分别表示指向该节点的边的数量和由该节点指出的边的数量。

节点的度可以用来描述节点的重要性和连接的紧密程度。

2. 路径:路径是指由边连接的一系列节点的序列。

路径的长度是指路径中包含的边的数量。

最短路径是指连接两个节点之间具有最少边数的路径。

路径可以用来描述节点之间的关系和节点之间的可达性。

3. 连通性:图的连通性表示图中任意两个节点之间是否存在路径。

如果图中任意两个节点之间都存在路径,那么图被称为连通图;如果存在某些节点之间不存在路径,那么图被称为非连通图。

连通性可以用来描述图的整体连接情况。

4. 连通分量:连通分量是指图中的最大连通子图。

一个连通分量包含一组相互可达的节点,并且在该连通分量内部的任意两个节点之间都存在路径,而与该连通分量外的节点之间不存在路径。

图可以由多个连通分量组成。

图有以下几种常见的特征:1. 有向图和无向图:根据边的有向性,图可以分为有向图和无向图。

在无向图中,边没有方向,表示节点之间的双向关系;而在有向图中,边有方向,表示节点之间的单向关系。

2. 权重:图的边可以带有权重,用来表示节点之间的距离、成本等。

带权重的图被称为带权图,而不带权重的图被称为无权图。

3. 稀疏图和稠密图:如果图中的边数接近节点数的平方,那么图被称为稠密图;如果图中的边数相对较少,那么图被称为稀疏图。

稠密图和稀疏图在算法设计和空间复杂度上有不同的考虑。

4. 循环和非循环图:如果图中存在一个节点可以通过一系列边回到自身,那么图被称为循环图;如果图中不存在这样的节点,那么图被称为非循环图(也称为无环图)。

5. 连通图和非连通图:根据连通性,图可以分为连通图和非连通图。

图的基本概念及拓扑排序

图的基本概念及拓扑排序
生成树: 是一个极小连通子图,它含有图中全部顶点,但只
有n-1条边。 如果在生成树上添加1条边,必定构成一个环。 若图中有n个顶点,却少于n-1条边,必为非连通 图。
最小生成树:若无向连通带权图G=<V,E,W>,T是G的一棵生成树,T的各边权之
和称为T的权,记做W(T),G的所有生成树中权值最小的生成树 称为最小生成树。
带权图: 即边上带权的图。其中权是指每条边可以标上 具有某种含义的数值(即与边相关的数)。
网 络: =带权图
路径: 在图 G=(V, E) 中, 若从顶点 vi 出发, 沿一些边经过一
些顶点 vp1, vp2, …, vpm,到达顶点vj。则称顶点序列 ( vi vp1 vp2 ... vpm vj ) 为从顶点vi 到顶点 vj 的路径。它经过的边(vi, vp1)、(vp1, vp2)、...、(vpm, vj)应当是属于E的边。
最小生成树算法: Prim算法和kruskal算法
简单路径:路径上各顶点 v1,v2,...,vm 均不互相重复。
回 路: 若路径上第一个顶点 v1 与最后一个顶点vm 重合,
则称这样的路径为回路或环。
例:
图的数学表示
点: 用整数0, 1, 2, …, V-1表示 边: 用无序数对(u, v)表示, 或者表示成u-v
4. 你认为,对于给定的两个位置A,B,聪明的机器人从A位置到B位置至少需要判断几次?
5. input
6. 第一行:M 表示以下有M组测试数据(0<M<=8)
7. 接下来每组有两行数据
8.
头一行:N A B(1<=N<=50,1<=A,B<=N)
9.
下一行:K1 K2···Kn(0<=Ki<=N)

F14图的基本概念

F14图的基本概念

091离散数学(60). W&M.
§14. 1图

握手定理 无向图中顶点度数之和等于边数的两倍:
d(v) 2 E .
vV
证 每条边均提供 2 度.
v1
v4
图例 注意到 d(v3) = 6 5,
d(v) = 3 + 3 + 6 + 2 = 14, |E| = 7,
v2 v3
091离散数学(60). W&M.
§14. 1图

G = V, E 或 D = V, E. V(G) = V. E(G) = E.
n 阶图: |V| = n.
有限图: |V| < , |E| < .
N4
n 阶零图 Nn: E = .
平凡图: N1.
N1
空图: Ø = V, E = ,
091离散数学(60). W&M.
§14. 1图

一个图会有不同的图解.
G = {a, b, c, d}, {(a, b), (a, c), (a, d), (b, c), (b, d), (c, d)}.
ab
b
1
dc
a 2
dc
图形 1, 2 都是图 G 的图解.
091离散数学(60). W&M.
可图化 原因 可简单图化 原因
(1) 奇个奇点

不可图化
(2) 和是偶数

>n1
(3) 和是偶数

去掉悬挂点
(4) 和是偶数

>n1
(5) 和是偶数

见后
091离散数学(60). W&M.

图论 图的基本概念

图论 图的基本概念
若所有顶点v0v1v2...vk均不相同(所有边必然不 相同),则称该途径为道路(path) 。
闭的迹称为回(circuit);闭的道路称作圈(cycle)
道路:v1v2v3v6
道路 (path)
若链 µ的边 e1e2...ek 均不相同,则称该链为 迹(trail)。
若所有顶点v0v1v2...vk均不相同(所有边必然不 相同),则称该途径为道路(path) 。
子图
若V (H ) ⊆ V (G), E(H ) ⊆ E(G),且H中边的重 数不超过G,则H称为G的子图,记作 H ⊆ G
若以下条件有一项成立,则H称为G的真子图。 (1) V (H ) ⊂ V (G); (2)E(H ) ⊂ E(G);
(3)H中至少有一条边的重数小于G中对应边重数
子图
生成子图(Spanning graph),又称支撑子图。
哥尼斯堡七桥问题
图论起源于著名的哥尼斯堡七桥问题:
哥尼斯堡市跨越河的两岸,河中心有两个小岛。 小岛与河的两岸有七条桥连接。在所有桥都只 走一遍的前提下,如何才能把这个地方所有的 桥都走遍?
哥尼斯堡七桥问题
在任何顶点出发,必须从一条边进,从另一条边出 一进一出,每个顶点相关联的边必须为偶数。
莱昂哈德·欧拉 在1735年圆满地解决了这个问题, 证明七桥问题无解,同时,欧拉还给出了任意一种 河-桥图能否全部走一次的判定法则,以及怎样快速 找到所要求的路线。这些解析,最后发展成为了数 学中的图论。
d (v1) = 2, d (v2 ) = 4, d (v3) = 3, d (v4 ) = 3, d (v5 ) = 4
∑ d (vi ) = (2 + 4 + 3 + 3 + 4) = 16 v E =8

本科图论-图基本概念6-2

本科图论-图基本概念6-2
边集合E={(v1,v2),(v2,v3),(v3,v2),(v3,v1),(v2,v2),(v2,v2), (v1,v2),} 园括号表示无向边
2) 定义2 一个有向图是一个有序的二元组<V,E>,记作D,其中 (1) V ≠ ø 称为顶点集,其元素称为顶点或结点. (2)E为边集,它是笛卡儿积 V & V的多重子集,其元素称为有向边, 简称边(弧). 有向图D=<V,E> 其中 V={v1,v2,v3 }
2、简单通路和初级通路的关系
有向图中的每一条初级通路,也都必定是简单通路。 反之不成立 回路也可分为简单回路和初级回路。 3、通路的表示:可仅用通路中的边序列表示:e1e2…ek 也可仅用通路中所经过的结点的序列表示:v1v2v3…vk
4、性质: 1)定理 在n阶图D中,若从顶点vi到vj(vi≠vj)存在通路,则从vi到vj存在 长度小于或等于(n-1)的通路 若大于n-1,则存在相同节点(有回路),将回路删去可得 2)在n阶图D中,若从顶点vi到vj存在通路,则vi到vj一定存在长度小于或等 于n-1的初级通路(路径) 3)定理 在一个n阶图D中,若存在vi到自身的回路,则一定存在vi到自身长 度小于或等于n的回路. 4)在一个n阶图D中,若存在vi到自身的简单回路,则一定存在长度小于或等 于n的初级回路.
有环的结点提供的度为2(有向图的环提供入度1和出度1)
3)定义:ᅀ(G)=max{d(v)|v∈V(G)} 为图G中结点最大的度 δ(G)=min{d(v)|v∈V(G)} 为图G中结点最小的度 简记为ᅀ、 δ 定义:ᅀ+(D)=max{d(v)|v∈V(D)} 为图D中结点最大的出度 ᅀ-(D)=max{d(v)|v∈V(D)} 为图D中结点最大的入度 δ+(D)=min{d(v)|v∈V(D)} 为图D中结点最小的出度 δ-(D)=min{d(v)|v∈V(D)} 为图D中结点最小的入度 5、握手定理(欧拉) 1)定理1 设G=<V,E>为任意无向图,V={v1,v2,…,vn},|E| = m, 则 ∑d(vi) = 2 m (所有结点的度数值和为边数的2倍) 证: G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数 之和时,每条边均提供2度,当然,m条边共提供2m度 2) 定理2 设D=<V,E>为任意有向图,V={v1,v2,…,vn},|E| = m , 则 ∑d+(vi) = ∑ d-(vi) = m. 且∑d(vi)=2 m 任何图(无向的或有向的)中,奇度顶点的个数是偶数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、基本要求
深刻理解图论中的基本概念及其它们之间 的相互关系 记住图论中的主要定理并能灵活地应用它 们证明相关定理或命题 应用握手定理及树的性质解无向图、无向 树 会求最小生成树、最优树及最佳前缀码 会用邻接矩阵求有向图中的通路、回路数
第十四章 图的基本概念
本章的主要内容
图及相关的诸多概念
例:
(1)
(2)
(3)
(4)
(5)
(6)
(1)-(6)都是(1)的子图, (2)-(6) 为真子图, (1)-(5)为生成子图。
例 :画出K4的所有非同构的生成子图
八、补图
定义14.9 设G=<V,E>为n阶无向简单图,以V为结 点集,以所有使G成为完全图Kn的添加边 组成的集合为边集的图,称为G的补图, 记作 G . 若G G , 则称G是自补图.
(5)奇度结点与偶度结点
2.图论基本定理——握手定理 定理14.1 设 G=<V,E> 为 任 意 无 向 图 , V={v1,v2,…,vn}, n |E|=m, 则 d (vi ) 2m
i 1

G中每条边(包括环)均有两个端点,所 以在计算G中各结点度数之和时,每条边 均提供2度,当然m条边共提供2m度.
(3)若 n阶无向简单图是自补图,则G与其补 图的边数相同,设它们的边数为m,由握手定 理知 n ( n 1)
2 2m
即n(n-1)=4m,因而n为4的倍数,即n=4k 或n-1为4的倍数,即n=4k+1(k为正整数)。
14.2 通路与回路
一、通路与回路的定义
定义14.11 给定图G=<V,E>(无向或有向的), G中结点与边的交替序列 = v0e1v1e2…elvl,vi1, vi是ei的端点.
例 下图中G=(V,E)与G=(V,E)同构 吗?
G
G'
G'中4个3度结点中的每一个均与另外两个3度结 点相邻,而G中每个3度结点只与另外1个3度结点 相邻。
练习:3个结点可构成几个不同构的简单无向图?
例:无向图G的各个结点的度数都是3,且结点 数n与边数m有关系m=2n-3。在同构意义下G是 唯一的吗? 解:由握手定理得 2m=3n,又因为m=2n-3 所以m=9,n=6。在同构意义下不唯一。
练习:
下列哪些序列可构成无向简单图?
(1)1,1,2,2,3 (2)1,1,2,2,2 (3)0,1,3,3,3 (4)1,3,4,4,5 (5)1,1,1,2,3 (6)3,3,3,3 答案: (2)(5)(6)
四、图的同构
定义14.5
设G1=<V1,E1>, G2=<V2,E2>为两个无向图(两 个有向图),若存在双射函数f:V1V2, 对于 vi,vjV1, (vi,vj)E1 ( <vi,vj>E1 ) 当 且 仅 当 (f(vi),f(vj))E2(<f(vi),f(vj)>E2),并且, (vi,vj) (<vi,vj>)与 (f(vi),f(vj))(<f(vi),f(vj)>)的重数 相同,则称G1与G2是同构的,记作G1G2.
例:
(1)
(2)
(3)
(4)
(5)
(1)为完全图K5 , (2),(3)互为补图(自补图), (4),(5)互为补图。
练习:
(1)给出所有非同构的无向4阶自补图;
(2)给出所有非同构的无向5阶自补图; (3)证明:若n阶无向简单图是自补图, 则n=4k或n=4k+1(k为正整数)。
(1)
(2)
I (v) {e | e E (G) e与v关联}
② vV(D) (D为有向图)
v的后继元集
D ( v ) {u | u V ( D )
v, u E ( D ) u v} v的先驱元集
D ( v ) {u | u V ( D )
u, v E ( D ) u v}
通路与回路 图的连通性
图的矩阵表示
14.1

一、无向图与有向图的定义 1. 无向图的定义
定义14.1 无向图G = <V,E>, 其中
(1)V 为结点集,元素称为结点(顶 点)。 (2)E为VV的多重集,其元素称Fra bibliotek无向 边,简称边。

V={v1, v2, E={(v1,v1), (v2,v3), (v2,v5), (v4,v5)} ,则 …,v5}, (v1,v2), (v2,v3), (v1,v5),
六、正则图
定义14.7
n阶k正则图——==k 的无向简单图 性质:边数
nk m (由握手定理得) 2
例:证明:若有n个人,每个人恰有3个 朋友,则n必为偶数。
证明:
用n个结点代表n个人,两个朋友对应的 结点连边,则得到一个3正则图,跟据 握手定理,所有结点的度数之和3n为偶 数,因而n必为偶数。
v的邻域 N D ( v ) D ( v ) D ( v )
v的闭邻域 N D ( v ) N D ( v ) {v}
(8)基图
二、多重图与简单图
定义14.3 (1)无向图中的平行边及重数
(2)有向图中的平行边及重数(注意方向性)
(3)多重图(含平行边)
(4)简单图(不含平行边与环)
定理:设非负整数列d=(d1,d2,…,dn),则d 是可图化的当且仅当 例:
d
i 1
n
i
0(mod2)
(2, 4, 6, 8, 10),(1, 3, 3, 3, 4) 是可图化的, 后者又是可简单图化的, 而(2, 2, 3, 4, 5),(3, 3, 3, 4) 都不是可简单 图化的,后者也不是可图化的
例:判断以下哪些图是同构的。
a b (1) e
d
c (3)
(2)
v4 v5 v1 v2 (4)
a
e
c
v1 v2 v3
(6) v4
v6 v5
v3
f (5) b d
上图中,(1)≌(2),(3)≌(4),(5)≌(6)
(3)≌(4):av1, bv2, cv3, dv4 ,ev5 (5)≌(6):av1, bv2, cv3, dv4 ,ev5 ,f v6
第四部分 图论
图论是一个古老的数学分支,它起源于游 戏难题的研究。图论的内容十分丰富,应用得 相当广泛,许多学科,诸如运筹学、信息论、 控制论、网络理论、博弈论、、计算机科学等, 都以图作为工具来解决实际问题和理论问题。 随着计算机科学的发展,图论在以上各学科中 的作用越来越大,同时图论本身也得到了充分 的发展。
七、子图
定义14.8 G=<V,E>, G=<V,E>
(1)GG —— G为G的子图,G为G的母图
(2)若GG且V=V,则称G为G的生成子图
(3)若VV或EE,称G为G的真子图
( 4 ) V ( VV 且 V ) 的 导 出 子 图 , 记 作 G[V] ( 5 ) E ( EE 且 E ) 的 导 出 子 图 , 记 作 G[E]
例:
a
e
d
b
n i 1 i
c
d ( v ) d ( a ) d ( b) d ( c ) d ( d ) d ( e )
4 2 1 0 1 8 2m ( m 4)
定理14.2
设 D=<V,E> 为 任 意 有 向 图 , V={v1,v2,…,vn}, |E|=m, 则
32 24+2x
得 x 4, 阶数n 4+4+3=11.
推论 任何图(无向的或有向的)中,奇度结 点的个数是偶数。 证 设G=<V,E>为任意图,令
V1={v | vVd(v)为奇数}
V2={v | vVd(v)为偶数} 则V1V2=V, V1V2=,由握手定理可知
2m d (v) d (v) d (v)
v V v 1 V v 2 V
由于2m, d (v)均为偶数,所以
v 2 V
vV1
(v ) d 为偶数,
但因为V1中结点度数为奇数,所以|V1|必为偶数.
例:
某一次聚会的成员到会后相互握手。证明与 奇数个人握手的人数一定是偶数。
证明: 用结点表示到会的成员,握手两人对应的结 点用边相连,则得到一个无向图,本题可归 结为说明一个图中有偶数个奇数度结点,根 据握手定理的推论知结论成立。
G = <V,E>为一无 向图,用右图表示
2.有向图的定义 定义14.2 有向图D=<V,E>, 只需注意E是VV的 多重子集。
3.关于无向图和有向图诸多定义或表示 (1)图① 可用G泛指图(无向的或有向的) ② V(G), E(G), V(D), E(D) (2)n阶零图与平凡图 (3)用ek表示无向边或有向边 (4)结点与边的关联关系 ③ n阶图
在讨论关系时,我们曾经引进过图
的一些概念。在那里,图只是作为表达
集合上二元关系的一种工具。本部分将 对图的基本概念、基本性质、各种特殊
图及其判别方法进行较为详细的讨论。
一、本部分主要内容 图的基本概念:图、通路和回路、图的连通 性、图的矩阵表示 图的可行遍性:欧拉图、哈密顿图
树:无向树及其性质、生成树与最小生成树、 根树及其应用 平面图及图的着色:平面图、欧拉公式、平 面图的判断、对偶图、着色
三、结点的度数及握手定理
1.结点的度数(度)
定义14.4及衍生的概念
(1)设G=<V,E>为无向图, vV, d(v):v的度
(2)设D=<V,E>为有向图, vV,
相关文档
最新文档