第三章,离散系统的稳定性
《离散系统的稳定性》课件

离散系统稳定性控制的方法
极点配置法
通过选择适当的系统参数, 使得系统的极点位于复平面 的某一区域,从而实现系统 的稳定性。
反馈控制
利用负反馈原理,通过将系 统输出信号的一部分或全部 反馈到输入端,对系统进行 调节,使其达到稳定状态。
状态反馈控制
根据系统当前状态变量反馈 信息,计算出控制输入信号 ,使得系统状态变量能够跟 踪设定的参考轨迹。
离散系统的应用领域
• 离散系统广泛应用于工程、科学 、经济和社会等领域。例如,数 字信号处理、控制系统、计算机 仿真、经济模型等领域中经常涉 及到离散系统的分析和设计。
02 离散系统的稳定性分析
离散系统的稳定性定义
离散系统
离散系统是指系统的状态变量只在离 散时刻发生变化,如数字电路、控制 系统等。
05 离散系统稳定性的未来研 究方向
离散系统稳定性的深入研究
深入研究离散系统的稳定性理论,包括离散系统的稳定性判据、离散系统的稳定性分析方法等,以提 高对离散系统稳定性的认识和理解。
深入研究离散系统的动态行为,包括离散系统的响应特性、离散系统的控制性能等,以揭示离散系统 稳定性的内在机制。
离散系统稳定性与其他领域的交叉研究
离散系统的稳定性分析方法
直接法
直接法是通过分析系统状态方程的解的性质,判断系统是否稳定。例如,通过 求解状态方程的解,观察其收敛性或发散性,判断系统的稳定性。
频域分析法
频域分析法是通过将离散系统转化为频域表示形式,分析系统的频率响应特性 ,判断系统的稳定性。例如,通过绘制系统的频率响应曲线,观察其穿越频率 和阻尼比等参数,判断系统的稳定性。
鲁棒控制
针对具有不确定性的离散系 统,设计一种控制策略,使 得系统在各种不确定性条件 下都能保持稳定。
计算机控制技术-13离散系统的能控(观测)性及稳定性

rank
CG
CG 2
2 rank 1
4
0 2 0
0 0 2 3 0
系统状态 不完全能观测
0 4 0
3/3/2020
12
3、能观测性判别准则二(标准型法) 同线性连续定常系统的标准型判据:
1)对角线标准型:特征值互异时,C中不包含元素全为0的列; 重特征根时,一定不可观测。
(1)
如果G非奇异阵,则式(1)是系统状态完全能控的充分必要条件; 如果G是奇异阵,则式(1)是系统 状态完全能控的充分条件。
3/3/2020
3
线性定常离散系统 x(k 1) Gx(k) Hu(k)
k 1
解为 x(k) G k x(0) G ki1Hu(i) i0
n1
端状态的控制序列是否存在,不涉及具体转移几步。 2)对于n阶SI定常系统,若在第n步上不能将初始状态(零
态)转移到零态(任意终端状态),则在n+1及以后的任 何一步都不能转移。
[例]:系统的状态方程如下,试判定系统的状态能达性和能控性。
x1(k 1) 1 0 0 x1(k) 1
所以 x(n) G n x(0) G ni1Hu(i) i0
证明:对能达性,有 x(0) 0
n1
所以 x(n) G ni1Hu(i) G n1Hu(0) GHu(n 2) Hu(n 1) i0
u(n 1)
H GH Gn1H
统,也可能可控。所以:可达系统一定可控,可控系统
不一定可达。
结论2:如果一个离散时间系统为连续时间线性时不变系统的时
离散时间系统状态稳定性及判别法

§ 5.4 离散时间系统状态稳定性及判别法1. 离散时间系统的平衡状态(点) 设0(1)(),(0),0,1,2,,x k Ax k x x k +===(5.17)称=e Ax 0的e x 为(5.17)的平衡状态(点). 当A 奇异时, 有无数个平衡状态. 2. 平衡状态(点)的稳定性(1)稳定:∀>∃>0,0εδ,使当-<e x x 0δ时,有-<≥e x k x k (),0ε;(2)渐近稳定:∃>0δ,使当-<e x x 0δ时,有→∞-=e k x k x lim ()0;(3)全局渐近稳定:任意∈nx 0R ,都有→∞-=e k x k x lim ()0;(4)不稳定:∃>00ε, 无论δ 多小正数, 总有>k 10, 使->e x k x 10()ε对定常系统, 渐近稳定 全局一致渐近稳定. 3.稳定性判别对定常系统(1)()x k Ax k +=若0e x =稳定(渐近稳定),则其它e x 也稳定(渐近稳定);若0e x =渐近稳定,则e x 必为一致全局渐近稳定;简单介绍0e x =稳定性条件 设(5.17)的解==kx k A x k 0(),0,1,2,则渐近稳定⇔→∞→∞-==kk k x k A x 0lim ()0lim 0(≠x 00),⇔→∞=k k A lim 0⇔-→∞=k k TJ T1lim 0⇔→∞=kk J lim 0⇔A 的所有特征值的模全小于1⇔A的所有特征值都位于复平面上的单位圆内. 其中J为A的若当形.如11......k kkkr r J JJJ J⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦且再如11221111001000000k k kkk kk k kkkC CJ Cλλλλλλλλλ---⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⇔A 的所有特征值的模全小于1⇔A 的所有特征值都位于复平面上的单位圆内.例 设A 有互不相同特征值n 12,,,λλλ, 则T , 使⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦kk kkk n n A T T T T 112-1-12λλλλλλ 由此可得→∞<=⇔==ki i k i n i n ||1,1,2,,lim 0,1,2,,λλ→∞⇔=kk A lim 0.定理5.12 系统为(5.17)的稳定性判定如下:(i) 0e x =稳定⇔A 所有特征值的模全小于1或等于1,且模等于1的特征值对应的约当块是一阶的; (ii) 0e x =渐近稳定⇔A 的所有特征值模全小于1. 对一般非线性系统+==x k F x k k (1)(()),0,1,2,(5.18)在=e x 0(设=F (0)0)的稳定性判定方法有定理5.13 对(5.18), 若()x k 的标量函数V x k ((()),满足 (i) V x k (())为正定;(ii) ()=+-V x k V x k V x k (())((1))(())∆负定; (iii) 当→∞x k ||()||时,有→∞V x k ((()). 则=e x 0全局渐近稳定的.若无(iii), 则=e x 0是渐近稳定的;再若(ii)中V x k (())∆为半负定, 则=e x 0仅是稳定的. 定理用于定常系统(5.17), 即得定理5.14 线性定常离散(5.17)的=e x 0为渐近稳定⇔对∀Q > 0, 李雅普诺夫方程-=-TA PA P Q有唯一正定解P . 证只证充分性,即已有对∀Q > 0, -=-TA PA P Q 有唯一解0P >, 令=T k kk V x x Px (), 则有+++=-=-T T k k k k k kk V x V x V x x Px x Px 111()()()∆=-=-T TT kk kk x A PA P x x Qx (),显见k V x ()∆为负定, 故=e x 0渐近稳定.例5.6 设⎡⎤+=⎢⎥⎣⎦a x k x kb 0(1)()0 试分析稳定的条件.解 选Q = I , 则有-=-TA PA P I , 即 -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦p p p p a a p p p p b b 111211122122212200100001整理且比较, 得,1)1(,0)1(,1)1(22212211=-=-=-b p ab p a p 要P 为正定, 需满足<<a b ||1,||1, (5.19)解出===--p p p ab1112222211,0,11, =e x 0一致全局渐近稳定.实质上:<<a b ||1,||1⇔所有特征值的模全小于1.。
离散时间系统稳定的充要条件

离散时间系统稳定的充要条件离散时间系统是指系统的输入和输出在时间上是离散的情况下进行的系统分析和设计。
而离散时间系统的稳定性是一个重要的性质,它决定了系统是否能够在一定范围内保持稳定的输出。
本文将介绍离散时间系统稳定性的充要条件。
一、离散时间系统的稳定性概念稳定性是指系统在有限时间内是否能够保持有限的幅值,而不会出现无限增长或发散的情况。
对于离散时间系统而言,其稳定性可以分为两类:绝对稳定和相对稳定。
绝对稳定是指系统的输出在有限时间内始终保持有限的幅值,不会发散或无限增长。
相对稳定是指系统的输出在有限时间内保持有限的幅值,但可能会在无穷时间后发散或无限增长。
二、离散时间系统的稳定性充要条件1. 线性时不变系统对于线性时不变系统而言,其稳定性充要条件是系统的传递函数的极点都位于单位圆内。
也就是说,系统的所有极点的模长都小于1。
2. 有限冲激响应系统对于有限冲激响应系统而言,其稳定性充要条件是系统的冲激响应是绝对可和的。
也就是说,系统的冲激响应的绝对和是有限的。
3. 时变系统对于时变系统而言,其稳定性充要条件是系统的输入和输出序列都是绝对可和的,并且系统的输入和输出序列的绝对和都是有界的。
4. 有限差分方程系统对于有限差分方程系统而言,其稳定性充要条件是系统的差分方程的根都位于单位圆内。
也就是说,系统的所有根的模长都小于1。
5. 正态系统对于正态系统而言,其稳定性充要条件是系统的所有特征值的实部都小于等于零。
6. 离散时间系统的Lyapunov稳定性对于离散时间系统而言,其稳定性充要条件是系统的状态方程存在一个正定矩阵,使得系统的状态的Lyapunov函数是递减的。
三、离散时间系统的稳定性判定方法除了以上充要条件外,还可以通过以下方法判断离散时间系统的稳定性:1. 构造系统的Lyapunov函数。
通过构造系统的Lyapunov函数来判断系统的稳定性。
如果系统的状态的Lyapunov函数是递减的,则系统是稳定的。
第3章 系统分析稳定性与稳态误差

2
3.1.1 S平面到Z平面之间映射关系
s平面与z平面映射关系: z esT s j z e( j )T eT e jT eT / T
R | z | eT
z T
1. s平面虚轴映射为z平面单位圆,左半平面映射在z平面单位圆内
系统稳定必要条件 (z) a0 zn a1zn1 an1z an 0 或者
判断系统稳定性步骤: 1. 判断必要条件是否成立,若不成立则系统不稳定 2. 若必要条件成立,构造朱利表
17
二阶系统稳定性条件
(z) z2 a1z a2 0
必要条件: (1) 0 (1) 0
在z平面
z e e e sT
T cos jT sin z esT e e Tn cos jTn sin
n
n
R eTn cos ,z Tn sin
等自然频率轨迹
图3-10 等 自然频率轨 迹映射
11
12
图形对横轴是对称的:
z平面
j
2 3
5
n ,
cos( ) n
| z | eT enT cos z T
8
9
10
6. 等自然频率轨迹的映射
ωn =常数
在s平面 s j ne j n cos jn sin cot1( /)
lim(1
z 1
z 1 ) 1
1 D(z)G(z)
R(z)
es*s 与输入信号R(z)及系统 D(z)G(z) 结构特性均有关
29
1.输入信号为单位阶跃函数 r(t) 1(t)
R(z) 1/(1 z1)
离散时间系统的可控性及其稳定性分析研究

离散时间系统的可控性及其稳定性分析研究一、引言离散时间系统(discrete-time system)是指在时间上取样的系统,指的是在时域上离散且在幅度上是连续的信号,是一类重要的时域系统。
在日常生活中,我们常常会遇到离散时间系统,例如数字电子、数字通信、数字信号处理等领域。
离散时间系统的可控性及其稳定性是该领域热门的研究方向之一,本文将从两方面进行探讨。
二、离散时间系统的可控性1.可控性的定义可控性是指系统在一定时间内,能否通过其输入信号来达到所需状态,并且可以在该状态下保持一定的时间。
在离散时间系统中,可控性的定义与连续时间系统中的可控性类似,但并不能简单地借鉴连续时间系统的定义。
2.可控性的判定(1)Kalman条件Kalman条件是判定离散时间系统可控性的重要方法。
在离散时间系统中,若一个初态能够通过一个有限时间内的控制输入到达系统的任意状态,则称该系统是可控的。
用数学语言描述,即离散时间系统可控的条件是:矩阵 Cont(A,B) 的秩等于 n,其中 A 和B 是系统的状态矩阵和输入矩阵,n 是系统的状态维数。
(2)PBH条件PBH条件是判定离散时间系统可控性的另一种方法。
与Kalman条件相比,PBH条件更加简便,适用于各种规范矩阵A和B.给定一个离散时间系统,我们可以将可控性矩阵写成:$$ \begin{bmatrix} A - \lambda_i I & B \end{bmatrix} $$式中,I 是单位矩阵,λi 是系统的特征值,B 是系统的输入矩阵。
若该矩阵的秩等于系统状态维数 n,则该系统可控。
三、离散时间系统的稳定性1.稳定性的定义稳定性是指系统输入和状态状态在有限范围内的变化,系统的输出也会随之保持在一个有限的范围。
2.稳定性的性质(1)稳定性的充分条件离散时间系统可控的充分条件是系统的特征值均在单位圆内。
(2)稳定性的判定常用的离散时间系统稳定性判定方法有 Jury准则和Nyquist准则。
离散时间系统的稳定性分析

离散时间系统的稳定性分析离散时间系统是一种在离散时间点上进行状态变化的系统,与连续时间系统相对应。
稳定性分析是对系统行为的一个重要特征进行评估和判断的过程。
对于离散时间系统的稳定性分析,我们可以通过不同方法进行研究和判断,如利用差分方程、状态空间法、Lyapunov稳定性理论等。
本文将从这些角度出发,深入探讨离散时间系统的稳定性分析方法。
一、差分方程法差分方程法是一种基于离散时间点上变量之间的差分关系进行稳定性分析的方法。
对于离散时间系统,我们可以通过建立差分方程来描述系统的动态行为。
一般而言,稳定的离散时间系统在各个时间点上的状态变量都保持在某个有界范围内。
因此,我们可以通过差分方程的解析解或数值解来判断系统的稳定性。
二、状态空间法状态空间法是一种通过描述系统在不同离散时间点上状态变化的方法。
在状态空间中,系统的状态由一组关于时间的差分方程表示。
通过对系统状态进行迭代,我们可以从初始状态推导出系统在未来时间点上的状态。
根据这些状态的变化,我们可以判断系统是否稳定。
三、Lyapunov稳定性理论Lyapunov稳定性理论是一种通过利用Lyapunov函数来判断离散时间系统稳定性的方法。
Lyapunov函数是一个用于衡量系统状态的能量函数,它在系统稳定时具有稳定性的性质。
通过构造和分析Lyapunov函数,我们可以判断离散时间系统是否稳定。
如果能够找到一个Lyapunov函数,使得对于系统的每一个状态,该函数都是非负的,并且沿着系统的状态变化轨迹递减,那么系统就是稳定的。
四、其他稳定性分析方法除了以上介绍的几种常见方法外,还存在其他一些稳定性分析方法,如频率域方法、随机系统稳定性分析等。
这些方法可以根据具体问题的需求进行选择和应用,从而更好地评估离散时间系统的稳定性。
综上所述,离散时间系统的稳定性分析是研究系统动态行为的一个重要问题。
通过差分方程法、状态空间法、Lyapunov稳定性理论以及其他稳定性分析方法,我们可以对离散时间系统的稳定性进行全面评估和判断。
离散系统的稳定性分析

由闭环离散系统的特征方程式 1 G(z) 0 ,得
z 2 4.95z 0.368 0
z1 0.076 z2 4.876
系统有一特征根位于z 平面单位圆外,系统不稳定。
离散系统的劳斯稳定判据
劳斯判据只能判断特征方程式的根是否位于复 平面s 的左半平面,为此需采用双线性变换,将z 平 面的单位圆映射到 r 平面的虚轴上,z 平面单位圆内 的所有点,均映射到r 的左半平面。这样,对 r平面 中的变量就可应用劳斯稳定判据。
z r 1 r 1
r z 1 z 1
离散系统的劳斯稳定判据
例14 判断图示闭环离散系统的稳定性。 解 z 2 4.95z 0.368 0 令 z r 1,上式化简后,得
r 1 6.32r 2 1.264r 3.584 0
劳斯表中第一列有一次符号变 化,所以有一根位于 r右半平面, 即对应有一个根位于 z平面单位圆 之外,系统不稳定。
离散系统的稳定性分析
线性连续系统稳定的充要条件是:闭环传递函 数的所有极点均位于s 的左半平面。
线性离散系统稳定的充要条
离散系统稳定条件
例13 判断图示闭环离散系统的稳定性。
解 G(s) 10
s(s 1)
G(z)
10 z(1 e1) (z 1)( z e1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
G (e
jT
0.393 0.393 (e jT 0.606) (cos T 0.606 j sin T )
0.393 [cos(0.5 ) 0.606]2 sin 2 (0.5 )
)
G(e jT ) tan 1
sin(0.5 ) cos(0.5 ) 0.607
注意1: 闭环零点位置与动态响应的关系
( z z2 ) ( z 2 a1 z a2 )
假设:复数极点位于=0.5的等阻尼线上,与正实轴 夹角=18
闭环零点使超调量增加。 闭环零点越靠近+1,超调量越大。 闭环极点角度越大,受零点影响越大。
注意2: 非主导极点与动态响应的关系
pi ,i 1 pi e ji ci ,i 1 ci e ji
脉冲响应:
c(k ) Z [G( z ) R( z )] ci pi (e j ( ki i ) e j ( ki i ) )
1 k
2 ci pi cos(ki i ) 2 ci pi cos(i kT i )
-0.8
-1
-1
-0.8
-0.6 Real Axis
-0.4
-0.2
0
(3)幅频特性、相频特性
A( ) G (e jT ) ( ) G (e jT )
例5: G ( z )
0.393 , T 0.5s ( z 0.606)
画幅频曲线和相频曲线。
解:频率特性
1.264 z 1 1.396 z 2 0.945 z 3 0.851z 4 1.008z 5 1.05 z 6 1.008 z 7 0.976 z 8
进入5%的误差带 最大超调点
% 40% ts 6T
3.6.2 极点位置与动态响应的关系(定性分析) (1) 极点位置位于实轴
k
k
i
i
T
幅值 2 ci pi
k
振荡角频率
i
T
① pi>1 ② pi=1 ③ 0<pi<1
例9:在z平面上有4对共扼复数, 试分析他们的脉冲响应。
极点位置与动态响应的关系(稳定状态) 极点位于单位园内正实轴上 单调衰减 极点离原点越近 衰减越快 极点位于原点衰减最快 复数极点位于单位园内 振荡衰减 极点与正实轴的角度越大振荡频率越高 极点位于负实轴上振荡频率最高
例:系统开环脉冲传递函数如下
0.368( z 0.722) D( z ) ( z 1)( z 0.368) T 1s
试绘制开环幅相特性曲线 解: 频率特性
0.368(e jT 0.722) D(e jT ) jT (e 1)(e jT 0.368)
Nyquist Diagram 1 0. jT ) G ( z )
G ( ) G ( )
G(e jT )不是的有理函数
jω
S平面
Im Z平面
0
σ
0
Re
离散系统频率特性: (1)Z沿单位圆变化; (2)重复性; 主频区
s
2
s
2
(3) G (e jT ) 是ω的偶函数, G (e jT )是的奇函数
例1:连续控制系统 1 G (s) s( s 1)
超前校正
s2 D( s) 70 s 10
分析采样周期与系统的性能。
例2:伺服控制系统。 PID控制器,参数为:K=5, Ti=0.003,Td=0.0008。 选择采样周期T。
r(t) e(t)
PID
360000 ( s 60)( s 600)
3.6 离散系统动态性能分析
3.6.1 离散域动态性能指标与计算
(1)性能指标 超调量:% ; 调节时间:ts
(2) 由时域响应计算动态性能
( z)
1.264 z 1 输入 R( z ) z 2 0.104 z 0.368 1 z 1
C( z) ( z) R( z)
3.7
3.7.1
离散系统根轨迹法和频域法
根轨迹法
根轨迹的画法(与连续系统相同)
z 0.5 G( z) K ( z 0.7)( z 0.9)
%画根轨迹程序S4 z=tf('z',-1); g=(z+0.5)/((z-0.7)*(z-0.9)); axis('square'); rlocus(g),grid
用MATLAB画Nyquist曲线
Nyqusit曲线程序S5 w=[pi/6:0.01:pi]; z=[-.722];p=[1,0.368]; k=0.368; sys=zpk(z,p,k,1); Nyquist(sys,w);
0.6
0.4
Imaginary Axis
0.2
0
-0.2
-0.4
-0.6
用MATLAB画bode图
0.393 G( z) , T 0.5s ( z 0.606)
画bode图程序S6
nz1=[0,0.369]; dz1=[1,-0.606]; ts=0.5; w=[0:0.01:6*pi]; dbode(nz1,dz1,ts,w);
周期重复,只画主频带 -22
(2)幅相特性(Nyquist)曲线
G (e jT ) G ( z )
Im Z平面
z e jT
G ( ) G ( )
Im
0
Re
-1
0
G ( )
G ( )
Re
Nyquist稳定性判据:Z=P+N Z——闭环不稳定的极点数; P——开环不稳定的极点数: N——Nyquist顺时针包围-1的圈数;
c(s)
连续系统:
R
E
D
U
G
C
1 例3:已知 D( s) K G ( s) , 0.1s 1 试讨论采样周期T对系统稳定性的影响,并与连续系统比较。
1 b0 z 2 b1 z b2 1 z 2 a1 z a2
如何确定主导极点和非主导极点? 距离原点最远的极点——主导极点; 模≤(主导极点的模)5——非主导极点可忽略; 非主导极点位于实轴——超调减小
Z1.2 = 0.523 0.636i
串联
0.8 Z - 0.2
非主导极点为复数极点
0.393 , T 0.5s 用MATLAB画bode图 G ( z ) ( z 0.606)
画bode图程序S6
nz1=[0,0.369]; dz1=[1,-0.606]; ts=0.5; w=[0:0.01:6*pi]; dbode(nz1,dz1,ts,w); [mz1,gz1]=dbode(nz1, dz1,ts,w); subplot(2,1,1); plot(w,mz1); subplot(2,1,2); plot(w,gz1);
R( z ) 1
z G ( z ) ci z pi
脉冲响应
c(k ) Z 1[G( z ) R( z )] ci pik
① pi>1 ② pi=1 ③ 0<pi<1 ④ -1<pi<0
⑤ pi=-1
⑥ pi<-1
(2)极点为复数
ci 1 z ci z G( z) z pi z pi 1
主导极点
考虑非主导极点
考虑非主导极点
3.7.2 离散系统频率特性 (1)离散系统频率特性定义 连续系统 频率特性
sin t
G(s)
A sin(t )
G ( j ) G ( s )
sin kT
s j
G ( ) G ( )
A sin( kT )
离散系统
频率特性