比较审敛法的极限形式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较审敛法的极限形式是什么?

1、比较审敛法的极限形式是比较审敛法的极限形式是若为低阶无穷小的级数收敛。则一般项为较高阶或同阶无穷小的级数必定也收敛。两个一般项为同阶无穷小(特别是等价无穷小)的级数同敛同散同时收敛或同时发散,即敛散性必定相同。

2、比较审敛法的极限形式的准则

数列极限的柯西准则与级数收敛的柯西审敛原理7.2常数项级数的审敛法7.2.1正项级数比较审敛法的极限形式的无穷小表示7.2.2正项级数的两个审敛定理的证明7.2.3利用收敛级数的必要条件求数列极限。则级数发散。同样这种比较也可以采用极限形式:若,则级数发散;若,则级数收敛。如果,则本判别法无法进行判断。根值根值审敛法:对于正项级数,如果从某一个确定的项开始。

相关文档
最新文档