量纲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量纲
基本物理单位是基本物理量的度量单位,例如长短、体积、质量、时间等等之单位。这些单位反映物理现象。物理现象或物理量的度量,叫做“量纲”。
物理定义
将一个物理导出量用若干个基本量的乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲(dimension)。量纲又称为因次。它是在选定了单位制之后,由基本物理量单位表达的式子。
单位制度
在国际单位制(SI)中,七个基本物理量长度、质量、时间、电流、热力学温度、物质的量、发光强度的量纲符号分别是是L、M、T、I、Q、N和J。
国家标准
按照国家标准(GB3101—93),物理量Q的量纲记为dimQ,国际物理学界沿用的习惯记为[Q]。
量Q的量纲的一般形式为:
dimQ= L^αM^βT^γI^δΘ^εN^ζJ^η
量纲是物理学中的一个重要问题。它可以定性地表示出物理量与基本量之间的关系;
可以有效地应用它进行单位换算;可以用它来检查物理公式的正确与否;还可以通过它来推知某些物理规律。“在量制中,以基本量的幂的乘积表示该量制中一个量的表达式,这个表达式就是该量的量纲。”
比如——
速度...... v = ds/dt 量纲:L*T^(-1)
加速度.... a = dv/dt 量纲:L*T^(-2)
力........ F = ma 量纲:M*L*T^(-2)
压强...... P = F/S 量纲:M*L*T^(-2)*L^(-2) = M*T^(-2)*L^(-1)
量纲是检查公式推导过程中是否准确的判据,虽然不能保证正确,但可以找到错误。一个物理理论通常由以下几个部分组成:概念,通常是抽象的,不能直接感知的;关于这些概念的数学表示(物理量)的假定一个或一组方程,表示物理量之间的关系。在这后两部分中,量纲扮演着重要角色。
单位是计量的标准。
量纲是表达基本物理量的抽象的符号,而单位是具体物理量的量度。量纲用来描述物理量本身的性质,而单位是用来表达量的具体多少的基准。
有量纲的物理量都可以进行无量纲化处理
无量纲化处理
有量纲的物理量都可以进行将一个物理导出量用若干个基本量的乘方之积表示
出来的表达式,称为该物理量的量纲式,简称量纲。它是在选定了单位制之后,由基本物理量单位表达的式子。有量纲的物理量都可以进行无量纲化处理在模型编制中,用无量纲化是为了什么?怎么进行无量纲化啊? 无量纲化出现在流体力学发展的
早期,当时的数学方法和数值计算水平都很有限,为了对一些流体现象做出理论分析(如机翼和船体附近边界层的流动现象),需要将粘性流体控制方程加以简化,于是对目标流体赋予一个特征长度和特征速度。利用特征长度和特征速度(通常相对于边界层是一个较大的数)使得某些变量(如X,Y,V变成X/L《1或Y/L《1或V/U《1)这样就可以减少控制方程的变量数目。对于边界层外的流动则采用不考虑粘性势流模型求解,无须简化。所以说无量纲化在整个流体力学,尤其是空气动力学的发展历史中占有极为重要的地位在模型编制中,用无量纲化是为了什么?怎么进行无量纲化啊?无量纲化出现在流体力学发展的早期,当时的数学方法和数值计算水平都很有限,为了对一些流体现象做出理论分析(如机翼和船体附近边界层的流动现象),需要将粘性流体控制方程加以简化,于是对目标流体赋予一个特征长度和特征速度。利用特征长度和特征速度(通常相对于边界层是一个较大的数)使得某些变量(如X,Y,V变成X/L《1或Y/L《1或V/U《1)这样就可以减少控制方程的变量数目。对于边界层外的流动则采用不考虑粘性势流模型求解,无须简化。所以说无量纲化在整个流体力学,尤其是空气动力学的发展历史中占有极为重要的地位。
在经济管理学中,无量纲化方法是综合评价步骤中的一个环节。
根据指标实际值和无量纲化结果数值的关系特征可以分为三大类:
一、直线型无量纲化方法:又包括阀值法、指数法、标准化方法、比重法
二、折线型无量纲化方法:凸折线型法、凹折线型法、三折线型法
三、曲线型无量纲化方法
目前常见的无量纲化处理方法主要有极值化、标准化、均值化以及标准差化方法,而最常使用的是标准化方法。但标准化方法处理后的各指标均值都为0,标准差都为1,它只反映了各指标之间的相互影响,在无量纲化的同时也抹杀了各指标之间变异程度
上的差异,因此,标准化方法并不适用于多指标的综合评价中。而经过均值化方法处理的各指标数据构成的协方差矩阵既可以反映原始数据中各指标变异程度上的差异,也包含各指标相互影响程度差异的信息。