运动规律

合集下载

一般运动规律

一般运动规律

曲线运动综合练习
列举下本课中所讲到的物体运动是属于曲 线综合运动
绘制人物飘逸的长发运动
小结
请指出下图错误之处
请说说下面那副图是正确的
作业1
分割中间画
作业2
绘制不锈钢尺抖动组画 试试将生活中的物体拟人化如球体,正方体
等,绘制高处跳落组画.
第一部分 一般运动规律
第一章 弹性运动
事物的一般运动规律是从物体的运动中发现、理 解、提炼和总结出来的.动画运动规律有其自身的 夸张性,动画运动的实质不是去夸张物体的重量,而 是去夸张自然界中任何物体在力的作用下所呈现 的趋向和特征.
在动画运动规律学中不论是有生命的角色还是无 生命的物体,它们的夸张都是根据力学原理在动画 家大脑中的反映.
第三章 曲线运动
曲线运动是由于物体在运动中速度方向和角度改 变,以及力的作用而形成的.
动画片动作中的曲线运动,大致可分为三类:弧形 运动、波形运动、S形运动.
它是区别于直线运动的一种运动规律,是曲线形的、 柔和的、圆滑的、有没和谐的运动.曲线运动能够 充分表现各种细长、轻薄、柔软及富有韧性和弹 性的物体质感,是动画片绘制工作中经常运用的一 种运动规律,它能使人物或动物的动作以及自然形 态的运动产生柔和、圆滑、优美的韵律感和协调 感.
第三节 弹性变形中的细节完善
弹性运动练习:
简单弹性变形运动,要求对弹性运动弄懂、 弄通、能画、画好.
课堂练习:
1、绘制篮球的弹跳一个物体不受到任何力的作用,它将保 持静止状态或匀速直线运动状态,这就是通 常说的惯性运动.
这一定律还表明:任何物体,都具有一种保 持它原来的静止状态或匀速直线运动状态 的性质.
弧形运动练习
结合前两章所学内容,绘制球体抛物运动.

认识运动的基本规律简答题

认识运动的基本规律简答题

认识运动的基本规律简答题
【最新版】
目录
1.运动的定义与分类
2.运动的基本规律
3.运动的作用与意义
正文
一、运动的定义与分类
运动,指的是物体在空间和时间上的变化。

根据不同的标准,运动可以分为多种类型,如机械运动、物理运动、生物运动等。

在日常生活和学习中,我们主要关注生物运动,即生命体在空间和时间上的位移。

二、运动的基本规律
运动的基本规律包括以下几个方面:
1.牛顿第一定律:也称惯性定律,指物体在没有受到外力作用时,保持静止或匀速直线运动。

2.牛顿第二定律:也称运动定律,指物体所受合外力等于物体质量与加速度的乘积,即 F=ma。

3.牛顿第三定律:也称作用与反作用定律,指任何两个物体之间的作用力与反作用力,总是同时在一条直线上,且大小相等、方向相反。

三、运动的作用与意义
运动对生命体具有重要的作用和意义:
1.维持生命活动:运动是生命体进行新陈代谢、物质循环和能量转换的基础,是维持生命活动的必要条件。

2.促进生长发育:运动能促进骨骼、肌肉等组织的生长发育,影响生
命体的形态和功能。

3.增强生理功能:运动能提高心肺功能、增强免疫力、促进内分泌平衡等,有利于生命体保持健康状态。

4.提高适应能力:运动能使生命体适应外部环境的变化,提高生存和繁殖能力。

5.塑造美好形态:运动能消耗热量,维持体重,使生命体保持美好形态。

总之,运动是生命体不可或缺的基本规律,对生命体的生存、发展和繁衍具有重要的作用和意义。

简述认识运动的总规律及意义

简述认识运动的总规律及意义

简述认识运动的总规律及意义概述运动是自然界和社会生活中普遍存在的现象,具有自身的规律和意义。

了解运动的总规律对于我们认识世界、发展科学、推动社会进步具有重要意义。

运动的总规律第一规律:运动是普遍的运动广泛存在于自然界和社会生活的方方面面。

从宇宙的星体运动、地球的自转和公转,到物体的运动、人们的活动,无不包含着运动的要素。

运动不仅存在于我们的视野中,也存在于微观世界,甚至存在于思维和感情的活动中。

第二规律:运动具有有序性运动现象虽然多种多样,但都遵循一定的规律和顺序。

物体运动时会受到力的作用,根据牛顿定律,物体的运动状态和作用力之间存在着明确的关系。

同时,社会运动也会受到各种因素的影响和调控,具有一定的规律性和可预测性。

第三规律:运动具有客观性运动是客观存在的,不依赖于个体的主观意识,而是独立于人的意愿和意识。

无论我们是否觉察到,运动仍然在进行,事物在运动中不断发展变化。

认识运动的意义科学探索通过认识运动的总规律,我们可以进行科学探索。

各门学科如物理学、生物学、经济学等都需要运动的基础知识。

从探索宇宙的奥秘到解析微观粒子的行为,运动的规律为科学研究提供了指导。

社会发展认识运动的规律对于推动社会发展具有重要推动作用。

了解社会运动中各种因素的相互影响和变化规律,有助于我们把握历史的发展轨迹,预测未来的趋势,为社会发展制定合理的战略和政策。

人生态度认识运动的规律也可以引导我们正确的人生态度。

面对瞬息万变的世界,了解运动的普遍性和客观性,我们可以更好地适应和应对不确定性,以积极、乐观的心态对待生活的起起伏伏,遇到挫折时积极寻求变革,迎接新的机遇。

结论简述认识运动的总规律及其意义涉及到自然界和社会生活中运动的普遍性、有序性和客观性,同时认识运动的总规律对于科学探索、社会发展和个人人生态度都具有重要意义。

通过深入研究运动的规律,我们可以更好地理解世界、发展科学,并在自己的生活中找到更多的乐趣和机遇。

运动的规律性知识点

运动的规律性知识点

运动是人类活动中不可或缺的重要内容之一,了解运动的规律性知识点,是培养健康生活习惯的基础。

一、运动的科学定律
1、运动定律:运动定律指的是运动的基本规律,即运动的起始速度、路径、力度等均有一定的特点和规律,运动的定律是指运动中所涉及物体的变化规律,也可以称为运动规律。

2、健身定律:健身定律是指健身运动中有一定的特点,遵循一定的规律。

通常情况下,健身定律主要指的是适当、有规律的运动,具体表现为:适当运动有利于提高身体素质,强度不宜过大,频率不宜过高,持续时间不宜过长,程度应当渐进,养成良好的运动习惯,平衡营养等。

二、运动的正确姿势
1、正确的抓握:正确的抓握是指抓握物体时,应当使用适当的抓握方式,以免受伤。

正确的抓握可以将运动的效率和力量提高,并且能够更好地保护自己。

2、正确的走路姿势:正确的走路姿势是指在走路时,身体维持平衡,同时调整脚步距离,腿部和腰部保持正确的姿势,有利于身体健康,也有利于提高运动效率。

三、运动的安全知识
1、服装选择:在运动中,服装要求很高,应当选择贴身、透气性好的运动服装,这样可以有效减少身体受伤的可能性。

2、安全护具:在运动中,应当佩戴安全护具,如护目镜、安全帽等,以免受意外伤害。

四、运动的热身
1、热身运动:热身运动是指在进行正式运动前,进行适当的轻度运动,以便让身体做好准备,有利于减少运动后受伤的可能性。

2、拉伸运动:拉伸运动是指通过拉伸肌肉来预防损伤,促进身体的血液循环,放松肌肉,使肌肉更加灵活,增强运动的力量和效果。

以上就是关于运动的规律性知识点的介绍,运动对于人们的健康有重要的意义,希望大家都能健康有节奏的运动起来,收获健康的快乐。

运动的基本概念和运动规律

运动的基本概念和运动规律

运动的基本概念和运动规律运动是指物体在空间内从一个位置转移到另一个位置的过程,它是物质存在的基本属性之一。

运动具有许多基本概念和运动规律,这些概念和规律对于我们理解和应用运动现象都有着重要的意义。

一、基本概念1. 位移:位移是指物体由一个位置变化到另一个位置的矢量量值。

位移与路径无关,只与起点和终点有关。

2. 速度:速度是指物体在单位时间内移动的位移量。

速度是矢量量值,包括大小和方向。

3. 加速度:加速度是指物体在单位时间内速度变化的量。

加速度也是矢量量值,包括大小和方向。

二、运动规律1. 牛顿第一定律:也称作惯性定律,它指出物体在没有外力作用时将保持静止或匀速直线运动的状态。

2. 牛顿第二定律:牛顿第二定律表明物体所受的合力等于物体的质量与加速度的乘积。

即 F=ma,其中 F表示合力,m表示物体的质量,a表示物体的加速度。

3. 牛顿第三定律:牛顿第三定律也称为作用力与反作用力定律,它指出任何两个物体之间的相互作用力都是相等且反向的。

三、运动的特殊概念和规律1. 弹性碰撞:当两个物体发生碰撞时,它们之间的动能可以部分或全部转化为位移,这种碰撞被称为弹性碰撞。

在弹性碰撞中,动量和机械能守恒。

2. 不均匀运动:不均匀运动是指物体在运动过程中速度大小或方向的改变不是均匀的。

在不均匀运动中,加速度是变化的,即速度的变化率随时间的变化而变化。

3. 圆周运动:圆周运动是指物体绕固定点做圆形轨迹的运动。

在圆周运动中,物体始终受到向心力的作用,向心力的大小与物体质量和速度的乘积成正比,与物体到圆心距离的平方成反比。

运动的基本概念和运动规律是物理学研究物体运动的基石,它们可以帮助我们理解和解释日常生活中的运动现象。

通过研究运动,我们可以预测物体的运动轨迹、计算物体的速度和加速度,进而探索更深层次的物理规律。

了解和掌握这些基本概念和规律不仅对于物理学学习有帮助,也能增进对运动世界的认识和理解。

总结起来,物体的位移、速度和加速度是描述运动的基本概念,而牛顿三定律则为我们提供了解释和分析运动现象的重要规律。

运动的规律及应用

运动的规律及应用

运动的规律及应用运动是人类生活中不可或缺的一部分。

无论是日常活动还是体育运动,运动都有一些规律和应用。

本文将简要介绍一些常见的运动规律及其应用。

1. 运动的基本规律1.1. 运动的惯性根据牛顿第一定律,物体会保持匀速直线运动或静止状态,除非有外力作用。

这就是运动的惯性。

在生活中,我们常常感受到物体保持运动状态或静止状态的特性,例如坐车突然刹车时,我们会感到身体向前倾。

了解运动的惯性规律,可以帮助我们更好地理解和应对物体运动的特性。

1.2. 运动的加速度根据牛顿第二定律,物体的加速度与物体所受力的大小和方向成正比。

这意味着物体受到更大的力时,其加速度也会增加。

运动的加速度规律在实际应用中非常重要,例如,在汽车行驶过程中,我们需要根据车速和距离来调整制动力,以确保安全停车。

2. 运动的应用2.1. 运动的能量转化运动中存在能量转化的现象。

例如,当我们踢足球时,我们的脚施加了力量,球就会获得动能,并沿着一定的轨迹运动。

了解能量在运动中的转化规律,可以帮助我们更好地利用能量资源,例如在体育运动中提高球的速度和精准度。

2.2. 运动的稳定性运动中的物体可能会受到各种力的作用,影响其稳定性。

例如,骑自行车时,我们需要保持平衡,这涉及到重力和摩擦力的平衡。

了解运动的稳定性规律可以帮助我们更好地控制身体的平衡,提高运动表现。

结论通过了解运动的规律,我们可以更好地理解和应用运动的特性。

我们可以利用运动的惯性特性和加速度规律来调整和控制物体的运动状态。

同时,了解运动中的能量转化和稳定性规律可以帮助我们在体育运动和日常生活中更加灵活和有效地运用运动知识。

参考文献:- 约翰·戴维寇恩(2012)。

《物理学原理(第9版)》。

清华大学出版社。

- 丘维声、徐锴、冯有华(2008)。

《运动学与动力学》。

清华大学出版社。

认识运动规律的主要内容

认识运动规律的主要内容

认识运动规律的主要内容运动规律是物理学中重要的研究对象之一,它描述了物体在运动过程中所遵循的一系列规则和规律。

通过对运动规律的认识,我们可以深入理解物体的运动行为,预测未来的运动状态,并且可以应用于工程设计、交通运输、天体物理等领域。

本文将介绍运动规律的主要内容,包括运动的基本概念、运动的描述和运动的规律。

一、运动的基本概念1. 运动:物体位置随时间的变化。

2. 物体:具有一定质量和形状的实体。

3. 位置:物体所处的空间位置,通常用坐标表示。

4. 时间:运动发生的持续时间。

5. 运动状态:描述物体的位置、速度和加速度的状态。

二、运动的描述1. 位移:物体从初始位置到最终位置的变化。

2. 速度:物体单位时间内位移的大小和方向。

3. 加速度:物体单位时间内速度的变化率。

三、运动的规律1. 牛顿第一定律(惯性定律):物体在外力作用下保持匀速直线运动或静止。

2. 牛顿第二定律(运动定律):物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

3. 牛顿第三定律(作用-反作用定律):任何一个作用力都会有一个与之大小相等、方向相反的反作用力作用在另一个物体上。

四、运动规律的应用1. 运动的机械能守恒:在没有外力做功的情况下,系统的机械能保持不变。

2. 运动的动量守恒:在没有外力作用的情况下,系统的动量保持不变。

3. 万有引力定律:两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

4. 圆周运动的规律:物体在圆周运动时,受到的向心力与物体的质量、速度和半径成正比。

五、运动规律的实验验证1. 自由落体实验:通过测量物体自由下落的时间和位移,验证物体在重力作用下的运动规律。

2. 斜面实验:通过测量物体在斜面上运动的时间和位移,验证物体在倾斜面上的运动规律。

3. 弹簧振子实验:通过测量弹簧振子的周期和频率,验证物体在弹簧振动中的运动规律。

总结:通过对运动规律的认识,我们可以深入理解物体的运动行为,并且可以应用于实际生活和科学研究中。

运动的基本规律与公式

运动的基本规律与公式

运动的基本规律与公式运动是物体在空间中随着时间发生位置变化的现象,研究运动的基本规律与公式有助于我们更好地理解和描述运动的行为。

本文将介绍运动的基本规律以及相关的公式。

一、匀速直线运动匀速直线运动是指物体在直线上匀速运动的情况。

对于匀速直线运动,我们可以得出以下规律和公式:1. 位移规律:位移等于速度乘以时间,即S = Vt,其中S表示位移,V表示速度,t表示时间。

2. 速度规律:速度保持不变,即V = 常数。

3. 时间规律:位移与速度成正比,时间与位移成正比,即S ∝ V ∝t。

4. 加速度规律:加速度为0,即a = 0。

二、匀加速直线运动匀加速直线运动是指物体在直线上以匀加速度运动的情况。

对于匀加速直线运动,我们可以得出以下规律和公式:1. 位移规律:位移等于初速度乘以时间再加上加速度乘以时间的平方的一半,即S = V₀t + (1/2)at²,其中S表示位移,V₀表示初速度,t表示时间,a表示加速度。

2. 速度规律:速度等于初速度加上加速度乘以时间,即V = V₀ + at,其中V表示速度,V₀表示初速度,t表示时间,a表示加速度。

3. 时间规律:由位移规律可得S = (V₀ + V)t / 2,从而可以求出时间t。

4. 加速度规律:加速度保持不变,即a = 常数。

三、自由落体运动自由落体运动是指物体在无阻力情况下下落的运动。

对于自由落体运动,我们可以得出以下规律和公式:1. 位移规律:位移等于初速度乘以时间再加上重力加速度乘以时间的平方的一半,即S = V₀t + (1/2)gt²,其中S表示位移,V₀表示初速度,t表示时间,g表示重力加速度。

2. 速度规律:速度等于初速度加上重力加速度乘以时间,即V =V₀ + gt,其中V表示速度,V₀表示初速度,t表示时间,g表示重力加速度。

3. 时间规律:由位移规律可得S = (V₀ + V)t / 2,从而可以求出时间t。

4. 加速度规律:加速度等于重力加速度,即a = g。

1.运动学的基本规律

1.运动学的基本规律

运动学基本规律一、知识规律1.物体或带电体做匀变速直线运动的条件是 物体或带电体所受合力为恒力,且与速度方向共线. 2.匀变速直线运动的基本规律为 速度公式:v =v 0+at . 位移公式:x =v 0t +12at 2.速度和位移公式的推论:v 2-v 20=2ax .中间时刻的瞬时速度:v t 2=x t =v 0+v 2.任意两个连续相等的时间内的位移之差是一个恒量,即Δx =x n+1-x n =a ·(Δt )2.3.速度—时间关系图线的斜率表示物体运动的加速度,图线与时间轴所包围的面积表示物体运动的位移.匀变速直线运动的v -t 图象是一条倾斜直线.4.位移—时间关系图线的斜率表示物体的速度,匀变速直线运动的x -t 图象是一条抛物线. 二.思想方法(1)物理思想:极限思想、逆向思维、理想实验、分解思想. (2)学习方法:比例法、图象法、控制变量法、整体法、隔离法、合成分解法. 三、知识网络考点一 运动学基本规律的应用例题1.一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( )A.s t 2B.3s 2t2 C.4st 2D.8st 2解析:选A.质点在时间t 内的平均速度v =s t,设时间t 内的初、末速度分别为v 1和v 2,则v =v 1+v 22,故v 1+v 22=s t .由题意知:12mv 22=9×12mv 21,则v 2=3v 1,进而得出2v 1=s t .质点的加速度a =v 2-v 1t =2v 1t=st 2.故选项A 正确. 例题2.为了测定一辆电动汽车的加速性能,研究人员驾驶汽车。

人体运动规律

人体运动规律

人体运动规律人体运动规律是指在运动过程中,人体所遵循的一系列科学原理和生理规律。

了解和应用这些规律可以更有效地进行运动训练、提高身体素质,并避免运动损伤。

以下将从运动开始前、运动进行中以及运动后三个方面探讨人体运动规律。

一、运动开始前在进行任何一项运动之前,必须充分做好准备。

以下是人体运动开始前的规律:1. 热身阶段:热身是进行运动前必不可少的步骤,它能够提高肌肉的温度,增加关节的灵活性,为肌肉和关节准备好运动所需的条件。

一般情况下,热身时间为10-15分钟,可以包括有氧运动和一些针对性的拉伸动作。

2. 逐渐增加运动强度:运动开始前需要逐渐增加运动的强度,让身体适应运动的要求。

这可以通过逐渐增加运动的速度、重量或者难度来实现。

这样可以减少运动伤害的风险,提高运动的效果。

二、运动进行中在进行运动的过程中,人体会遵循一些生理规律,以适应运动的需要。

以下是人体运动进行中的规律:1. 心率变化:随着运动的进行,心率会逐渐增加。

这是因为身体需要更多的氧气和营养物质供给给活动的肌肉和组织。

通过控制心率,人们可以调整运动强度,使其更加合理。

2. 呼吸调节:在运动过程中,人体会自动调节呼吸以适应运动的需要。

通过深呼吸,身体能够摄取更多的氧气,排出体内的二氧化碳。

这样可以提供足够的氧气供给肌肉,延缓疲劳的发生。

3. 肌肉运动:运动时,肌肉是主要的活动器官。

肌肉通过收缩和放松产生力量,从而推动骨骼运动。

不同的运动需要不同的肌肉协同工作,要根据运动的要求进行相关肌肉的力量训练。

三、运动后运动后的恢复阶段同样重要。

以下是人体运动后的规律:1. 休息与睡眠:运动后,身体需要充分的休息和睡眠来恢复。

这样可以让肌肉得到充分的修复和生长,预防肌肉疲劳和受伤。

2. 补充营养:运动后,身体需要适当的营养来补充能量和修复组织。

特别是蛋白质、碳水化合物和水分的摄取非常重要。

合理的饮食可以帮助身体更好地恢复和适应运动的负荷。

综上所述,人体运动规律在运动前、运动中和运动后都有其独特的特点。

运动的规律性物理原理

运动的规律性物理原理

运动的规律性物理原理
运动的规律性物理原理有很多,以下是几个常见的原理:
1. 牛顿第一定律(惯性定律):物体在没有受到外力的情况下,会保持静止或匀速直线运动的状态。

这意味着一个物体会保持其运动状态,直到受到外力的作用。

2. 牛顿第二定律:物体所受的合力是物体质量和加速度的乘积。

F = ma,其中F是合力,m是物体的质量,a是物体的加速度。

这个原理描述了物体受到外力时的运动情况。

3. 牛顿第三定律:对于每一个作用力,都会有一个大小相等、方向相反的反作用力。

这意味着物体之间的相互作用是相互的,且大小相等、方向相反。

4. 动量守恒定律:一个系统中的总动量在没有外力作用下保持不变。

动量是质量和速度的乘积,可以通过改变物体的质量或速度来改变其动量。

5. 能量守恒定律:在物理学中,能量不会被创建或消失,只会从一种形式转变为另一种形式。

总能量在一个封闭系统中保持不变。

6. 运动学方程:运动学研究物体的运动方式和特征,其中包括位移、速度和加速度之间的关系。

常见的运动学方程有位移公式、速度公式和加速度公式。

以上是一些常见的运动的规律性物理原理,它们帮助我们理解和描述物体运动的规律。

运动规律(人·走路)PPT课件

运动规律(人·走路)PPT课件

增加强度
多样化路线
结合其他运动
坚持长期锻炼
适当增加走路的速度和 坡度,以增加运动强度,
提高锻炼效果。
选择不同的路线和环境 进行走路运动,增加趣
味性和挑战性。
将走路与其他运动结合 进行,如慢跑、游泳等, 以综合提高身体素质。
坚持长期走路锻炼,让 身体逐渐适应并获得更
好的效果。
07
结论与展望
研究结论
运动规律(人·走路)ppt课 件
• 引言 • 人体运动系统概述 • 走路的生物力学原理 • 走路的节奏和规律 • 走路的影响因素 • 走路的益处和注意事项 • 结论与展望
01
引言
主题简介
01
走路作为人类最基本的运动方式 之一,具有普遍性和代表性。
02
研究走路的运动规律有助于深入 了解人体运动机制,为运动学、 生物力学等领域提供理论支持。
研究展望
未来的研究可以进一步探讨走路过程中的神经控制机 制和肌肉协调性,以及如何通过训练提高个体的走路
效率和稳定性。
输标02入题
针对不同年龄段、性别和身体状况的人群,研究走路 的差异和特点,可以为个性化运动计划的制定提供科 学依据。
01
03
深入研究走路的生物力学和能量代谢机制,有助于推 动运动康复和损伤预防领域的进步,提高人类的生活
天气和气候
恶劣的天气和气候条件,如雨、雪、冰冻等,会对走路产生影响。
交通状况
交通状况也会影响走路。例如,在繁忙的街道上走路需要更加小心谨 慎。
个人习惯和心理状态
个人习惯
个人的走路习惯会影响走路的姿势和速度。例如,经常穿高跟鞋会改变走路姿势 ,长期缺乏运动会导致肌肉萎缩和关节僵硬。
心理状态

地球运动的基本规律(知识讲解)

地球运动的基本规律(知识讲解)

地球运动的基本规律考点解读地球运动的基本规律。

知识清单1.地球自转运动的一般特点2.地球公转运动的一般规律 3.黄赤交角及影响 参考答案: 1.自转轴 不动 北极星 逆时针 顺时针 23 56 4 24 角度 无角速度 15° 无线速度 递减 2.太阳 西 东 公转轨道 椭圆 焦点 近日 远日 真正 365 6 9 10 回归 365 5 48 46 近日远日 近日 远日 3.赤道 黄道 23°26′ 南北回归线 回归年 要点精析 要点一:地球自转的一般规律 (1)运动轴心及轨道:★地轴北端始终指向北极星附近,并与公转轨道面成66 º 34′夹角。

(2)方向:自西向东,从北极上空看呈逆时针,从南极上空看呈顺时针。

(3)周期:①恒星日:自转360º,23时56分4秒,是真正周期。

②太阳日,自转360º 59′,24小时,是日常所用周期。

应用:恒星日:(用于天文观测)以恒星作为参照物。

地球自转一周360º,时间为23时56分4秒。

恒星日是地球自转的真正周期。

太阳日:是生活周期,用于计时。

古人云:日出而作日没而息。

(4)速度:①角速度:除极点为0外,其它各点均为15 º /小时②线速度:赤道线速度最大(约为1670km/h ),向高纬递减,两极为零。

纬度为α°的某地其线速度约为1670km/h × cos α°。

注意:同纬度地区,海拔越高,线速度越大。

★影响自转线速度的因素:纬度、海拔【典型例题】读“地球自转等线速度分布示意图”,R 、T 在同一纬线上。

据此完成以下问题。

1. 该区域所在的位置是A .南半球低纬度B .北半球中纬度C .南半球中纬度D .北半球高纬度2. R 点地形最有可能是A .丘陵B .盆地C .山地D .高原解析:第1题,在地球表面纬度越高线速度越小,图中线速度数值越向南越小,说明越向南纬度越高,所以说该地在南半球,赤道的线速度为1670千米/小时,30°纬线的线速度为1447/小时,图中线速度数值介于二者之间,所以位于低纬度,故答案选A 。

科学的运动学规律

科学的运动学规律

科学的运动学规律运动学是力学的一个分支,研究物体运动的规律以及描述物体运动的物理数量。

它通过观察和实验,总结了一系列科学的运动学规律。

本文将从几个常见的运动学规律角度出发,对其原理和应用进行详细阐述。

一、匀速直线运动匀速直线运动是指物体在直线上以恒定的速度移动。

其关键特点是速度的大小和方向始终保持恒定。

根据匀速直线运动的定义,我们可以推导出匀速直线运动的两个重要规律:1.位移规律:物体的位移等于速度乘以时间。

即Δx = v × t,其中Δx表示位移,v表示速度,t表示时间。

2.速度规律:物体的速度等于位移与时间的比率。

即v = Δx / t。

由于匀速直线运动的速度保持恒定,所以加速度为零,加速度等于任何时间间隔内的速度变化率。

二、匀加速直线运动匀加速直线运动是指物体在直线上的速度按照恒定的加速度增加或减小的运动。

匀加速直线运动的特点是速度的变化是匀速的。

根据匀加速直线运动的定义,可以推导出匀加速直线运动的几个重要规律:1. 位移规律:物体的位移等于初速度乘以时间再加上加速度乘以时间的平方的一半。

即Δx = v0 * t + (1/2) * a * t^2,其中Δx表示位移,v0表示初速度,a表示加速度,t表示时间。

2.速度规律:物体的速度等于初速度加上加速度与时间的乘积。

即v = v0 + a * t。

3.时间规律:物体的速度变化率等于加速度。

即a = (v - v0) / t。

三、自由落体运动自由落体运动是指物体在自由下落时,不受到其他力的作用。

自由落体运动可以看作是一种特殊的匀加速直线运动,其加速度为重力加速度g。

自由落体运动的规律如下:1. 位移规律:物体在自由落体运动中的位移等于初速度乘以时间再加上重力加速度乘以时间的平方的一半。

即Δx = v0 * t + (1/2) * g * t^2,其中Δx表示位移,v0表示初速度,g表示重力加速度,t表示时间。

2.速度规律:物体的速度等于初速度加上重力加速度与时间的乘积。

运动规律知识点总结

运动规律知识点总结

运动规律知识点总结一、运动的基本概念1.运动是一种基本的物理现象,是物体位置随时间的变化。

2.在物理学中,所有的运动都是相对的,即必须有一个固定的参照物体。

二、运动的描述1.质点运动:将物体看作一个质点,忽略物体的大小和形状,只考虑物体的位置随时间的变化。

2.刚体运动:刚体指物体内部各点相互之间的相对位置关系在一定时期内保持不变的物体。

刚体在运动时,各点沿着相互平行的方向作等速直线运动。

3.非刚体运动:物体内部各点相互位置关系随时间发生变化。

三、运动的性质1.匀速运动:物体在单位时间内位移相等的运动称为匀速运动。

2.加速运动:物体在单位时间内位移逐渐增大的运动称为加速运动。

3.直线运动:物体运动的轨迹是一条直线的运动称为直线运动。

4.曲线运动:物体运动的轨迹是曲线的运动称为曲线运动。

5.往复运动:物体反复在两点之间来回运动的运动称为往复运动。

6.周期性运动:物体在一定时间内重复进行的运动称为周期性运动。

四、运动的描述及研究1.运动的描述可以通过物体的轨迹、位移、速度及加速度来描述和研究。

2.位移:物体从初始位置到终点位置的位置变化称为位移。

3.速度:物体单位时间内位移的大小称为速度,速度的方向和大小决定了运动的方向和速度。

4.加速度:物体单位时间内速度的变化称为加速度,加速度的方向和大小决定了加速的方向和速度。

五、定义和推导1.通过定义和推导可以得出各个运动的公式,如速度的定义v=Δs/Δt,加速度的定义a=Δv/Δt 等。

六、运动的图像和分析1.运动图像:通过绘制物体的位置-时间、速度-时间、加速度-时间图像来分析和描述物体的运动。

2.运动分析:通过分析物体的运动图像,可以得出物体的运动特点和规律,进而找出运动的规律和规律等。

七、牛顿三定律牛顿运动定律是描述力学中物体的运动规律的三条定律。

这三个定律包括:1.牛顿第一定律:当物体受力为零时,物体将保持静止或匀速直线运动的状态。

2.牛顿第二定律:物体所受的合外力等于物体的质量与加速度的乘积。

简述运动规律的概念和特点

简述运动规律的概念和特点

简述运动规律的概念和特点运动规律是指在一定条件下,描述物体或系统运动的数量关系的规律。

它揭示了物体或系统运动的规律性,是物理学研究中的重要内容之一。

运动规律包括牛顿运动定律、运动方程、运动轨迹等。

运动规律有以下几个特点:1.客观性:运动规律是客观存在的,不受人的主观意识和意愿的影响。

无论人们是否承认、知晓这些规律,物体或系统的运动都会按照规律进行。

2.客观性:运动规律是普遍存在的,具有普遍性。

它们适用于任何物体或系统的运动,不论其大小、质量、形状等的差异。

3.科学性:运动规律是科学研究的成果,是对实验观测和理论分析的总结和总结。

运动规律经过科学验证和实验检验,具有科学性和可靠性。

4.数量性:运动规律是数量关系的规律,运动的速度、加速度、位移等可以用数值表示和计算。

通过数学和物理方法,可以精确地描述和计算物体或系统的运动。

5.相对性:运动规律是相对的,是与其他物体或参考系相对的。

物体的运动状态和运动规律与观测者的运动状态和参考系的选择有关。

运动规律的概念和特点可以通过运动方程、牛顿运动定律和运动轨迹等进行具体说明。

运动方程是描述运动物体位移、速度和加速度的数学关系。

对于匀速直线运动,位移S与时间t的关系可以用S = vt表示,其中v是物体的速度;对于匀加速直线运动,位移S与时间t的关系可以用S = ut + 1/2at^2表示,其中u是物体的初速度,a是物体的加速度。

这些方程在描述物体的运动中,揭示了位移、速度和加速度之间的数量关系。

牛顿运动定律是描述物体运动的基本规律。

牛顿第一定律(惯性定律)指出,物体在不受力或受力平衡的情况下,将保持静止或匀速直线运动。

牛顿第二定律(力学定律)指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

牛顿第三定律(作用-反作用定律)指出,相互作用的两个物体之间的力大小相等、方向相反。

牛顿运动定律揭示了物体运动的原因和影响因素,揭示了力和物体的运动之间的关系。

运动规律人走路

运动规律人走路

当然,我们可将这个摆手动作再做得夸张一些。在常规摆手动作得基础之上,增加关节 得弯曲度和弹性变化。
在认识了上肢关节部位在运动中得结构关系之后,我们再来了解下肢关节部位在运动 中得结构关系:
脚跟:引导着脚走路得主要部位。在行走 时,总就是脚跟先着地,脚掌和脚尖只就是跟 随着脚跟得落地而产生类似滚动得动作。这 说明脚跟始终控制着我们得脚着地得方向和 位置。
行走中得透视分析 当人物要以透视得角度行走时,我们应该先画好正确得透视线,然后再画人物,这样才
能使人物在行走时各个部分都保持相应得比例关系,使人物得身高和步长有着合理得变化。 下面我们先从形态比较简单得柱子着手,研究一下透视得问题。
离地收腿和脚跟落地得距离较大 (动画张数少),而中间过程距离 较小(动画张数略多)。这种画法, 就是为了表现重步走路得效果。 适用于精神抖擞地走正步,步伐 稳重有力。
不同角度和情绪得行走 前面主要就是从人物侧面来研究行走得基本运动规律,但在实际中,人得走路动作就是
复杂多变得。我们常常会遇到不同角度得行走,例如:正面走、背面走等。而在特定情景下, 走路动作受环境和情绪得影响,也会有所不同。例如:情绪轻松得走路、心情沉重得踱步、 身负重物得走路以及上下楼梯、爬山越岭等。
种比较常用得跨步动作画法。
1) 两头慢中间快。 就是指跨步得那只脚,脚跟离地
和脚尖落地时得距离比较小(即动画 张数多),而中间提腿、屈膝、跨步过 程距离较大(即动画张数少)。这种画 法。就是为了表现一种轻步走路得效 果。适用与角色蹑手蹑脚,怕走路时 发出声响。
2) 两头快中间慢。转移重心导致两脚交替前行,腿脚得迈步通常就是为了保持身体平衡,上肢双臂前 后摆动,与足部运动呈现相反得交叉状态。 人在走路得过程中身体头部得高低就是有变化得,当迈出步子时,头部略低于直立形态, 脚一着地,另一只脚提起朝前弯曲迈出之前,头就略高,然后再恢复至刚才略低得状态。由 此,头部在空间中自然形成波形曲线运动轨迹。 另外,人在走路过程中脚踝与地面成弧线形运动轨迹。

知识点匀变速直线运动的规律

知识点匀变速直线运动的规律

匀变速直线运动的规律一.考点整理匀变速直线运动规律1.匀变速直线运动:沿着一条直线,且加速度的运动.分为匀加速直线运动〔a与v方向〕和匀减速直线运动〔a与v向〕.2.三个根本规律:①速度公式:v = ;②位移公式:x = ;③位移速度关系式:v2t–v02 = .3.三个推论:①做匀变速直线的物体在连续相等的相邻时间间隔T内的位移差等于恒量,即x2–x1 = x3–x2 =……= x n–x n – 1 = ;②做匀变速直线运动的物体在一段时间内的平均速度等于这段时间初末时刻速度矢量和的一半,还等于中间时刻的瞬时速度,即v平均= v t/2= ;③匀变速直线运动的某段位移中点的瞬时速度v x/2 = .4.初速度为零的匀加速直线运动的特别规律:⑴在1T末,2T末,3T末,…,n T末的瞬时速度之比为v1∶v2∶v3∶…∶v n = ;⑵在1T内,2T内,3T内,…,n T内的位移之比为x1∶x2∶x3∶…∶x n = ;⑶在第1个T内,第2个T内,第3个T内,…,第n个T内的位移之比为:xⅠ∶xⅡ∶xⅢ∶…∶x N =____________________________________;⑷从静止开始通过连续相等的位移所用时间之比为t1∶t2∶t3∶…∶t n = ;⑸从静止开始通过连续相等的位移时的速度之比为v1∶v2∶v3∶…∶v n = ;5.自由落体运动:物体只在作用下,从开始下落的运动叫自由落体运动.⑴根本特征:只受,且初速度为、加速度为的匀加速直线运动.⑵根本规律:由于自由落体运动是直线运动,所以匀变速直线运动的根本公式及其推论都适用于自由落体运动.①速度公式:v = ;②位移公式:h = ;③位移与速度的关系:v2 = .⑶推论:①平均速度等于中间时刻的瞬时速度,也等于末速度的一半,即v平均= v/2 = ;在相邻的相等时间内下落的位移差Δh = 〔T为时间间隔〕.二.思考与练习思维启动1.依据给出的速度和加速度的正负,对物体运动性质的推断正确的选项是〔〕A.v > 0,a < 0,物体做加速运动B.v < 0,a < 0,物体做加速运动C.v < 0,a > 0,物体做减速运动D.v > 0,a >0,物体做加速运动2.一物体由静止开始沿光滑斜面做匀加速直线运动,运动6秒到达斜面底端,斜面长为18米,则:⑴物体在第3秒内的位移多大?⑵前3秒内的位移多大?3.甲物体的质量是乙物体质量的5倍,甲从H高处自由下落,同时乙从2H高处自由下落,以下说法中正确的选项是〔高度H远大于10 m〕〔〕A.两物体下落过程中,同一时刻甲的速率比乙的大B.下落1 s末,它们的速度相等C.各自下落1 m,它们的速度相等D.下落过程中甲的加速度比乙的大三.考点分类探讨典型问题〖考点1〗匀变速直线运动规律的应用【例1】珠海航展现场空军八一飞行表演队两架“歼-10〞飞机表演剪刀对冲,上演精彩空中秀.质量为m的“歼-10〞飞机表演后返回某机场,降落在跑道上减速过程简化为两个匀减速直线运动.飞机以速度v0着陆后马上翻开减速阻力伞,加速度大小为a1,运动时间为t1;随后在无阻力伞情况下匀减速直至停下.在平直跑道上减速滑行总路程为x.求:第二个减速阶段飞机运动的加速度大小和时间.【变式跟踪1】如下列图,是某型号全液体燃料火箭发射时第—级发动机工作时火箭的a– t图象,开始时的加速度曲线比较平滑,在120 s的时候,为了把加速度限制在4g以内,第—级的推力降至60%,第—级的整个工作时间为200s.由图线可以看出,火箭的初始加速度为15 m/s2,且在前50 s内,加速度可以看做均匀变化,试计算:⑴t = 50 s时火箭的速度大小;⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t =10 s时离地面的高度是多少?如果此时有一碎片脱落,不计空气阻力,碎片将需多长时间落地?〔取g = 10 m/s2,结果可用根式表示〕〖考点2〗自由落体运动和竖直上抛运动例2某人在高楼的平台边缘,以20 m/s的初速度竖直向上抛出一石子.不考虑空气阻力,取g=10 m/s2,求:⑴物体上升的最大高度;回到抛出点所用的时间;⑵石子抛出后通过距抛出点下方20 m处所需的时间.【变式跟踪2】在塔顶上将一物体竖直向上抛出,抛出点为A,物体上升的最大高度为20m,不计空气阻力,设塔足够高,则物体位移大小为10 m时,物体通过的路程可能为〔〕A.10 m B.20 m C.30 m D.50 m考点3:实际应用:汽车的“刹车〞问题.汽车刹车问题的实质是汽车做单方向匀减速直线运动问题.汽车在刹车过程中做匀减速直线运动,速度减为0后,车相对地面无相对运动,加速度消逝,汽车停止不动,不再返回.汽车运动时间满足t≤v0/a,发生的位移满足x≤v02/2a〔停止时取“=〞号〕.例3一辆汽车以10 m/s的速度沿平直的公路匀速前进,因故紧急刹车,加速度大小为0.2 m/s2,则刹车后汽车在1 min内通过的位移大小为〔〕A.240 m B.250 m C.260 m D.90 m【变式跟踪3】一辆公共汽车进站后开始刹车,做匀减速直线运动,开始刹车后的第1 s内和第2 s内位移大小依次为9 m和7 m,则刹车后6 s内的位移是〔〕C.25 m D.75 m四.考题再练高考真题1.〔202xX高考〕某航母跑道长200m,飞机在航母上滑行的最大加速度为6m/s2,起飞需要的X速度为50m/s.那么,飞机在滑行前,需要借助弹射系统获得的最小初速度为〔〕A.5m/s B.10m/s C.15m/s D.20m/s【预测1】中国首架空客A380大型客机在最大重量的状态下起飞需要滑跑距离约3000m,着陆距离大约为202xm.设起飞滑跑和着陆时都是匀变速运动,起飞时速度是着陆时速度的1.5倍,则起飞滑跑时间和着陆滑跑时间之比是〔〕A.3∶2 B.1∶1 C.1∶2 D.2∶12.〔202x全国卷大纲版〕一客运列车匀速行驶,其车轮在铁轨间的接缝处会产生周期性撞击.坐在该客车中的某旅客测得从第1次到第16次撞击声之间的时间间隔为10.0s.在相邻的平行车道上有一列货车,当该旅客经过货车车尾时,货车恰好从静止开始以恒定加速度沿客车行进方向运动.该旅客在此后的20.0s内,看到恰好有30节货车车厢被他连续超过.每根铁轨的长度为25.0m,每节货车车厢的长度为16.0m,货车车厢间距忽略不计.求:⑴客车运行速度的大小;⑵货车运行加速度的大小【预测2】小明同学乘坐“和谐号〞动车组,觉察车厢内有速率显示屏.当动车组在平直轨道上经历匀加速、匀速与再次匀加速运行期间,他记录了不同时刻的速率,局部数据列于表格中.动车组的总质量M = 2.0×105kg,假设动车组运动时受到的阻力是其重力的0.1倍,取g = 10m/s2.在小明同学记录动车组速率这段时间内,求:⑴动车组的加速度值;⑵动车组牵引力的最大值;⑶动车组位移的大小.五.课堂演练自我提升t/s v/m·s-1 0 30 100 40 300 50 400 50 500 60 550 70 600 801.一个物体从静止开始做匀加速直线运动.它在第1 s内与第2 s内的位移之比为x1∶x2,在走完第1 m时与走完第2 m时的速度之比为v1∶v2.以下说法正确的选项是〔〕A.x1∶x 2 = 1∶3,v1∶v2 = 1∶2 B.x1∶x2 = 1∶3,v1∶v2 = 1∶ 2C.x1∶x2 = 1∶4,v1∶v2 = 1∶2 D.x1∶x2 = 1∶4,v1∶v2 = 1∶ 22.某做匀加速直线运动的物体初速度为2 m/s,经过一段时间t后速度变为6 m/s,则t/2时刻的速度为〔〕A.由于t未知,无法确定t/2时刻的速度B.5 m/sC.由于加速度a及时间t未知,无法确定t/2时刻的速度D.4 m/s3.科技馆里有一个展品,该展品放在暗处,顶部有一个不断均匀向下喷射水滴的装置,在频闪光源的照耀下,可以看到水滴好似静止在空中固定的位置不动,如下列图.某同学为计算该装置喷射水滴的时间间隔,用最小刻度为毫米的刻度尺测量了空中几滴水间的距离,由此可计算出该装置喷射水滴的时间间隔为〔g取10 m/s2〕〔〕A.0.01 s B.0.02 s C.0.1 s D.0.2 s4.做匀减速直线运动的物体经4 s后停止,假设在第1 s内的位移是14 m,则最后1 s内的位移是〔〕A.3.5 m B.2 m C.1 m D.05.沙尘暴天气会严峻影响交通.有一辆卡车以54 km/h的速度匀速行驶,司机突然模糊看到正前方十字路口一个老人跌倒〔假设没有人扶起他〕,该司机刹车的反响时间为0.6 s,刹车后卡车匀减速前进,最后停在老人前1.5 m处,预防了一场事故.刹车过程中卡车加速度大小为5 m/s2,则〔〕A.司机觉察情况后,卡车经过3 s停下B.司机觉察情况时,卡车与该老人的距离为33 mC.从司机觉察情况到停下来的过程,卡车的平均速度为11 m/sD.假设卡车的初速度为72 km/h,其他条件都不变,则卡车将撞到老人6.从地面竖直上抛一物体A,同时在离地面某一高度处有一物体B自由下落,两物体在空中同时到达同一高度时速度大小均为v,则以下说法正确的选项是〔〕A.A上抛的初速度与B落地时速度大小相等,都是2vB.两物体在空中运动的时间相等C.A上升的最大高度与B开始下落时的高度相同D.两物体在空中同时到达的同一高度处肯定是B开始下落时高度的中点7.一条东西方向的平直公路边上有两块路牌A、B,A在西B在东,一辆匀速行驶的汽车自东向西经过B路牌时,一只小鸟恰自A路牌向B匀速飞去,小鸟飞到汽车正上方马上折返,以原速率飞回A,过一段时间后,汽车也行驶到A.以向东为正方向,它们的位移-时间图像如下列图,图中t2 = 2t1,由图可知〔〕A.小鸟的速率是汽车速率的两倍B.相遇时小鸟与汽车位移的大小之比是3:1C.小鸟飞行的总路程是汽车的1.5倍D.小鸟和汽车在0-t2 时间内位移相等8.汽车刹车后,停止转动的轮胎在地面上发生滑动产生明显的滑动痕迹,即常说的刹车线.由刹车线长短可以得知汽车刹车前的速度大小,因此刹车线的长度是分析交通事故的一个重要依据.假设某汽车刹车后至停止的加速度大小为7 m/s2,刹车线长为14 m,求:⑴该汽车刹车前的初始速度v0的大小;⑵该汽车从刹车至停下来所用的时间t0;⑶在此过程中汽车的平均速度.参考答案:一.考点整理匀变速直线运动规律1.保持不变同反2.v0 + at v0t + at2/2 2ax 3.aT2(v0 + v t)/22220tvv4.1∶2∶3∶…∶n 12∶22∶32∶…∶n21∶3∶5∶…∶(2n–1) 1∶(2–1)∶(3–2)∶…∶(n–n-1) 1∶2∶3∶…∶n5.重力静止重力零g初速度为零的匀加速gt gt2/2 2gh gt/2 gT2二.思考与练习思维启动1.BCD;速度和加速度都是矢量,假设二者符号相同,物体就做加速运动,故B、D正确;假设二者符号相反,物体就做减速运动,故A错误,C正确.2.⑴第1 s,第2 s,第3 s……第6 s内的位移之比为1∶3∶5∶7∶9∶11,因此第3秒内的位移xⅢ=51+3+5+7+9+11×18 m = 2.5 m,⑵将6 s的时间分成2个3 s,前3 s内的位移x3=11+3×18 m=4.5 m.3.BC三.考点分类探讨典型问题例1如图,A为飞机着陆点,AB、BC分别为两个匀减速运动过程,C点停下.A到B过程,依据运动学规律有:x1 = v0t1–12a1t12,v B = v0–a1t1,B到C过程,依据运动学规律有:x2 = v B t2–12a2t22,0 = v B–a2t2,A到C过程,有:x = x1 + x2,联立解得:a2 = (v 0–a1t1)2/(2x + a1t12– 2 v0t1) t2 = (2x + a1t12– 2v0t1)/( v 0–a1t1)变式1 ⑴因为在前50 s内,加速度可以看做均匀变化,则加速度图线是倾斜的直线,它与时间轴所围的面积就表示该时刻的速度大小,所以有:v = (1/2)(15+20)×50 m/s = 875 m/s.⑵如果火箭是竖直发射的,在t = 10 s前看成匀加速运动,则t = 10 s时离地面的高度是h=at2/2 =(1/2)×15×102 m = 750 m,如果有一碎片脱落,它的初速度v1=at=150 m/s,离开火箭后做竖直上抛运动,有-h = v1t-12gt2,代入数据解得t=5(3+15) s,t′=5(3-15) s舍去.例2 法1:⑴上升过程,匀减速直线运动,取竖直向上为正方向,v0 = 20 m/s,a1 = –g,v = 0,依据匀变速直线运动公式:v2–v02 = 2ax,v= v0 + at,得物体上升的最大高度:H = v02/2a1 = v02/2g = 20 m;上升时间:t1 = v0/g = 2 s;下落过程,自由落体运动,取竖直向下为正方向.v02 = 0,a2 = g,回到抛出点时,x1 = H,到抛出点下方20 m处时,x2 = 40 m,依据自由落体公式,得下落到抛出点的时间:t2=2x1g =2×2010s=2 s,回到抛出点所用的时间为t = t1+t2 = 4 s.⑵下落到抛出点下方20 m处的时间:t2′=2x2g=2×4010s = 2 2 s;从抛出到落到抛出点下方20 m处所经历时间为t′ = t1 + t2′= 2(1+2) s.法2:⑴全过程分析,取向上为正方向,v0 = 20 m/s,a= –g,最大高度时v = 0,回到原抛出点时x1 =0 m,由匀变速运动公式得最大高度:H = v02/2g = 20 m,回到原抛出点:x1 = v0t–12gt2,t = 2 v0/g =4 s.⑵落到抛出点下方20 m处时,x = – 20 m:x = v0t2–12gt22,代入数据得:–20 = 20t2–12×10t22,解得⎩⎨⎧t2=〔2+22〕 s t2′=〔2-22〕 s.舍去.所以石子落到抛出点下方20 m 处所需时间t 2=2(1+2) s 变式2 A CD ;物体在塔顶上的A 点抛出,位移大小为10 m 的位置有两处,如下列图,一处在A 点之上,另一处在A 点之下,在A 点之上时,通过位移为10 m 处又有上升和下降两种过程,上升通过时,物体的路程s 1等于位移x 1的大小,即s 1=x 1=10 m ;下落通过时,路程s 2=2H -x 1=2×20 m -10 m =30 m ,在A 点之下时,通过的路程s 3=2H +x 2=2×20 m +10 m =50 m .故A 、C 、D 正确例3 B ;因汽车刹车后一直做匀减速直到运动速度为零为止,所以t = v 0/a = 50 s ,所以汽车刹车后在1 min内通过的位移为x = v 0t /2 = 250 m . 变式3 C ;因汽车做匀减速直线运动.由x = v 0t +12at 2得 9=v 0×1-12a ×12,9+7=v 0×2-12a ×22,解得v 0 = 10 m/s ,a = 2 m/s 2.汽车从刹车到停止所需时间t = v 0/a = 5s ;刹车后6 s 内的位移即5 s 内的位移x = v 0t – 12at 2,代入数据解得x = 25 m .四.考题再练 高考真题 1.B预测1:B ;由x = v t /2解得起飞滑跑时间和着陆滑跑时间之比是 t 1:t 2 =(x 1/x 2)(v 2/v 1) =1∶1,选项B 正确. 2.⑴ 设连续两次撞击铁轨的时间间隔为Δt ,每根铁轨长度为l ,则客车速度为v = l /Δt ,其中l = 25.0m 、Δt = 10.0/(16–1) s 得 v = 37.5m/s .⑵ 设从货车开始运动后t = 20.0s 内客车行驶了s 1米,货车行驶了s 2米,货车加速度为a ,30节货车车厢的总长度为L = 30×16.0m .由运动学公式有 s 1 = v t 、s 2 = at 2/2,由题给条件有L = s 1 – s 2,联立上述各式,并代入数据解得a = 1.35m/s 2.预测2:⑴ 通过记录表格可以看出,动车组有两个时间段处于加速状态,设加速度分别为a 1、a 2,由 a =Δv /Δt 代入数据后得a 1 = 0.1m/s 2、a 2 = 0.2m/s 2.⑵ 由牛顿第二定律 F - F f = Ma ,F f = 0.1Mg 当加速度大时,牵引力也大.代入数据得 F = F f + Ma 2 =2.4×105N .⑶ 通过作出动车组的 v – t 图可知,第—次加速运动的结束时刻是200s ,第二次加速运动的开始时刻是450s .x 1 = (v 1 + v 2)/2]t 1、x 2 = v 2t 2、x 3 = (v 2 + v 3)/2]t 3、x = x 1 + x 2 + x 3,代入数据解得x = 30250m .五.课堂演练 自我提升1.B ;由x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶xn =1∶3∶5∶…∶(2n – 1)知x 1∶x 2=1∶3,由x =12at 2知t 1∶t 2=1∶2,又v=at 可得v 1∶v 2=1∶2,正确.2.D ;中间时刻的速度等于这段时间内的平均速度,即v t/2 = (v 0 + v )/2 = 4 m/s3.C ;自上而下第—、二和三点之间的距离分别为x 1 = (10.00 – 1.00)×10-2 m = 9.00×10-2 m ,x 2 = (29.00 –10.00)×10-2 m =19.00×10-2 m ,依据公式Δx = aT 2得x 2–x 1 = gT 2,故T = 0.1 s . 4.B ;设加速度大小为a ,则开始减速时的初速度大小为v 0=at =4a ,第1 s 内的位移是x 1=v 0t 1-12at 12=3.5a = 14 m ,所以a =4 m/s 2,物体最后1 s 的位移是x =12at 22=2 m .此题也可以采纳逆向思维的方法,把物体的运动看做是初速度为零的匀加速直线运动,其在连续相邻相等时间内的位移之比为1∶3∶5∶7,第4 s 内的位移是14 m ,所以第1 s 内的位移是2 m .5.BD ;v 0=15 m/s ,故刹车后卡车做匀减速运动的时间t 2 = v 0/a = 3 s ,故卡车经过3.6 s 停下来,A 错误;卡车与该老人的距离x =v 0t 1 + v 02/2a +Δx =33 m ,B 正确;v 平 = (x –Δx )/(t 1 + t 2) =8.75 m/s ,C 错误;x ′ = v ′t 1 + v ′2/2a = 52 m > 33 m ,所以D 正确.6.AC ;设两物体从下落到相遇的时间为t ,竖直上抛物体初速度为v 0,由题gt = v 0 – gt = v 得v 0=2v .故A 正确.依据竖直上抛运动的对称性可知,B 自由落下到地面的速度为2v ,在空中运动时间为t B = 2v /2g ,A 竖直上抛,在空中运动时间t A = 2×(2v /g ) = 4v /g .故B 错误.物体A 能上升的最大高度h A = (2v )2/2g ,B 开始下落的高度h B =g (2v /g )2/2,显然两者相等.故C 正确.两物体在空中同时到达同一高度为h = gt 2/2 = g (v /g )2/2 = v 2/2g = h B /4.故D 错误.应选AC7.BC ;设AB 之间的距离为L ,小鸟的速率是v 1,汽车的速率是v 2,小鸟从出发到与汽车相遇的时间与返回的时间相同,故它们相向运动的时间为t 1/2,则在小鸟和汽车相向运动的过程中有v 1t 1/2 + v 2t 1/2 = L ,即〔v 1 + v 2〕t 1/2 = L ,对于汽车来说有v 2t 2 = L ;联立以上两式可得v 1 =3 v 2,故A 错误B 正确.汽车通过的总路程为x 2 = v 2t 2,小鸟飞行的总路程为x 1 = v 1t 1=3 v 2×(t 2/2) = (3/2)x 2,故C 正确.小鸟回到出发点,故小鸟的位移为0,故D 错误.应选BC .8.⑴ 由题意依据运动学公式v 2 – v 20 = 2ax 得– v 20 = 2ax 代入数据解得v 0 = 14 m/s . ⑵ 法1:由v = v 0 + at 0得t 0 = (v – v 0)/a = 2s ;法2:(逆过程) 由x = 12at 02 得t 0 =2xa= 2 s . ⑶ 法1:v 平均 = x /t = 7 m/s ;法2:v 平均 = (v 0 + v )/2 = 7 m/s .附:9.物体以肯定的初速度v 0冲上固定的光滑斜面,到达斜面X 点C 时速度恰为零,如下列图.物体第—次运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间. 法1〔比例法〕:对于初速度为0的匀加速直线运动,在连续相等的时间里通过的位移之比为 x 1∶x 2∶x 3∶…∶x n = 1∶3∶5∶…∶(2n – 1),现有x BC ∶x AB = (x AC /4)∶(3x AC /4) = 1∶3,通过x AB 的时间为t ,故通过x BC 的时间t BC = t . 法2〔中间时刻速度法〕:中间时刻的瞬时速度等于这段位移的平均速度.v AC = (v 0 + 0)/2 = v 0/2,又v 02 =2ax AC ① v B 2 = 2ax BC ② x BC = x AC /4 ③ 解①②③得:v B = v 0/2,可以看出v B 正好等于AC 段的平均速度,因此B 点是中间时刻的位置.因此有t BC = t . 法3〔利用有关推论〕:对于初速度为0的匀加速直线运动,通过连续相等的各段位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n = 1∶(2-1)∶(3-2)∶(4-3)∶…∶(n-n -1).现将整个斜面分成相等的四段,如下列图.设通过BC段的时间为t x ,那么通过BD ,DE ,EA 的时间分别为:t BD = (2-1)t x ,t DE = (3-2)t x ,t EA = (2-3)t x ,又t BD + t DE + t EA = t ,得t x = t .v /m·s -1t/s100 200 300 400 500 600 20406080。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动规律
名词解释
1、汽车的夸张的惯性运动
答:汽车快速行驶时,突然刹车,由于轮胎与地面之间的摩擦力以及车身继续向前惯性运动而造成的挤压力,会使轮胎变为椭圆形变形比较明显;车身由于惯性,虽然也略微向前倾斜,但变形不明显。

2、曲线运动的三个类型:
答:弧形曲线运动、波形曲线运动、S行曲线运动
3、人走路的基本规律:
答:(1)前进时整个身躯呈波浪式前进,步子跨开时身体最低,一腿直立垂直支撑时身体最高。

(2)两脚交替时和两手交替时的动作是相反方向的运动。

因此,肩部和盆骨也是相反的倾斜运动。

(3)手的摆动以肩胛骨为轴心做弧线摆动。

(4)一脚作支撑,另一脚提起迈步,循环交替,支撑力随着身体前进的重心而变化,脚踝与地面成呈弧线运动规律往前运动。

4、鸡的走路运动规律
答:(1)双脚前后交替运动,走路时身体左右摇摆
(2)走步时,为了保持身体的平衡,头和脚互相配合运动
5、鸭鹅划水运动规律
答:(1)双脚前后交替划水,动作柔和
(2)左脚逆水向后划水时,脚蹼张开,形成外弧线运动,动作有
力;右脚与此同时向上收回,脚蹼缩紧,成内弧线运动,动作柔和,以减小水的阻力
(3)身体的尾部,随着脚在水中后划和前收的运动,会略向左右摆动。

6、有足类运动规律:
答:爬行时四肢前后交替运动,有尾巴的随着身体运动左右摇摆,保持平衡。

7、无足类运动规律:
答:身体向两旁做S形曲线运动。

简答题
1、四足动物两只脚接触地面的顺序:
答:左后脚、左前脚、右后脚、右前脚
2、四足动物的正确走路方式:
答:如果右前腿先向前开步,对角线的左后腿就会跟着往先走,接着是左前腿向前走,再就是右后腿跟着想向前走。

3、四足动物的后脚形态可分为哪两类:
答:“趾”行和“蹄”行
4、人的跳跃运动规律:
答:由身体屈缩、蹬腿、腾空、蜷身、着地、还原等几个动作姿态所组成
(1)双手自然握拳。

(2)在起跳时,双臂向前、向上带动身体腾空。

双腿踏地后,蜷起
向前伸。

(3)在落地这一环节时,双臂从侧前方向下运动,上身压低带动重心前移。

5、人在走路时同侧的手和脚是做什么运动的:弧线运动
6、兽类跳跃时的运动状态:
答:一般情况下是跃出前,躯干往后缩成蹲状,准备力量。

然后利用强有力的后腿猛力一蹬,把身躯弹出。

身躯悬空运动过程中,前肢弯起伸向前方,准备着地。

着地时,前肢先接触地面,承受身体前冲运动的惯性作用,身躯会由挺直到蜷缩着,后腿着地后冲力减弱才恢复原状。

相关文档
最新文档