人教版第2课时 菱形的判定
菱形 第二课时 菱形的判定 课件人教版数学八年级下册
2.已知四边形ABCD的对角线互相平分,添加下列条件可以使它成 为菱形的是(C )
A.一组对边相等 C.对角线垂直
B.对角线相等 D.一个内角为900
3.如图,在Rt∆ABC中,∠ACB=900,□BCDE的顶点E在边AB上,
连接CE、AD,添加一个条件,可以使
A
ADCE成为菱形的是( C )
A. CE⊥AB
有一组邻边相等的平行四边形叫做菱形.
平行四边形 一组邻边相等
菱形
菱 形
边
两组对边平行 四条边相等
的 性
角
两组对角分别相等 邻角互补
质
对角线
两条对角线互相垂直平分 每一条对角线平分一组对角
根据菱形的定义,可得菱形的第一个判定的方法:
有一组邻边相等的平行四边形叫做菱形.
几何语言
∵ 四边形 ABCD 是平行四边形,
B
F
∴ △AOE≌△COF,∴EO =FO.
2
C
∴ 四边形 AFCE 是平行四边形.
又∵ EF⊥AC
∴ 四边形 AFCE 是菱形.
例2 如图,顺次连接矩形 ABCD 各边中点,得到四
边形 EFGH,求证:四边形 EFGH 是菱形.
证明:连 AC、BD.
A
E
D
∵ 四边形 ABCD 是矩形,
∴ AC = BD.
D
∴ 四边形 OCED 是平行四边形.
∵ 四边形 ABCD 是矩形,
O
E
∴ OC = OD,
B
C
∴ 四边形 OCED 是菱形.
6、如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长 DE到点F,使得EF=BE,连接CF. (1)求证:四边形BCFE是菱形; (2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
人教版数学八年级下册18.2.2第2课时《菱形的判定》说课稿
人教版数学八年级下册18.2.2第2课时《菱形的判定》说课稿一. 教材分析《菱形的判定》是人教版数学八年级下册18.2.2第2课时的一节内容。
本节课的主要内容是让学生掌握菱形的判定方法,并能够运用这些方法解决实际问题。
教材通过引入平行四边形和矩形的性质,引导学生探究菱形的性质,从而得出菱形的判定方法。
教材还通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析学生在学习本节课之前,已经学习了平行四边形和矩形的性质,对这两种图形的性质有一定的了解。
但是,学生对菱形的性质和判定方法可能比较陌生,需要通过课堂学习和练习来掌握。
此外,学生可能对数学证明的方法和技巧还不够熟练,需要在课堂上进行引导和培养。
三. 说教学目标1.知识与技能目标:学生能够掌握菱形的判定方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:学生通过观察、操作、探究等活动,培养自己的观察能力、动手能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握菱形的判定方法,并能够运用这些方法解决实际问题。
2.教学难点:学生对菱形判定方法的灵活运用,以及对数学证明的方法和技巧的掌握。
五. 说教学方法与手段1.教学方法:本节课采用问题驱动法、合作交流法和引导发现法进行教学。
2.教学手段:利用多媒体课件进行辅助教学,通过展示图片、动画等形式,帮助学生直观地理解菱形的性质和判定方法。
六. 说教学过程1.导入:通过展示一些生活中的菱形图形,如钻石、骰子等,引导学生对菱形产生兴趣,激发学生的学习动机。
2.探究菱形的性质:学生通过观察、操作等活动,发现菱形的性质,教师引导学生总结出菱形的判定方法。
3.讲解与练习:教师通过讲解例题,引导学生运用菱形的判定方法解决问题,然后布置一些练习题,帮助学生巩固所学知识。
4.课堂小结:教师引导学生总结本节课的主要内容和知识点,帮助学生形成知识体系。
人教版八年级数学下册《18.2.2 第2课时 菱形的判定 》优课教案(配套A)
18.2.2 菱形的判定一、教学目标:知识技能: 经历菱形的判定方法的探究过程,掌握菱形的四种判定方法.数学思考: 1、经历利用菱形的定义探究菱形其他判定方法的过程,培养学生的动手实验、观察、推理意识,发展学生的形象思维和逻辑推理能力.2、根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力和演绎能力.解决问题: 1、尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝试评价不同判定方法之间的差异.2、通过对菱形判定过程的反思,获得灵活判定四边形是菱形的经验. 情感态度: 在探究菱形的判定方法的活动中获得成功的体验,通过运用菱形的判定和性质,锻炼克服困难的意志,建立自信心.二、教学重点:菱形判定方法的探究.三、教学难点: 菱形判定方法的探究及灵活运用.四、教学过程:活动1、引入新课,激发兴趣1、复习(1)菱形的定义:一组邻边相等的平行四边形是菱形。
(2)菱形的性质1 菱形的两组对边分别平行,四条边都相等;性质2 菱形的两组对角分别相等,邻角互补;性质3 菱形的两条对角线互相平分;菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
2、导入:要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?活动2、探究与归纳菱形的判定方法【问题牵引1】操作探究:学生动手操作,用手中四根长短一样的木棒,首位顺次相接,组成四边形,想一想,这个四边形是什么特殊的四边形,为什么?学生观察思考后,展开讨论,指出该四边形四条边相等,即有两组对边相等,它首先是一个平行四边形,又有一组邻边相等,根据菱形定义即可判定该四边形是菱形。
得出从一般的四边形直接判定菱形的方法:四边相等的四边形是菱形。
学生进行几何论证,教师规范学生的证明过程。
【归纳定理】从一般的四边形直接判定菱形的方法(判定定理1):四边相等的四边形是菱形。
展示几何语言:分析:从简单的问题出发,运用菱形的判定方法判定四边形是菱形让学生在证明过程中,掌握菱形的第二种判别方法的应用,达到“学数学,用数学”的目的,进一步培养学生解决问题的能力。
人教版八年级下册数学第2课时 菱形的判定教案
第2课时菱形的判定教学设计课题菱形的判定授课人素养目标 1.理解并掌握菱形的判定方法,体会类比数学思想方法的作用.2.引导学生从边和对角线探究菱形的判定定理,养成主动探索的学习习惯.3.运用菱形的判定方法进行证明或计算,发展学生的推理能力.教学重点菱形的判定方法的理解与应用.教学难点菱形的判定定理与性质定理的区别和联系教学活动教学步骤师生活动活动一:类比推理,导入新课设计意图通过类比学习,激发学生的好奇心和求知欲,引入本节课要研究的内容.【类比导入】前面我们学习平行四边形和矩形时,都可以用性质得出相应的判定,那么我们学习菱形的判定时是否也可以反推菱形的性质来得到它的判定呢?我们大家一起来尝试一下吧!【教学建议】引导学生进行类比、思考、分析,由平行四边形和矩形的判定推断菱形的判定,并回忆上一课时菱形的概念.活动二:动手验证,探究新知设计意图通过图形的变化,让学生感受四边形是菱形时对角线的特征,引导学生得出菱形的判定方法.探究点1对角线互相垂直的平行四边形是菱形如图,用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.(1)转动木条,这个四边形总有什么特征?它是什么四边形?答:这个四边形的对角线总是互相平分,它是平行四边形.(2)继续转动木条,观察橡皮筋围成的四边形什么时候变成菱形?答:当这个四边形的对角线互相垂直时变成菱形.猜想:对角线互相垂直的平行四边形是菱形.【教学建议】让学生动手实践得到菱形的判定方法,教师注意提醒学生:这里对角线互相垂直的前提条件是在平行四边形内,如果是一般的四边形,则应教学步骤师生活动设计意图利用逆向思维思考性质,让同学们在解决问题的过程中总结判定定理.下面我们来进行验证:已知:如图,在ABCD 中,对角线AC ,BD 相交于点O ,且BD ⊥AC.求证:ABCD 是菱形.证明:∵四边形ABCD 是平行四边形,∴AO =CO.∵BD ⊥AC ,∴AB =BC(线段垂直平分线上的点到这条线段两个端点的距离相等).∴ABCD 是菱形.归纳总结:对角线互相垂直的平行四边形是菱形.几何语言:∵四边形ABCD 是平行四边形,且AC ⊥BD ,∴ABCD 是菱形.例1(教材P 57例4)如图,ABCD 的对角线AC ,BD 交于点O ,且AB =5,AO =4,BO =3.求证:ABCD 是菱形.证明:∵AB =5,AO =4,BO =3,∴AB 2=AO 2+BO 2,∴∠AOB =90°.∴AC ⊥BD ,∴ABCD 是菱形.【对应训练】1.如图,在ABCD 中,对角线AC 与BD 交于点O ,若添加一个条件,可推出ABCD 是菱形,则该条件可以是(C )A.AB =AC B .AC =BD C.AC ⊥BD D .AB ⊥AC2.教材P58练习第2题.探究点2四条边相等的四边形是菱形老师拿四根长度一样的新粉笔,首尾顺次相接拼成一个四边形,在黑板上画出相应的图形并标上字母(如图),得到的四边形ABCD 是菱形吗?是猜想:四条边相等的四边形是菱形.下面我们来进行验证:如图,在四边形ABCD 中,AB =BC =CD =AD.求证:四边形ABCD 是菱形.证明:∵AB =CD ,BC =AD ,∴四边形ABCD 是平行四边形.又AB =BC ,∴四边形ABCD 是菱形.归纳总结:四条边相等的四边形是菱形.几何语言:∵AB =BC =CD =AD ,∴四边形ABCD 是菱形.【对应训练】1.如图,在矩形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点.求证:四边形EFGH 是菱形.证明:∵四边形ABCD 是矩形,∴∠A =∠B =∠C =∠D =90°,AD =BC ,AB =CD.满足对角线互相垂直且平分.【教学建议】提醒学生:若已知邻边相等,要证明这个四边形是菱形,可用两种方法:(1)先证明这个四边形是平行四边形,再利用邻边相等得到菱形;(2)直接证明四条边都相等.教学步骤师生活动∵E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,∴AH =DH =BF =CF ,AE =BE =CG =DG.∴△AHE ≌△BFE ≌△CFG ≌△DHG(SAS),∴HE =FE =FG =HG ,∴四边形EFGH 是菱形.2.教材P58练习第3题.活动三:综合运用,巩固提升设计意图巩固学生对菱形的判定的认识.例2如图,在ABCD 中,BF 平分∠ABC 交AD 于点F ,AE ⊥BF于点O ,交BC 于点E ,连接EF.(1)求证:四边形ABEF 是菱形;(2)若AE =6,BF =8,CE =3,求ABCD 的面积.(1)证明:∵四边形ABCD 是平行四边形,∴AO =EO ,AD ∥BC ,∴∠EBF =∠AFB.∵BF 平分∠ABC ,∴∠ABF =∠EBF ,∴∠ABF =∠AFB ,∴AB =AF.∵BO ⊥AE ,AO =EO ,∴AB =EB ,∴BE =AF.∵BE ∥AF ,∴四边形ABEF 是平行四边形.又AB =AF ,∴ABEF 是菱形.(2)解:如图,过点F 作FG ⊥BC 于点G.∵四边形ABEF 是菱形,AE =6,BF =8,OE =12AE =3,OB =12BF=4.在Rt △BOE 中,BE =OB 2+OE 2=42+32=5.∵S 菱形ABEF =12AE·BF =BE·FG ,∴12×6×8=5FG ,∴FG =245.∵BC =BE +CE =5+3=8,∴SABCD =BC·FG =8×245=1925.【教学建议】学生独立思考并完成例题,教师点评.提醒学生注意:(1)已知角方面的条件可考虑利用其得到边的相等关系,为证明菱形创造条件;(2)进行第(2)问计算时,求ABCD 的面积,可利用第(1)问的结论,先由菱形的两种面积计算方法求得关键的线段长.活动四:随堂训练,课堂总结【随堂训练】相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:菱形的判定方法有哪几种?矩形和菱形小结:【知识结构】【作业布置】1.教材P 60习题18.2第6,10题.2.相应课时训练.教学步骤师生活动板书设计18.2.2菱形第2课时菱形的判定解题方法:根据题设条件灵活选择菱形的判定方法.(1)用边来判定:①先说明四边形是平行四边形,再说明有一组邻边相等;②说明四边形的四条边都相等.(2)用对角线进行判定:①先说明四边形是平行四边形,再说明四边形的对角线互相垂直;②说明四边形的对角线互相垂直平分.注意:对角线垂直的四边形不一定是菱形,必须是对角线互相垂直的平行四边形才是菱形.例1如图,四边形ABCD 是平行四边形,DE ∥BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF.(1)求证:AE =CF ;(2)若BE =DE ,求证:四边形EBFD 为菱形.证明:(1)∵四边形ABCD 是平行四边形,∴AD =CB ,AD ∥CB ,∴∠DAE =∠BCF.∵DE ∥BF ,∴∠DEF =∠BFE ,∴∠AED =∠CFB.在△ADE 和△CBF中,∠DAE =∠BCF ,∠AED =∠CFB ,AD =CB ,∴△ADE ≌△CBF(AAS ),∴AE =CF.(2)由(1)知△ADE ≌△CBF ,∴DE =BF.∵DE ∥BF ,∴四边形EBFD 是平行四边形.又BE =DE ,∴四边形EBFD 为菱形.例2如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF ⊥AC ,分别交AB ,DC 于点E ,F ,连接AF ,CE.(1)若OE =32,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AO =CO ,∴∠FCO =∠EAO.在△AOE 和△COF 中,∠FCO =∠EAO ,AO =CO ,∠AOE =∠COF ,∴△AOE ≌△COF(ASA ).∴OE =OF =32,∴EF =2OE =3.(2)四边形AECF 是菱形.理由:∵△AOE ≌△COF ,∴AE =CF.∵AE ∥CF ,∴四边形AECF 是平行四边形.1.菱形的概念.2.菱形的判定定理1.3.菱形的判定定理2.教学反思新课导入时让学生动手制作菱形,感知菱形判定的条件,让学生在轻松愉快的氛围中自然、水到渠成地得到菱形的判定定理.在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.又EF ⊥AC ,∴四边形AECF 是菱形.例1如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,AB =3,AC =2,则四边形ABCD 的面积为(A )A .42B .62C .82D .5解析:如图,过点A 分别作AE ⊥CD 于点E ,AF ⊥BC 于点F ,连接BD 交AC 于点O.∵两条纸条宽度相同,∴AE =AF.∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ABCD =BC·AF =CD·AE ,AE =AF ,∴BC =CD ,∴四边形ABCD 是菱形.∴AO =CO =12AC =12×2=1,BO =DO ,AC ⊥BD.∴BO =AB 2-AO 2=32-12=22,∴BD =4 2.∴四边形ABCD 的面积=12BD·AC =12×42×2=42.故选A .例2如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB的延长线上,且DE =BF ,连接AE ,CF.(1)求证:△ADE ≌△CBF ;(2)连接AF ,CE.当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形?请说明理由.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD =CB.∴∠ADB =∠CBD ,∴∠ADE =∠CBF.在△ADE 和△CBF =CB ,ADE =∠CBF ,=BF ,∴△ADE ≌△CBF(SAS ).(2)解:当BD 平分∠ABC 时,四边形AFCE 是菱形.理由:∵BD 平分∠ABC ,∴∠ABD =∠CBD.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,AD ∥BC ,∴∠ADB =∠CBD.∴∠ABD =∠ADB ,∴AB =AD ,∴ABCD 是菱形.∴AC ⊥BD ,∴AC ⊥EF.∵DE =BF ,∴OE =OF.又OA =OC ,∴四边形AFCE 是平行四边形.∵AC ⊥EF ,∴四边形AFCE 是菱形.。
人教版八年级下册数学《菱形》平行四边形说课复习(第2课时菱形的判定)
证明:∵四边形ABCD是平行四边形, ∴AO=CO,又∵AC⊥BD, ∴AB=BC(线段垂直平分线上 的点到两个端点的距离相等)
∴ 四边形ABCD是菱形.(菱形的定义)
命题2:四条边都相等的四边形是菱形.
已知:四边形ABCD中,AB=BC=CD=AD. 求证:四边形ABCD是菱形.
同步练习
1. 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=5,OA=4, OB=3. 求证:四边形ABCD是菱形. 证明:∵AB=5,OA=4,OB=3, ∴AB2=AO2+BO2, ∴△ABO为直角三角形, ∴___A__C_⊥__B_D_____, ∵四边形ABCD为平行四边形, ∴四边形ABCD为菱形. (依据:__对__角__线__互__相__垂__直__的__平__行__四__边__形__是__菱__形___)
自学释疑、拓展提升
知识点一:菱形的定义与性质
问题解决:
例1.如图,在菱形ABCD中,∠ABC与∠的度数比为1:2,周长是48cm, 求:(1)求两条对角线的长度;
(2)求菱形的面积.
自学释疑、拓展提升
知识点一:菱形的定义与性质
归纳总结:
你能说说该题的解题思路吗?
直接利用菱形的性质得出∠ABO=300,进而求出AO,BO的长即可得出答案; 直接利用菱形面积等于对角线乘积的一半,即可得出答案.
转换到判定(3))
归纳总结
四边形 + 四条边相等
菱形
四边形 + 对角线垂直平分
菱形
平行四边形 + 一组邻边相等
菱形
平行四边形 + 对角线垂直
菱形
例1 如图, 四边形 ABCD的对角线AC、BD相交于点O,
人教版18.2.2-菱形的判定公开课学习资料
(1)一边长为5cm平行四边形的两 条对角线的长分别为6cm和8cm, 那么平行四边形的面积是 24㎝²。
1.□ABCD的对角线AC与BD相交于点O, (1)若AB=AD,则□ABCD是 形; (2)若AC=BD,则□ABCD是 形; (3)若∠ABC是直角,则□ABCD是 形 (4)若∠BAO=∠DAO,则□ABCD是 形。
菱形ABCD的性质:D
1.具有平行四边形的 一切性质。
56
A
1 2
O
3 4
C
78
B
2.菱形本身具有的特殊性质:
菱形的四条边都相等;
菱形的两条对角线互相垂直, 并且每一 条对角线平分一组对角.
3.菱形的面积,等于菱形对角线乘积的一半.
菱形的判定
一组邻边相等的平行四边形是菱形
A
D AB=BC
A
D
B
C
□ABCD
菱形的判定:
四条边都相等的四边形是菱形.
A
D AB=BC=CD=DA A
D
B C
四边形ABCD
B
C
菱形ABCD
∵AB=BC=CD=DA
∴四边形ABCD是菱形
菱形常用的判定方法:
• 有一组邻边相等的平行四边形叫做菱形.
+邻边相等 =
• 对角线互相垂直的平行四边形是菱形.
+对角线线互相垂直=
• 有四条边相等的四边形是菱形.
A
B
D
C
例1: ABCD的两条对角线AC、 BD相交于点O,AB=5,AO=4, BO=3 求证: ABCD是菱形
D
A OC
B
练习: ABCD的两条对角线AC、 BD相交于点O,AB=5,AC=8, DB=6 证:四边形ABCD是菱形
人教版数学八年级下册18.2.2 第2课时 菱形的判定2.ppt
∴四边形ABCD是菱形.
∴四边形ABCD是菱形. (有一组邻边相等的平行四边形叫做菱形)
知识要点
菱形的判定
文字语言
图形语言
符号语言
判定定 理1
判定 定理2
对角线互相垂直的 平行四边形是菱形
四边相等的四边形 是菱形
A O
D ∵□ABCD
AC⊥BD
B
C
∴四边形ABCD是菱形
A
D ∵AB=BC=CD=DA
请根据您的具体内容酌情修改。
MORE THAN TEMPLATE
点击此处添加副标题
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。 。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。 。
您的内容打在这里,或者通过复制您的文本后, 在此框中选择粘贴,并选择只保留文字。 。
点击此处添加副标题
Step 02
Lorem ipsum dolor sit amet, consectetur
adipiscing elit.
Step 04
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Step 01
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
矩形与菱形
矩形
菱形
定义
有一角是直角的平行 有一组邻边相等的平
四边形叫做矩形.
行四边形叫做菱形.
平行四边形的性质
性边 质角
四个角都是直角
四条边都相等
对角线
相等
互相垂直且平分每一组对 角
人教版第2课时 菱形的判定
9.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四
ቤተ መጻሕፍቲ ባይዱ
边形一定是( B )
A.平行四边形
B.对角线相等的四边形
C.矩形
D.对角线互相垂直的四边形
10.(2019·永州)如图,四边形 ABCD 的对角线相交于点 O,且点 O 是 BD 的中点.若 AB=AD=5,BD=8,∠ABD=∠CDB,则四边 形 ABCD 的面积为(B )
∴△ADC≌△ABC(SSS).
∴∠1=∠2.
(2)四边形 BCDE 是菱形. 理由:∵∠1=∠2,CD=BC, ∴OB=OD,AC⊥BD. ∵OE=OC, ∴四边形 DEBC 是平行四边形. 又∵AC⊥BD, ∴四边形 DEBC 是菱形.
03 综合题
12.(2018·南阳内乡县期末)如图,在等边△ABC 中,BC=6 cm,射线 AG∥BC,点 E 从点 A 出发沿射线 AG 以 1 cm/s 的速度运动,同时点 F 从 点 B 出发沿射线 BC 以 2 cm/s 的速度运动,设运动时间为 t(s)?
②当点 F 在 C 的右侧时,根据题意得:AE=t cm,BF=2t cm, 则 CF=BF-BC=(2t-6)cm, ∵AG∥BC, ∴当 AE=CF 时,四边形 AEFC 是平行四边形, 即 t=2t-6. 解得 t=6. 综上可得:当 t=2 或 6 时,以 A,C,E,F 为顶点的四边形是平 行四边形.
证明:∵DE∥AC,DF∥AB, ∴四边形 AEDF 为平行四边形,∠FAD=∠EDA. ∵AD 是∠BAC 的平分线, ∴∠EAD=∠FAD. ∴∠EDA=∠EAD.∴AE=ED. ∴四边形 AEDF 是菱形.
知识点 2 对角线互相垂直的平行四边形是菱形 3.如图,四边形 ABCD 的对角线互相垂直,且满足 AO=CO, 请你添加一个适当的条件 BO=DO(答案不唯一) ,使四边形 ABCD 成为菱形.(只需添加一个即可)
最新初中人教版八年级数学下册第2课时菱形的判定课件
解:MN 与 PQ 互相垂直平分.证明:连接 PM,MQ ,NP,NQ.在△DAB 中,∵P,M 1 1 1 1 是 BD ,AD 的中点,∴PM= AB.同理:PN= CD ,MQ = CD,NQ= AB.∵AB=CD ,∴ 2 2 2 2 PM=PN=NQ=MQ.∴四边形 MPNQ 是菱形.∴MN 与 PQ 互相垂直平分.
解: (1) 证明: ∵ D , E 分别是 AB , AC 的中点 , ∴ DE 是 △ ABC 的 中 位 线 , ∴ DE∥BC. 又 ∵EF∥AB,∴四边形DBFE是平行四边形.
1 (2)当 AB= BC 时,四边形 DBFE 是菱形.理由:∵D 是 AB 的中点,∴BD = AB.∵DE 是 2 1 △ABC 的中位线 ,∴DE= BC. ∵AB=BC,∴BD =DE.又∵四边形 DBFE 是平行四边形, 2 ∴四边形 DBFE 是菱形.
B
A
解:四边形BFEG是菱形.理由如下:∵FG垂 直平分 BE.∴BO= EO , ∠BOG= ∠ EOF = 90° , 即 FG⊥BE. 在 矩 形 ABCD 中 , AD∥BC , ∴∠GBO = ∠ FEO.∴△BOG≌△EOF(ASA) , ∴BG = EF.∴ 四 边 形 BFEG 是 平 行 四 边 形 , 又 ∵FG⊥BE,∴四边形BFEG是菱形.
解: (1) 证明: ∵ 四边形 ABCD 是平行四边形 , ∴AD∥BC,∴∠EAO=∠FCO,∵O是AC的中点, ∴OA=OC,在△AOE和△COF中, ∴△AOE≌△COF(ASA) (2)EF⊥AC 时 , 四 边 形 AFCE 是菱形;理由如下: ∵ △ AOE≌△COF , ∴AE = CF , ∵AE∥CF , ∴ 四边形 AFCE 是平 行四边形 , ∵EF⊥AC , ∴ 四边形 AFCE 是菱 形.
八下数学《菱形的判定》说课稿【人教版】
人教版义务教育教科书《数学》八年级下册18.2.2 第二课时菱形的判定一、教学内容分析1.内容本节课选自人教版八年级下册18.2.2 第2课时,主要内容是菱形的判定.2.内容解析本节内容是在学生学习了平行四边形和矩形的判定基础上来学习菱形的判定.菱形也是继学习了矩形后的另一种特殊的平行四边形.菱形的判定需要让学生经历判定定理的生和理解过程,培养学生的几何直观.判定定理的学习需要学生经历观察、猜想、验证、应用等学习过程,渗透类比的思想,强调从数学本身提出问题,通过图形性质定理的逆命题,先提出判定图形是否成立的命题,然后运用演绎推理证明这些命题的真伪,得出图形的判定定理,进一步明确图形的性质定理与判定定理之间的关系,从而积累数学活动经验,培养学生解决问题的能力.因此,本节课的学习无论是知识的传承,还是能力的发展,思维的训练,都属于“图形与几何” 领域中“性质与判定”部分重要的内容,有着承上启下的作用.基于以上的分析,本节课的教学重点是菱形判定的探究与应用.二、目标和目标分析1.目标:①通过数学活动经历菱形判定定理的生成和理解过程.②类比矩形的研究方法和内容,经历菱形判定定理的发现、推理验证过程.③掌握菱形的判定定理,并运用判定定理解决相关的数学问题.2.目标解析:目标①:让学生想一想、折一折、剪一剪活动,经历观察、猜想、验证等过程,让学生经历菱形判定定理的生成和理解过程,培养学生几何直观的核心素养.目标②:通过类比矩形判定定理的研究,帮助学生通过合情推理发现结论,形成猜想,运用演绎推理证明猜想,发展学生的逻辑推理这一核心素养.通过数学问题的挖掘,让学生经历问题本质的追寻,积累丰富的活动经验.目标③:通过数学问题的思考,巩固菱形判定定理的掌握,渗透类比的基本思想,提高学生问题解决能力.《义务教育数学课程标准(2011 版)》在“课程设计思路”中明确指出:“在数学课程中应注重发展学生的合情推理和演绎推理能力.”依据《课程标准》,遵循八年级学生的年龄特征和认知规律,结合教材确定了本节课的教学目标.三、教学问题诊断分析学生通过对平行四边形、矩形的判定定理等知识的学习,特别是对几何图形的研究思路和研究方法积累了一定的数学学习经验,对类比思想也有了初步了解,这为本节课的学习奠定了基础.但是对新的数学问题的探究,尤其是怎么把新问题转化为已知问题来解决,仍是八年级学生学习的难点.学生从七年级入学开始实行小组合作学习,有很多讲演的机会,能够较好地表达自己的观点,学生能力层次较高,思维活跃,渴望应用所学知识解决新问题,逻辑推理能力还有待进一步提高,数学思想方法的掌握还很薄弱.而本节课对逻辑推理和类比思想的要求较高,因此在本课的学习中,估计学生能猜想到对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形,但是较难把这些判定定理应用在实际题目中,也不容易理清不同判定定理的关系.因此判定定理的应用可以采用小组合作的方式来展开,顺势先巩固“对角线互相垂直的平行四边形是菱形”这一判定定理,再利用三线合一引导学生观察四条边的关系.来突破本节课的难点之一.而菱形判定的应用能有效检测反馈学生的学习效果,但是需要学生有较强的分析能力,归纳能力,通过不同解法的展示和呈现,让学生的思维发生碰撞和交流从而来突破本节课的第二难点.结合上述分析,本节教学的难点在于:菱形判定定理的实际应用.四、学策略分析1.知识储备八年级学生已经学习了全等三角形、特殊三角形,能运用三角形全等证明线段及角相等.同时已经学习了线段垂直平分线的性质和平行四边形的判定,能够将菱形与三角形、平行四边形联系起来解决问题.而矩形的学习进一步厘清了特殊平行四边形的学习方法和内容.2.教法采用自主、合作探究教学法.通过学生自主思考和互动研讨,充分经历菱形判定定理探究的全过程,突出教学重点.另一方面,在问题解决的过程中,鼓励学生尽可能用一题多解的方法来解决,渗透类比思想,提升思维水平的深刻性,从而突破教学难点.3.学法突出探究发现,实践操作,合作学习.4.教学媒体教具:教材、长方形白纸、多媒体课件、三角板等.教学环境:在智慧教室的环境下,利用电子白板等功能,有助于学生对定理进行展示,实现师生之间、生生之间的交流与共享.五、教学过程设计1.回顾反思提出问题问题1:菱形的定义是什么?你能说出菱形的性质有哪些吗?问题2:除了用定义来判定菱形外,还有其他的判定方法吗?设计意图:通过提出问题,使学生先回顾上节所学知识,复习菱形定义、性质的同时,在学生思维最近发展区内提出问题,使学生面对适度的学习困难,激发学生的学习兴趣,启发全班学生开展独立思考,提高学生数学思维的参与度。
人教版数学八年级下册18.2.2第2课时《 菱形的判定》教案
人教版数学八年级下册18.2.2第2课时《菱形的判定》教案一. 教材分析《菱形的判定》是人教版数学八年级下册第18.2.2节的内容,本节课的主要内容是让学生掌握菱形的判定方法,并能够运用判定方法解决相关问题。
在教材中,已经给出了菱形的定义和性质,本节课是在此基础上进行判定方法的学习。
通过本节课的学习,学生能够进一步理解菱形的性质,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了菱形的定义和性质,能够识别和理解菱形的特点。
但是,对于如何判定一个四边形是菱形,可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、思考、讨论等方式,发现和总结菱形的判定方法。
三. 教学目标1.了解菱形的判定方法,能够运用判定方法判断一个四边形是否为菱形。
2.提高学生的观察能力、思考能力和解决问题的能力。
3.培养学生的合作意识和团队精神。
四. 教学重难点1.教学重点:菱形的判定方法。
2.教学难点:如何引导学生发现和总结菱形的判定方法。
五. 教学方法1.启发式教学:通过提问、引导等方式,激发学生的思考,引导学生发现和总结菱形的判定方法。
2.小组合作:学生进行小组讨论,培养学生的合作意识和团队精神。
3.实例分析:通过分析具体的实例,让学生更好地理解菱形的判定方法。
六. 教学准备1.准备相关的实例和图片,用于分析和讲解菱形的判定方法。
2.准备练习题,用于巩固所学内容。
七. 教学过程1.导入(5分钟)通过提问方式复习菱形的定义和性质,引导学生思考:如何判断一个四边形是菱形呢?2.呈现(10分钟)展示相关的实例和图片,让学生观察和分析,引导学生发现菱形的判定方法。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,分析并判断其是否为菱形。
讨论结束后,各组汇报成果。
4.巩固(10分钟)讲解实例分析中的关键步骤,让学生再次回顾和巩固菱形的判定方法。
5.拓展(10分钟)出示一些有关菱形的判断题,让学生独立完成,提高解决问题的能力。
人教版八年级下册数学菱形的判定课件
辨一辨
判断下列说法是否正确?为什么? (1)两条对角线互相垂直的四边形是菱形.
(× )
(2)两条对角线互相垂直平分的四边形是菱形.( √ )
(3)对角线互相垂直,且有一组邻边相等的四
边形是菱形.
(× )
辨一辨
D A
C O
B
□ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是 菱形; (2)若AC=BD,则□ABCD是 矩 形; (3)若∠ABC是直角,则□ABCD是矩 形; (4)若∠BAO=∠DAO,则□ABCD是菱形。
求证:□ABCD 是菱形
动脑筋
新知探究
如图,用4 支长度相等的铅笔能摆 成菱形吗?
把上述问题抽象出来就是:四条边 都相等的四边形是菱形吗?
判定2:四条边相等的四边形是菱形.
A
D
A
D
AB=BC=CD=DA
B C
B
C
四边形ABCD
菱形ABCD
证明: ∵AB=BC=CD=DA
∴AB=CD,DA=BC
∴四边形ABCD是平行四边形
课堂小结
本节课我们学到了什么
数学题,始于你想 成于你做
能力提升
如图,已知等腰△ABC中,AB=AC,AD平分 ∠BAC交BC于D点,在线段AD上任取一点P(A点除外), 过P点作EF∥AB,分别交AC、BC于E、F点, 作PM∥AC,交AB于M点,连接ME.
(1)求证:四边形AEPM为菱形. (2)当P点在何处时,菱形AEPM的面积为四边形 EFBM面积的一半?
证明:∵四边形ABCD是平行四边形
∴AO=OC ∵BD⊥AC
判定1
∴BD是AC的垂直平分线.
菱形的性质与判定ppt课件
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
菱形菱形的判定课件人教版数学八年级下册
所以CE=AE=AC.
又因为AF=CE,所以AF=AE=AC.
7.(丹东)如图,在▱ABCD中,O是AD的中点,连接CO并延长,交BA的延长线于 点E,连接AC,DE.
(1)求证:四边形ACDE是平行四边形. (2)若AB=AC,判断四边形ACDE的形状,并说明理由.
8.(滨州)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC, AE∥BD.
第4题图
5.如图,过▱ABCD的对角线交点O作互相垂直的两条直线EG,FH,
与AD,AB,BC,CD分别相交于点E,F,G,H.求证:四边形EFGH是
菱形.
证明:因为四边形ABCD是平行四边形,
所以AD∥BC,OB=OD.
所以∠ODE=∠OBG,∠OED=∠OGB.
所以△EOD≌△GOB.
所以OE=OG.
第十八章 平行四边形
18.2 特殊的平行四边形
菱形——菱形的判定
自主导学
菱形的判定方法: 方法1(定义法):有一组___邻__边___相等的平行四边形是菱形. 方法2:对角线__互__相__垂__直____的平行四边形是菱形. 方法3:四条边___相__等___的四边形是菱形.
探究学习
对角线互相垂直的平行四边形是菱形 【例1】如图,▱ABCD的对角线AC的垂直平分线与 边AD,BC分别相交于点E,F.求证:四边形AFCE是菱 形.
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,请说 明理由.
解:能. 因为∠B=∠DFC=90°, 所以DF∥AB. 又DF=AE, 所以四边形AEFD是平行四边形. 当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得t=10. 所以当t=10时,四边形AEFD是菱形.
人教版八年级数学下册18.2.2菱形的判定教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的基本概念、判定方法及其在实际生活中的应用。通过实践活动和小组讨论,我们加深了对菱形知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
突破方法:引导学生从已知条件和基本几何定理出发,逐步展开证明过程,培养学生严谨的逻辑推理能力。
(4)在实际问题中的应用:将菱形知识应用于解决实际问题,要求学生能够将理论知识与实际情境相结合,这对学生来说是一个挑战。
突破方法:设置生活实例和实际应用问题,引导学生运用菱形知识进行分析和解答,提高学生的知识运用能力。
突破方法:通过动画演示、实物模型展示等方式,让学生直观感受菱形的性质。
(2)菱形判定方法的灵活运用:在实际问题中,学生需要根据不同条件选择合适的判定方法,这要求学生对判定方法有深入理解。
突破方法:设计不同类型的练习题,让学生在解决问题过程中逐步掌握判定方法的应用。
(3)几何图形的证明:在证明菱形相关性质时,学生需要运用几何知识进行推理和证明,这对于学生的逻辑思维和推理能力有较高要求。
举例:已知菱形ABCD的对角线AC和BD相交于点E,求证:AE=CE,BE=DE。
(3)掌握菱形的判定方法:定义法、四边相等法、对角线垂直平分法。这是判断一个四边形是否为菱形的关键。
举例:判断四边形EFGH是否为菱形,其中EF=EH,GH=FE,∠EFG=∠HFG。
2.教学难点
(1)对菱形性质的理解:学生需要通过直观图形和具体实例,理解并记住菱形的性质,这对于初学者来说可能存在难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
∴四边形ABCD是平行四边
形.
A
C
又∵ AB=BC,
∴ 平行四边形ABCD是菱
D
形.
定理2:四边都相等的四边形是菱形.
小结
菱形的
D
定义 一组邻边相等的平行四边形叫做菱形
具有平行四边形的所有性质
菱形的 对角线互相垂直且平分每一组对角 A O C 性质 菱形的四条边都相等
一组邻边相等的平行四边形是菱形
证明:∵AB 5,AO 4,BO 3,
∴AB2 =AO2 +BO2.
A
∴△OAB是直角三角形.
AC⊥BD.
∴ ABCD是菱形.
D
O
C
B
发散思维
求证:四边都相等的四边形是菱形.
如图,四边形ABCD中,AB=BC=CD=DA.求证:四 边形ABCD是菱形.
证明: ∵四边形ABCD中,
AB=CD , BC==AD,
两组对边分别平行
两组对角分别相等 对角线互相平分
平行四边形
四条边都相等
矩形 菱形
谢谢!
B
? 菱形的 对角线互相垂直的平行四边形是菱形 判定
四边都相等的四边形是菱形
1.判断下列说法是否正确?为什么? (1)对角线互相垂直的四边形是菱形; ╳
(2)对角线互相垂直平分的四边形是菱形;√
(3)对角线互相垂直,且有一组邻边相等 ╳ 的四边形是菱形;
(4)两条邻边相等,且一条对角线平分一 ╳ 组对角的四边形是菱形.
八年级 下册
18.2.2 菱形
第2课时 菱形的判定
矩形
菱形
定义 有一角是直角的平行 有一组邻边相等的平行四
四边形叫做矩形.
边形叫做菱形.
平行四边形的性质
性边 质角
对角线
四个角都是直角 相等
四条边都相等 互相垂直且平分每一组对角
有一角是直角的平行四边形
判
对角线相等的平行四边形
定
三个角都是直角的四边形
2020/12/11
探究一
用一长一短两根细木条,在它们的中点处 固定一个小钉,做成一个可以转动的十字,四周 围上一根橡皮筋,做成一个四边形.转动木条,这 个四边形什么时候变成菱形?
猜想:
对角线互相垂直的 平行四边形是菱形.
2020/12/11
对角线互相垂直的平行四边形是菱形.
已知:在 ABCD 中,AC ⊥ BD,
求证: ABCD 是菱形.
证明: ∵四边形ABCD是平行
四边形,
B
A
O
D
∴OA=OC.
C
又∵ AC ⊥ BD,
∴BA=BC .
∴ ABCD是菱形.
2020/12/11 定理1:对角线互相垂直的平行四边形是菱形.
例1 如图, ABCD中,对角线AC,BD相交于点O,且
AB=5,AO=4,BO=3.求证: ABCD是菱形.
2020/12/11
2. ABCD的对角线AC与BD相交于点O,
(1)若AB=AD,则□ABCD是菱
形;
(2)若AC=BD,则□ABCD矩是
形;
(3)若∠ABC是直角,则□ABCD矩是 形;
(4)若∠BAO=∠DAO,则□ABCD菱是 形.
D
C
2020/12/11
A
O B
三个角是直角
四边形
一组对边平行且相等 两组对边分别相等