休克尔分子轨道理论

合集下载

共轭体系的分子轨道理论

共轭体系的分子轨道理论

E2=E3=α + β E1=α + 2β
1
2 −+−6
3+ −+5
1
4
1
2+ −6 3− +5
4
2 +6 −−
3+5 4
1
2+6 3 −5
4
1
2
6
+−
3
5
4
1
2
6
+
3
5
4
4.2.6 单环共轭体系的HMO处理
单环共轭体系分子轨道能级可有一简单的几 何图形来表示。 1. 以|2β|为半径作一个圆,令过圆心的水平线 E=α,过圆心作一垂线表能级坐标。 2. 作圆的内接正多边形,(其中一个顶点放在圆 的最低点)则内接多边形各顶点在能级坐标上 的投影代表各分子轨道能级的高低大小
成共轭π键,叫大π键。
πnm (m电子数,n原子轨道数)
H
H
H
H
H
H
H
H
H H
H
共轭体系稳定存在的条件— m<2n
2. 共轭体系分类
正常大π键:m=n
烯丙基π33
丁二烯π44
苯π66 萘π1010
多电子大π键 m > n
• 与π 键相接的杂原子(N, O, S, Cl等)可提供2个p电子

E)
+ +
c c
4 4
β


E)
= = = =
0 0 0 0
⎫ ⎪ ⎬ ⎪ ⎭
c1x + c2
=0 ⎫
c1 + c2 x + c3

(整理)休克尔轨道法的分子图.

(整理)休克尔轨道法的分子图.

休克尔轨道法的分子图一、化学家休克尔E.Erich Armand Arthur Josephckel (1896~)联邦德国物理化学家。

1896年8月9日生于柏林夏洛腾堡。

1914年入格丁根大学攻读物理。

曾中断学习,在格丁根大学应用力学研究所研究空气动力学。

1918年重新攻读数学和物理,1921年在P.德拜的指导下获博士学位。

他在格丁根大学工作两年,曾任物理学家M.玻恩的助手。

1922年在苏黎世工业大学再度与德拜合作,任讲师。

1930年在斯图加特工业大学任教。

1937年任马尔堡大学理论物理学教授。

休克尔主要从事结构化学和电化学方面的研究。

他1923年和德拜一起提出强电解质溶液理论,推导出强电解质当量电导的数学表达式。

1931年提出了一种分子轨道的近似计算法即休克尔分子轨道法(HMO 法),主要用于π电子体系。

他在30年代还对芳香烃的电子特性在理论上作出了解释,并总结出:环状共轭多烯化合物中π电子数符合4n+2(n为1,2或3)者,具有芳香性。

二、休克尔分子轨道法(HMO法)的来源分子轨道理论在处理分子时,并不引进明显的价键结构的概念。

它强调分子的整体性,认为分子中的原子是按一定的空间配置排列起来的,然后电子逐个加到由原子实和其余电子组成的“有效”势场中,构成了分子。

并将分子中单个电子的状态函数称为分子轨道,用波函数ψ(x,y,z)来描述。

每个分子轨道ψi都有一个确定的能值Ei 与之相对应,Ei近似地等于处在这轨道上的电子的电离能的负值,当有一个电子进占ψi 分子轨道时,分子就获得Ei的能量。

分子轨道是按能量高低依次排列的。

参与组合的原子轨道上的电子则将按能量最低原理、鲍里不相容原理和洪特规则进占分子轨道。

根据电子在分子轨道上的分布情况,可以计算分子的总能量。

π键实际上是持有电子的围绕参与组合的原子实的π分子轨道。

1931年,休克尔提出了一种计算π分子轨道及其能值的简单方法,称为休克尔分子轨道法(即HMO 法)。

5.2 休克尔分子轨道法

5.2 休克尔分子轨道法

● Frost图与4m+2 Hukel规则(休克尔芳香性)
以2β为半径作圆,作一顶点正对最低点的内接正多边形,则各
顶点的位置为单环共轭多烯 分子轨道对应的能级。
E 2
E
E 2
图5-9 环烯烃 轨道能级图 由图看出:电子数为4m+2时,电子全部填充在成键的型分子轨道 上,且都以自旋反平行成对,体系较稳定,这就是休克尔规则的实质.
平面构型的多环芳烃的 HMO 法处理:
(1) 萘(C10H8)
0.555 0.518 1.000 1.000 1.000 0.404 0.104 0.452 0.725
各原子自由价:F1 F4 1.732 0.896 0.836 F2 F3 1.732 0.896 0.448 0.388
ψ2 = 0.602φ1 + 0.372φ2 - 0.372φ3 - 0.602φ4 ψ1 = 0.372φ1 + 0.602φ2 + 0.602φ3 + 0.372φ4
E E E … 0, 0, , 0 c1 c2 cn
H1n ES1n c1 ... H 2 n ES2 n c2 0 ... ... ... ... H nn ESnn cn ...
E 的一元 n 次 代数方程,有n 个解。
久期方程有非零解,则其系数行列式应为零
x 1 0 0 同除以 并令x
E , 得久期行列式
1
x 1 0 x 1 x
0 1
0
0 0 1
求解久期行列式的方法很多,如对称性方法,群论方法,代 数余子式展开法等。代数余子式法是通用的方法。 代数余子式法展开

[理学]第四章 分子轨道理论2

[理学]第四章 分子轨道理论2
10.37210.60220.60230.3724E11.618 20.60210.37220.37230.6024E20.61 30.60210.37220.37230.6024E30.618 40.37210.60220.60230.3724E41.618
10
离域轨道示意图和相应的能级图
+ -+ -
以上讨论的是键键级,键的键级一般取1, 所以总键级加1即可。(也可直接讨论键键级)
20
4. 电荷密度,键级与自由价——HMO参量
丁二烯中电子离域化, 已不是纯粹的单、双 键:基态下两端键级大, 第一激发态下则相反( 键级分别为0.447,0.724,0.447)。
•丁二烯的键长均匀化 •丁二烯有顺、反异构体
取半径为2的圆,将正多边形单环一个顶点向下
放入环内。顶点与环相接之处即为大轨道能级。
17
单环共轭体系的轨道能级图
休克尔规则(4n+2规则):具有4n+2个电子的单环 共轭体系,所有成键轨道中充满电子,反键轨道是空 的,构成稳定的键体系,为芳香稳定性的结构。
18
4. 电荷密度,键级与自由价——HMO参量
19
4. 电荷密度,键级与自由价——HMO参量
(b) 离域键的键级
Pij nkckickj k i, j为 原 子 编 号 ,k为 大 分 子 轨 道 编 号 .
例如: P23=2(0.60150.6015)+2(0.3717) (0.3717)=0.448
2 = 0.60151 + 0.37172 0.37173 0.60154 1 = 0.37171 + 0.60152+ 0.60153 + 0.37174

休克尔轨道法的分子图

休克尔轨道法的分子图

休克尔轨道法的分子图一、化学家休克尔E.Erich Armand Arthur Josephckel (1896~)联邦德国物理化学家。

1896年8月9日生于柏林夏洛腾堡。

1914年入格丁根大学攻读物理。

曾中断学习,在格丁根大学应用力学研究所研究空气动力学。

1918年重新攻读数学和物理,1921年在P.德拜的指导下获博士学位。

他在格丁根大学工作两年,曾任物理学家M.玻恩的助手。

1922年在苏黎世工业大学再度与德拜合作,任讲师。

1930年在斯图加特工业大学任教。

1937年任马尔堡大学理论物理学教授。

休克尔主要从事结构化学和电化学方面的研究。

他1923年和德拜一起提出强电解质溶液理论,推导出强电解质当量电导的数学表达式。

1931年提出了一种分子轨道的近似计算法即休克尔分子轨道法(HMO 法),主要用于π电子体系。

他在30年代还对芳香烃的电子特性在理论上作出了解释,并总结出:环状共轭多烯化合物中π电子数符合4n+2(n为1,2或3)者,具有芳香性。

二、休克尔分子轨道法(HMO法)的来源分子轨道理论在处理分子时,并不引进明显的价键结构的概念。

它强调分子的整体性,认为分子中的原子是按一定的空间配置排列起来的,然后电子逐个加到由原子实和其余电子组成的“有效”势场中,构成了分子。

并将分子中单个电子的状态函数称为分子轨道,用波函数ψ(x,y,z)来描述。

每个分子轨道ψi都有一个确定的能值Ei 与之相对应,Ei近似地等于处在这轨道上的电子的电离能的负值,当有一个电子进占ψi 分子轨道时,分子就获得Ei的能量。

分子轨道是按能量高低依次排列的。

参与组合的原子轨道上的电子则将按能量最低原理、鲍里不相容原理和洪特规则进占分子轨道。

根据电子在分子轨道上的分布情况,可以计算分子的总能量。

π键实际上是持有电子的围绕参与组合的原子实的π分子轨道。

1931年,休克尔提出了一种计算π分子轨道及其能值的简单方法,称为休克尔分子轨道法(即HMO 法)。

第4章 休克尔(Hückel) 分子轨道理论

第4章 休克尔(Hückel) 分子轨道理论
31
量子化学
第四章
具有对称性质的原子在分子轨道中贡献相同,因此,
在分子轨道中,这些原子的轨道系数的绝对值相等。
根据对称与反对称的关系,有:
(1) c1 c 4 ;
c 2 c3 (2) c1 c 4 ; c 2 c3
注:波函数的形式为:
c11 c 2 2 c33 c 4 4
内)+4(+)=6+8
27
量子化学
Fronst图 向上,轨道成对出现 能量最低轨道+2 电子数目 4m+2 体系稳定,有芳香性 休克尔4m+2规则 例1:苯, 6e,满足4m+2,芳香性
第四章
m=0,1,2,3,4
28
量子化学
例2:环丁二烯, 4e -2
32
量子化学
例1:丁二烯,基态分子 Hü ckel行列式为: x 久期方程为:
1 0 1 x 1 0 0 1 x 1
第四章
0 0 1 x 0
c1 x c 2 0 0 c1 c 2 x c3 0 c 2 c3 x c 4 0 c3 c 4 x 0
综上,丁二烯的4个分子轨道为:
1 0.37171 0.6015 2 0.60153 0.3717 4
2 0.60151 0.3717 2 0.3717 3 0.6015 4
E 3 0.618
3 0.60151 0.3717 2 0.3717 3 0.6015 4
17
量子化学
第四章
2. 电子近似 考虑大П键是参与共轭的各原子的p轨道(i, i=1, 2, 3,…)肩并肩形成的。应用LCAO-MO, 则分子 轨道可写成 c11 c 2 2 c m m ,其中i 为参与共轭的各原子的p轨道。

第4章 休克尔(Hückel) 分子轨道理论PPT课件

第4章 休克尔(Hückel) 分子轨道理论PPT课件

2. 线性变分法
变分法中变分函数的选取广泛采用线性
变分法,变分函数 采用k个线性无关的函
数 1,2,,k 的线性组合, 即:
k
c11c22ckkcii i1
应用于分子体系,1,2,,k常取原子轨道 .
01.08.2020
1122
量子化学 第四章
显然,上述做法体现了原子轨道线性组合构成分 子轨道的思想,即:LCAO-MO。这个思想最早是 由Roothaan提出的。
1,2,,k, 常称为基组,显然,基组越
大,需要确定的系数越多,计算工作量越大,但 同时计算精度越高。
01.08.2020
1133
根据变分原理,
量子化学 第四章
01.08.2020
15
1144
量子化学 第四章
求一套系数(c1 , c2 ,…, ck)使得波函数Ψ下
的能量越接近于E0 越好, 即其值越低越好。 则:
1177
目录
量子化学 第四章
4.2 休克尔分子轨道法
Hückel 将 分 子 轨 道 理 论 应 用 于 共 轭 分 子 , 形 成 了 Hückel 分 子 轨 道 理 论 , 简 称 为 HMO (Hückel Molecular Obital)。
HMO理论主要思想是- 分离和 电子近似。
1. - 分离 、 电子分开处理, 针对性地研究 电子。
01.08.2020
33
量子化学 第四章
4.1 变分法
设体系哈密顿算符 的本征值按大小次序排列为: E0≤E1≤E2≤…Ei≤…
等号表示有简并态情形。
设属于每个本征值的本征函数分别为: 0 , 1 , 2 , …,i ,…
则存在 的系列本征方程:

第11讲 异核双原子分子的结构和休克尔分子轨道

第11讲 异核双原子分子的结构和休克尔分子轨道

2
2
2
2
2s
2s
2p x
2p z
2p y
∗ 2pz
2
∗ 2p y
2
KK:表示两个氟原子内层1s电 子基本上维持原子轨道的性质
成键性:
2s
2s
∗ ∗ σ 2s ↔ σ 2s、π 2p ↔ π 2p 、π 2p ↔ π 2p
z z y

y
σ2s
∗ σ1s
成键轨道和反键轨道均填充电子 作用相互抵消
σ 2p 成键轨道填充电子


氧分子O 2
分子的电子组态:
(1) (σ 1s ) σ 1s
2

(2)
( ) (σ ) (σ ) (σ ) ( π ) ( π ) ( π ) ( π ) KK σ ( ) (σ ) (σ ) ( π ) ( π ) ( π ) ( π )
2 2

2
2
2
2
2s
2s
2p x
2p z
2p y
∗ 2pz
1
∗ 2p y
1
2

2
2
2
2
2s
2s
2p x
2p z
2p y
∗ 2pz
1
∗ 2p y
1
KK:表示两个氧原子内层1s电子基本上维持原子轨道的性质
成键性:
σ 2s ↔ σ 2s成键轨道和反键轨道均填充电子,作用相互抵消 σ 2p 、π 2p 、π 2p 成键轨道填充电子
x z y ∗
H2 F2 O2 N2 C2 B2 CO NO HF
Σ
(π ) (π ) ( 2σ )

HMO理论的一些粗浅理解

HMO理论的一些粗浅理解

HMO理论的一些粗浅理解休克尔分子轨道法(Hückel molecular orbital method)是用简化的近似分子轨道模型处理共轭分子中的π 电子的方法,1931年由E.休克尔(E. Hückel)提出,简称HMO。

这是一种最简单的分子轨道理论,在有机化学中应用得相当广泛,用以解决共轭分子的结构,探讨分子的性质和反应性能的半经验方法。

HMO法的基本内容:1、承认分子轨道理论的全部内容(1)将分子中每一个电子的运动,看作是在各原子核和其余电子的平均势场中运动(即单电子近似),其单电子的空间波函数为分子轨道;(2)分子轨道采用原子轨道的线性组合,用变分法得到分子轨道和能级;(3)分子轨道内电子排布符合能量最低原理、保里原理和洪特规则;组成分子轨道的原子轨道必须符合能量相近、最大重叠和对称性匹配这三个条件。

2、用HMO法处理共轭分子结构的假设(1)由于π电子在核和σ键所形成的整个分子骨架中运动,可将σ键和π键分开处理。

(2)共轭分子有相对不变的σ骨架,而π电子的状态决定分子的性质。

(3)各个碳原子上p轨道的库仑积分都相同,都等于α,相邻原子轨道间的交换积分都相等,用β表示,而非相邻原子轨道间的交换积分都等于零;不同原子轨道间的重叠积分为零;3、共轭烯烃久期行列式的规律全部由C组成的共轭烯烃,从分子骨架直接写久期行列式(1)画出σ骨架,将参与共轭的原子编号;(2)n个原子参加的共轭体系对应着n阶久期行列式;(3)n阶久期行列式主对角元Aij为x,x=(α-E)/β;(4)若ij两原子以π键键连,则Aij及Aji为1,其它元素均为0;(5)久期行列式沿主对角线对称;(6)对同一分子,若编号不一,其写出的久期行列式虽然不同,但求解的结果相同。

休克尔分子轨道的应用:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。

在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。

第四章 休克尔(Hückel) 分子轨道理论

第四章 休克尔(Hückel) 分子轨道理论
p轨道能量为
第四章
<0
相邻C间交换积分为
相间C间交换积分为0
各C原子参与共轭前2p轨道能量均为, 相邻的2p轨道间交盖引起的能量下降值为, 相邻的2p轨道间的重叠近似为0。 对共轭分子体系,在σ-π分离和π电子近似下, 应用线性变分法,能量对变分系数求一阶导数,则 可得 n 个线性方程(久期方程)。
第四章
0
目录 18/93
量子化学
属于E值对应的一套系数c1 , c2 ,…, c k, 波函数Ψ
第四章
c11 c 2 2 c k k c i i
i 1
k
归一化条件:
E有k个根E0, E1,…,Ek-1, E0为基态,其它为激发态。 所有分子轨道理论都基于变分方法而进行。
2/93
量子化学 4.1 变分法
第四章
设体系哈密顿算符 的本征值按大小次序排列为: E0≤E1≤E2≤…Ei≤… 等号表示有简并态情形。 设属于每个本征值的本征函数分别为: 0 , 1 , 2 , …,i ,… 则存在 的系列本征方程:
3/93
量子化学
第四章
根据厄米算符本征函数的性质, i , i 0 , 1, 2
i 1, 2 , , k
其中:
H ij i H j d
* S ij i j d
18
*

上式中E 代替了 ,因为求解上述方程可以得到E的 一组解,其中最小的一个就是体系基态能量的近似值。
16/93
量子化学
为0,称此行列式为久期行列式。
第四章
ci 不全为零的条件是它们的系数构成的行列式
此,一个不太理想的 可能给出了较好的E0近似

乙烯休克尔行列式

乙烯休克尔行列式

乙烯休克尔行列式
休克尔分子轨道法(Hückel molecular orbital method)是用简化的近似分子轨道模型处理共轭分子中的π电子的方法,1931年由E.休克尔(E. Hückel)提出,简称HMO。

这是一种最简单的分子轨道理论,在有机化学中应用得相当广泛,用以解决共轭分子的结构,探讨分子的性质和反应性能的半经验方法。

原理
在有机化合物中,包含着一大类共轭和芳香烃分子,它们的特点是参与共轭的原子都在一个分子平面上,每个原子都有一个垂直于分子平面的p原子轨道,在这个轨道上的电子称为π电子。

5.3 休克尔分子轨道理论与共轭分子-精选文档

5.3 休克尔分子轨道理论与共轭分子-精选文档

这里得到的久期方程为:
ES H 11 11 H ES 21 21 ES n 1 n 1 H H ES 12 12 H ES 22 22 H ES n 2 n 2 H ES c 1 n 1 n 1 H ES c 2 n 2 n 2 0 H ES c nn nn n
附:用HMO法求乙烯键的键能和分子轨道
解:分子轨道由两个pz原子轨道线性组合而成:
c c 1 1 2 2
利用变分法得到久期方程为:
E
令: x
E
E
0
久期行列式为:
x 1 1 x 0
得: x 1 x 1 1 2
E E 1 2
1
+ -
+ - - +
相应的波函数为:


1 2
(
1
2) 2)

2

1 2
(
1

E2 = - 其分子轨道能级图为: E1= +
E=2(+ )=2+2
②电荷密度
i nk c
k
2
ki
第i个原子上出现的π电子 数
i--第i个原子;k--π分子轨道编号;nk--π分子 轨道(Ψ)上的电子数;cki--π分子轨道(Ψ)上第i个原子 轨道的系数。 例如: ρ3 = 2×(0.6015)2 + 2×(-0.3717)2=1.0000 ψ2 = 0.6015φ1 + 0.3717φ2 - 0.3717φ3 - 0.6015φ4 ψ1 = 0.3717φ1 + 0.6015φ2+ 0.6015φ3 + 0.3717φ4

第12讲_休克尔分子轨道归纳.ppt

第12讲_休克尔分子轨道归纳.ppt
i个碳原子附近出现的几率密度
i nkck2i
k
nk —k中的电子数;cki —分子轨道k中第i个原子轨道的组合系数
(2) 键级Pij —原子i和j间键的强度
Pij nkckickj k
nk —k中的电子数;cki、ckj —分子轨道k中第i、j原子轨道的组合系数
最新.
7
复习
(3)原子的成键度 分子中某原子与周围其它原子的总键级之和
… … … … … … …
0…… … … 1 x
其解的通式为:
xk
-2
cos
2k
n
k 0,1, 2,3,..., n -1
x1 0 0 0 1 1x 1 0 0 0
Dn(x) = 0 1 x 1 0 0 0
00 1 x 1 0
6
5 4
1 2
3
0 00 1x 1 1 0 0 01 x
展开得:x6 – 6x4 + 9x2 – 4 = 0
或 (x – 1) 2(x + 1) 2(x – 2)(x + 2) = 0
最新.
11
休克尔分子轨道法(HMO法) 的应用
最新.
1
复习
休克尔分子轨道理论
(1)1931年,德国化学家休克尔用分子轨道理 论处理共轭分子体系
(2) HMO法处理共轭分子结构时的假定:
(a) 由于电子在核和 键所形成的整个分子骨 架中运动,可将 键和 键分开处理
Erich Armand Arthur Joseph Hückel (1896-1980)联邦德国物理化学家。
0 0 0 0



0 … … … a-E
… …
… …

讨论休克尔分子轨道法

讨论休克尔分子轨道法

讨论休克尔分子轨道法(HMO )1.基本假设和基本原理休克尔分子轨道法的基本原理是变分法。

其主要应用于π电子体系,基本假设有如下三点:1.σ-π分离近似。

对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。

∑==ππn k kH 1ˆH ˆ πn 为π电子数 2.独立π电子近似。

子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。

∑='-∇-=N n knn k r 12k Z 21H ˆn Z '是考虑了所有电子及其它p 电子的屏蔽之后的有效核电荷。

kk E ψψ=k H ˆ 由于电子的不可区分性,k 可省略,故单电子方程为ψψE Hˆ= 3.LCAO-MO 近似。

对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道线性组合构成: ∑=ii ki C ϕψk此外,还作出如下的假定:1.库伦积分近似。

即各碳原子的库伦积分都相同,其值为α。

⎰==ατφφd H i i i i ˆH ˆ*,2.交换积分近似。

分子中直接键连碳原子间的交换积分都相同,其值为β。

而非键连碳原子间的交换积分都是零。

⎩⎨⎧±><±==11H ˆj,i j i j i β3.重叠积分近似。

各原子轨道间的重叠积分都取为零。

⎩⎨⎧≠==ij ij j i 01S ,2.基本处理方法、步骤;可从中获得哪些信息(1) 设共轭分子有n 个 C 原子组成共轭体系,每个C 原子提供一个 p 轨道 ,按 LCAO ,得:∑=+++=i i n n c c c c ϕϕϕϕψ 2211 (2) 根据线性变分法,由0E 1=∂∂c ,0E 2=∂∂c , 0=∂∂nc 可得久期方程: 0H H H H H H H H H 21221122222212121121211111=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------n nn nn n n n n n n n n c c c ES ES ES ES ES ES ES ES ESE 的一元n 次代数方程,有n 个解。

第12讲_休克尔分子轨道

第12讲_休克尔分子轨道

E1 a 2 E2 E3 a E4 E5 a - E6 a - 2
从而可求出六个 MO的具体形式
I 1/ 6 1 2 3 4 5 6 II 1/12 21 2 -3 - 24 - 5 6 III 1/ 4 2 3 - 5 - 6 IV 1/ 4 2 -3 5 - 6 V 1/12 21 -2 -3 24 -5 -6 VI 1/ 6 1 -2 3 -4 5 -6
i个碳原子附近出现的几率密度
i nk ck2i k
nk —k中的电子数;cki —分子轨道k中第i个原子轨道的组合系数
(2) 键级Pij —原子i和j间 键的强度
Pij nk ckickj k
nk —k中的电子数;cki、ckj —分子轨道k中第i、j原子轨道的组合系数
复习
(3)原子的成键度 分子中某原子与周围其它原子的总键级之和
Dn(x) = 0 1 x 1 0 0 0
00 1 x 1 0
6
5 4
1 2
3
0 00 1x 1 1 0 0 01 x
展开得:x6 – 6x4 + 9x2 – 4 = 0
或 (x – 1) 2(x + 1) 2(x – 2)(x + 2) = 0
第三章 分子的量子力学处理
解出:
x1 -2 x2 x3 -1 x4 x5 1 x6 2
Dn(x)=
1x 1 0 0 …0 0 1 x 1 0 … 0 =0
… … … … … … …
0…… … … 1 x
其解的通式为:
xk
-2
cos
2k
n
k 0,1, 2,3,..., n -1
Ek
a
2
cos

休克尔分子轨道

休克尔分子轨道

休克尔分子轨道
休克尔分子轨道是指一种用于描述分子中电子结构的数学模型。

在量子化学中,休克尔分子轨道被用来描述分子的电子分布情况,它是通过对分子中原子轨道的线性组合得到的。

休克尔分子轨道通常用于简单的分子体系,能够提供关于分子结构和化学键的信息。

休克尔分子轨道模型的基本假设是分子中的电子运动是围绕原子核而不是其他电子运动的平均场。

这一假设使得休克尔分子轨道成为一种较为简单但有用的描述分子结构的方法。

利用休克尔分子轨道理论,可以计算出分子的能量、电子分布和反应性等性质,为理解和预测分子的行为提供了重要的手段。

总的来说,休克尔分子轨道是量子化学中的一个重要概念,它为我们理解分子的电子结构和性质提供了重要的理论基础。

第12讲_休克尔分子轨道

第12讲_休克尔分子轨道

反键轨道 非键轨道 成键轨道
反键轨道 非键轨道 成键轨道
当m为奇数时分子轨道能级图
当m为偶数时分子轨道能级图
*成键轨道(2n+1),填满成键轨道所需电子2(2n+1)=4n+2
第三章 分子的量子力学处理 例2:试用休克尔分子轨道理论分析环丙烯正离子及环丙烯负离子的性质。
1、环丙烯正离子
2、环丙烯负离子
R2
H 2 N —CH —C —NH —CH —COOH
二肽,
4 3
—C • C
•O
H •• N
C—
第三章 分子的量子力学处理
C.缺电子离域键(n >m)


[H 2C—CH —CH 2 ]+
C +
丙烯基阳离子,
2 3
说明:
三苯甲基阳离子,1189
(1)上述2条件不是绝对的,满足条件的分子不一定能形成 离域键
4 3
C—Cl键强度增加,键距缩短
C—Cl键不易断裂
Cl-活性降低
第三章 分子的量子力学处理
超共轭效应
⑴ 概念 超共轭效应是指C—H等键轨道和相邻原子的π键轨道或其 它轨道相互叠加,扩大电子的活动范围所产生的离域效应
如:H3C—CH=CH2分子 轨道相互作用
z
+ -
z
+ -
—CH3
+-
-+
++
--
第三章 分子的量子力学处理
苯的 轨 道能 级图
电子的 总能量
E总 2E14E2 6 a 8
相减
可见苯的E离的绝对值 比丁二烯的E离要大, 所以可以推知苯比丁二 烯稳定。
E离= 2
定域键电子 总能量
E定 6 a 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.838 0.391 0.391
0.447
0.838
0.894
H2C 0.894 CH
CH
CH2
1.00
1.00
1.00 分子图
1.00
三、电荷密度、键级、自由价 、分子图
1、电荷密度 :第r个原子上出现的电子数, r 等于离域电子 在第r个碳原子附近出现的几率:
r n j C jr 2
j
2、键级Prs :原子 i和 j 间 键的强度:
Prs n j c j对大小: 原子的总成键度: N r 自由价 F r:
同除以并令x
E , 得久期行列式
3 2 4
x 1 0 0
1 x 1 0
2
0 1 x 1
0 0 0 1 x
展开得,x( x 2x) ( x 1) x 3x 1 0 解得,x 0.618 , 1.618 由E x 得
x1 1.618, x 2 0.618, x3 0.618, x 4 1.618,


2 . 丁二烯的HMO
法处理
(1) HMO 法确定轨道及能量 丁二烯( H2C CH CH CH2 电子的分子轨道为 c11 c22 c33 c44
c1、c2、c3、c4 满足久期方程:
E 0 0 E 0 0 0 E 0 0 E
可得相应的 4套组合系数
4个碳原子的p轨道线性组合成4个分子轨道:
1 0.372 1 0.602 2 0.602 3 0.372 4
2 0.602 1 0.372 2 0.372 3 0.602 4
3 0.602 1 0.372 2 0.372 3 0.602 4 4 0.372 1 0.602 2 0.602 3 0.372 4
HMO 法的具体步骤:
• 设共轭分子有n个 C 原子组成共轭体系,每个C 原子提供一个 p 轨道 ,按 LCAO,得:
c11 c22 cnn cii
(2) 根据线性变分法,
E E E … , 0 0, 0, c1 c2 cn
可得久期方程:
休克尔行列式构成法:
①行数和列数等于C原子个数;
②写出分子中C原子标号,列于行列式顶和侧;
③有C原子的地方为x,有π键的为1,其它为0 写出休克尔行列式,解出xi(i=1,2……n),求出对应的;再将xi代 回简化的久期方程,利用归一化条件确定系数,即得到π 轨道。
1 2 CH= CH CH= CH 4 3
2 2(0.602) 2 2(0.372) 2 1.00 3 4 1.00
相邻原子间的键级:
p12 2 c11c12 2c 21c 22 2 0.3717 0.6015 2 0.3717 0.6015 0.8943 p 23 2 c12 c13 2c 22 c 23 2 0.6015 0.6015 2 0.3717 0.3717 0.4472
.... 0 .... 0 .... 0 0 0 ..... ..... ..... 0 0 0 0

.... .... .... 0 E
应用 x
E ,得休克尔行列式,相应的久期方程也得到简化:
x
1 0 0 0
1 x 1 0 0 Dn ( x ) 0 1 x 1 0 0 x 0 0 1
p34 2 c13 c14 2c 23 c 24 2 0.3717 0.6015 2 0.3717 0.6015 0.8943
各原子自由价: F1 F4 1.732 0.894 0.838 F2 F3 1.732 0.894 0.447 0.391
E1 1.618 E 2 0.618 E3 0.618 E 4 1.618
4个π电子进入两个成键轨道,比原单个 p轨道能量低,更加稳定:
-1.62β -0.62β
α
0.62β 1.62β
2 2 2 将各E值代回久期方程,结合 归一化条件 c12 c2 c3 c4 1
H 11 ES11
H 12 ES12
... H 1n ES1n
E 的一元 n 次代数 方程,有n个解。
H 21 ES21 H 22 ES22 ... H 2 n ES2 n 0 ... ... ... ... H n1 ESn1 H n 2 ESn 2 ... H nn ESnn
讨论
a.波函数 4 + + + + + + + -
+
E4=-1.62β
+
3 2 + 1 +
+ E3=-0.62β
+ + =0 E2=0.62β
+
+ -
-
-
E1=1.62β
b.离域能: 形成离域π键的π电子的总能量为:
E D 2 E1 2 E2 2( 1.618 ) 2( 0.618 ) 4 4.472
1. HMO的基本内容:
共轭分子处理的假定:
1)键和键分开处理, 电子在核和键形成的 整个分子骨架中运动(大键); 2) 键(定域)分子骨架相对不变, 电子的状态 决定分子的性质;
3)假定每个π 电子 的运动状态用k 描述,其
Schrö dinger方程为
ˆ E H k k k
(3) 引入基本假设:
H11 H 22 ... H nn
1, 当 i=j Sij 0, 当 i≠ j
, if i = j±1 H ij 0, if i≠ j±1
(4)、在休克尔近似的基础上,对链式共轭烯烃,久期行列式为:
E 0 E 0 E
P
s
rs
Fr Fmax Nr Fmax Prs
s
Fmax 4.732
4、分子图:把共轭分子由HMO法求得的电荷密度,键级Prs , 自由价 Fr 都标在一张分子结构图上。
2 2 各原子上的电子密度:1 2c11 2c21 2(0.372) 2 2(0.602) 2 1.00
Department of Chemistry & Life Science Qujing Normal University
——休克尔分子轨道理论(HMO)
Structure Chemistry
问题的提出:
有些分子不能用定域键的来解释,丁二烯等
球状碳分子,C60 球烯(不完全平面的离域π键)
整个分子由12个五元环面和20个六元环面,构成共有 90条边的球形分子, (直径1nm左右)。 R.F.Curl,H.W.Kroto and R.E.Smalley获1996年诺贝尔化学奖
若将π电子定域在1,2和3,4之间
x 1 0 0 1 x 0 0 0 0 x 1 0 E3 E4 0 0 1 El 2 E1 2E2 2( ) 2( ) x
E1 E 2
4 4
DE ED E l 0.472
相关文档
最新文档