分式方程的解题方法
分式方程的解法

分式方程的解法分式方程是含有分式表达式的方程,如a/b=c/d。
解决分式方程的关键是找到未知数的值,使得等式两边相等。
下面将介绍两种常见的分式方程解法。
方法一:通分求解对于简单的分式方程,可以通过通分的方法来求解。
首先,找到分式方程中各部分的最小公倍数作为通分的分母,然后将等式两边的分数的分母都改为最小公倍数。
例如,对于方程1/x + 1/(x+1) = 1/2,最小公倍数为2x(x+1),则可以将方程改写为:2(x+1) + 2x = x(x+1)接下来,将分数转化为整数,展开方程,整理各项系数:2x + 2 + 2x = x^2 + x整理得到二次方程:x^2 + x - 4 = 0通过解二次方程,可以得到x的值。
方法二:消元法求解对于复杂的分式方程,可以通过消元法求解。
这种方法适用于分式方程中含有两个未知数的情况。
首先,将方程中的分式表达式转化为简单的代数式,然后消去其中一个未知数,将方程转化为只含有一个未知数的方程。
例如,对于方程1/(x-1) + 1/(y+1) = 2和1/(x+1) + 1/(y-1) = 4,可以通过消元法求解。
首先,将方程约分得到:(x+y)(y-1) = 2(x-1)(x+1)(x+y)(x+1) = 4(y+1)(y-1)展开整理方程,得到:x^2 + x + y^2 - y - 2x + 2 = 4y^2 - 4x^2 - 3x + y^2 - 5y - 2 = 0通过解这个方程,可以得到x和y的值。
综上所述,分式方程的解法包括通分求解和消元法求解。
通过选择合适的方法,可以解决各种类型的分式方程。
在解题过程中,需要注意展开方程、整理各项,以及解算一元二次方程等相关的数学知识。
分式方程的几种解法

分式方程的几种解法分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。
一、 去分母法方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。
例1:解方程:4121235222---=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得:)1(4)2)(1()2)(52(+-++=--x x x x x整理得:01282=+-x x 解之得:6,221==x x检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。
把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。
∴原方程的根为6=x 。
二、 换元法方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。
例2:解方程:21333322=-+-x x x x 解,设a x x =-32,则ax x 13332⨯=-,原方程变形为: 2133=+a a 去分母,得:061322=+-a a 解之得:61=a 212=a当6=a ,即632=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 23,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 23-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。
∴原方程的根是323±=∴x ,2=x , 23-=x 三、 通分法方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。
分式方程的解题步骤

分式方程的解题步骤
分式方程是指分母里含有未知数或含有未知数整式的有理方程。
分式方程的解题步骤如下:
1、去分母:
方程两边同时乘以最简公分母,将分式方程化为整式方程;若遇到互为相反数时。
需要改变符号。
(最简公分母:①系数取最小公倍数②未知数取最高次幂③出现的因式取最高次幂)
2、移项:若有括号应先去括号,注意变号,合并同类项,把系数化为1,求出未知数的值;
3、验根:求出未知数值后必须验根,在把分式方程化为整式方程的过程中,可能产生增根。
验根时需把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。
否则这个根就是原分式方程的根。
若解出的根都是增根,则原方程无解。
如果分式本身约分了,也要代入进去检验。
解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解。
注意事项:
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
•増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
•分式方程中,如果x为分母,则x应不等于0。
•注意去分母时,不要漏乘整式项。
分式方程的解法

分式方程的解法分式方程是指含有分数的方程,其形式可以表示为两个多项式的商等于另一个多项式。
解分式方程时,我们需要确定未知数的取值范围,并通过一系列步骤将方程化简为等价的形式,进而求得方程的解。
下面,我们将介绍两种常见的分式方程解法:通分法和消元法。
一、通分法通分法是解决分式方程的常用方法之一。
其基本思路是通过相同的公分母,将分式方程中的分式转化为整式方程。
下面以一个简单的例子来说明通分法的具体步骤。
例题1:求解方程 1/(x+1) + 2/(x-1) = 1步骤1:找到方程的最小公倍数作为公分母。
本例中,最小公倍数为 (x+1)(x-1)。
步骤2:将方程中的每一项通分,并结合同类项。
通分后的方程变为 [(x-1) + 2(x+1)] / [(x+1)(x-1)] = 1。
步骤3:化简方程,消去分母。
将分子展开并结合同类项,得到 (3x + 1) / [(x+1)(x-1)] = 1。
步骤4:通过消去分母的方式解方程。
将方程中的分母乘到分子上,得到 3x + 1 = (x+1)(x-1)。
步骤5:将方程化简为标准形式,并解方程。
将右侧的乘法展开,并结合同类项,得到 3x + 1 = x^2 - 1。
步骤6:整理方程,将方程移到一侧,得到 x^2 - 3x - 2 = 0。
步骤7:使用因式分解法或求根公式等方法,解出方程的根。
解得x = -1 或 x = 2。
所以,方程 1/(x+1) + 2/(x-1) = 1 的解为 x = -1 或 x = 2。
二、消元法消元法是另一种解决分式方程的常用方法。
其基本思路是通过去除方程中的分母,并将方程转化为整式方程。
下面以一个示例来说明消元法的具体步骤。
例题2:求解方程 (2/x) - (3/(x+1)) = 1/2步骤1:寻找方程中的最小公倍数,并将方程中的每一项通分。
本例中,最小公倍数为 2x(x+1)。
步骤2:将方程中的分式乘以相应的倍数,使得分母相同。
分式方程解法

分式方程解法分式方程是一种特殊的方程形式,其中包含未知数的分式表达式。
解决分式方程的关键是寻找未知数的值,使得该方程成立。
本文将介绍几种常见的分式方程解法。
一、通分法通分法是解决分式方程的基本方法之一。
对于一个分式方程,我们可以找到方程两边的最小公倍数,然后将方程两边都乘以最小公倍数的逆元,以消去分母,从而得到一个简化的方程。
下面以一个例子来说明通分法的解题过程。
例子:解方程 (3/x) + (2/(x + 1)) = 5首先,我们找到分式方程两边的最小公倍数为 x(x + 1),然后将方程两边都乘以 x(x + 1),得到:3(x + 1) + 2x = 5x(x + 1)化简得:3x + 3 + 2x = 5x^2 + 5x合并同类项:5x + 3 = 5x^2 + 5x移项得:5x^2 + 5x - 5x - 3 = 05x^2 - 3 = 0因此,解方程的根为x = ±√(3/5)二、代换法代换法是解决一些复杂分式方程的有效方法。
在使用代换法时,我们可以将分式方程化简为一个含有一个未知数的简单方程,然后通过求解这个简单方程来得到分式方程的解。
下面以一个例子来说明代换法的解题过程。
例子:解方程 1/(x + 1) + 1/(2x + 3) = 1/2首先,我们令 y = x + 1,得到新的方程:1/y + 1/(2y + 1) = 1/2化简得:(2y + 1 + y)/(y(2y + 1)) = 1/2合并同类项:(3y + 1)/(y(2y + 1)) = 1/2交叉乘法得:2(3y + 1) = y(2y + 1)化简得:6y + 2 = 2y^2 + y2y^2 - 5y - 2 = 0因此,解方程的根为 y = (-(-5) ± √((-5)^2 - 4(2)(-2))) / (2(2)) = (5 ±√57) / 4将 y 的解代回原方程,得到x = (5 ± √57 - 3) / 4 = (2 ± √57) / 4三、提取公因式法提取公因式法是解决包含多个分式的方程的有效方法。
分式方程的解法

分式方程的解法分式方程是含有一个或多个分式的方程,求解分式方程需要借助一些特定的方法和规则。
本文将介绍分式方程的常见解法,帮助你更好地理解和解决这类问题。
一、消去分母法对于分式方程而言,最常用的解法就是消去分母。
具体步骤如下:1. 将分式方程两边的分母去掉,得到一个关于未知数的多项式方程。
2. 整理方程,将同类项合并,得到一个简化的多项式方程。
3. 使用常规的代数方法解决这个多项式方程。
4. 检查得到的解是否满足原始的分式方程,若满足,则是原方程的解;若不满足,则是无效解。
二、通分法在某些情况下,分式方程可以通过通分的方法进行求解。
具体步骤如下:1. 对于含有多个分式的方程,将所有分式的分母找到其最小公倍数,并将方程两边的分子进行相应的操作。
2. 使用通分后的方程,将分母相同的项合并,并将方程化简为一个关于未知数的多项式方程。
3. 使用常规的代数方法解决得到的多项式方程。
4. 检查得到的解是否满足原始的分式方程,若满足,则是原方程的解;若不满足,则是无效解。
三、代入法有时候,分式方程的解可以通过代入法求得。
具体步骤如下:1. 从分式方程中选取一个变量,用一个合适的值代入该变量。
2. 计算代入后得到的方程,并求解这个新的方程。
3. 检查得到的解是否满足原始的分式方程,若满足,则是原方程的解;若不满足,则是无效解。
四、等价方程法等价方程法是另一种常用的求解分式方程的方法。
具体步骤如下:1. 对于给定的分式方程,将方程两边同时乘以分母的乘法逆元,以消去分母。
2. 处理等式两边得到的新方程,将其化简为一个关于未知数的多项式方程。
3. 使用常规的代数方法解决得到的多项式方程。
4. 检查得到的解是否满足原始的分式方程,若满足,则是原方程的解;若不满足,则是无效解。
综上所述,分式方程的解法主要包括消去分母法、通分法、代入法和等价方程法。
根据具体情况选择合适的方法,可以更高效地求解分式方程。
在解题过程中,要注意化简方程,查验解的有效性,以确保得到正确的结果。
分式方程的解法与技巧、知识精讲

分式方程的解法与技巧【典型例题】1. 局部通分法(分组分解法):例1. 解方程:x x x x x x x x -----=-----34456778分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。
解:方程两边分别通分并化简,得:145178()()()()x x x x --=--去分母得:()()()()x x x x --=--4578解之得:x =6 经检验:x =6是原分式方程的根。
点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。
但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。
变式:解方程32411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。
观察方程中分母的特点可联想分组通分求解。
解:方程两边分别通分,相减得)3)(4(5)1)(2(5---=---x x xx x x当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得251=x 当05=-x 时,解得52=x 经检验,251=x 52=x 都是原方程的解 2.换元法:例2. 解方程:7643165469222x x x x x x ----+=--+分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。
令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。
解:设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --=∴()()k k -+=1220930∴,k k ==-129320当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-=当时,k x x =--+=-932065932022012019302x x -+=解此方程此方程无解。
如何解分式方程

1.一般法所谓一般法,就是先去分母,将分式方程转化为一个整式方程。
然后解这个整式方程。
解原方程就是方程两边同乘以(x+3)(x-3),约去分母,得4(x-3)+x(x+3)=x2-9-2x。
2.换元法换元法就是恰当地利用换元,将复杂的分式简单化。
分析本方程若去分母,则原方程会变成高次方程,很难求出方程的解设x2+x=y,原方程可变形为解这个方程,得y1=-2,y2=1。
当y=-2时,x2+x=-2。
∵Δ<0,∴该方程无实根;当y=1时,x2+x=1,∴经检验,是原方程的根,所以原方程的根是。
3.分组结合法就是把分式方程中各项适当结合,再利用因式分解法或换元法来简化解答过程。
4.拆项法拆项法就是根据分式方程的特点,将组成分式方程的各项或部分项拆项,然后将同分母的项合并使原方程简化。
特别值得指出的是,用此法解分式方程很少有增根现象。
例4 解方程解将方程两边拆项,得即x=-3是原方程的根。
5.因式分解法因式分解法就是将分式方程中的各分式或部分分式的分子、分母分解因式,从而简化解题过程。
解将各分式的分子、分母分解因式,得∵x-1≠0,∴两边同乘以x-1,得检验知,它们都是原方程的根。
所以,原方程的根为x1=-1,x2=0。
6.配方法配方法就是先把分式方程中的常数项移到方程的左边,再把左边配成一个完全平方式,进而可以用直接开平方法求解。
∴x2±6x+5=0,解这个方程,得x=±5,或x=±1。
检验知,它们都是原方程的根。
所以,原方程的根是x1=5,x2=-5,x3=1,x4=-1。
7.应用比例定理上述例5,除了用因式分解法外,还可以应用合比和等比定理来解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识精读】
1. 解分式方程的基本思想:把分式方程转化为整式方程。
2. 解分式方程的一般步骤:
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;
(2)解这个整式方程;
(3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】
例1. 解方程:
x x x --+=1211 {
分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根
解:方程两边都乘以()()x x +-11,得
x x x x x x x x x 222211121232
32
--=+---=--∴==()()(),
即,
经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356
分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:
x x x x x x x x ++-++=++-++67562312
方程两边通分,得
1671236723836
92
()()()()()()()()
x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =-
92。
¥
例3. 解方程:121043323489242387161945
x x x x x x x x --+--=--+-- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
解:由原方程得:3143428932874145
-
-++-=--++-x x x x 即2892862810287x x x x ---=---
于是,所以解得:经检验:是原方程的根。
189861810878986810871
1()()()()
()()()()
x x x x x x x x x x --=----=--==
例4. 解方程:612444444
0222
2y y y y y y y y +++---++-=2 分析:此题若用一般解法,则计算量较大。
当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。
;
解:原方程变形为:62222222022
2
()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202
y y y y y y +-+-++-=()()
方程两边都乘以()()y y +-22,得
622022
()()y y y --++= 整理,得经检验:是原方程的根。
216
88y y y =∴==
注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。
因此要学会根据方程结构特点,用特殊方法解分式方程。
5、中考题解:
例1.若解分式方程
2111x x m x x x x +-++=+产生增根,则m 的值是( ) A. --12或
B. -12或 }
C. 12或
D. 12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。
由题意得增根是:x x ==-01或,化简原方程为:21122x m x -+=+()(),把x x ==-01或代入解得m =-12或,故选择D 。
例2. 甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树 分析:利用所用时间相等这一等量关系列出方程。
解:设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树,
由题意得:60662
x x =+ 601206620
20222x x
x x x +=∴==∴+=经检验:是原方程的根
答:甲班每小时种树20棵,乙班每小时种树22棵。
说明:在解分式方程应用题时一定要检验方程的根。
)
6、题型展示:
例1. 轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。
求这艘轮船在静水中的速度和水流速度
分析:在航行问题中的等量关系是“船实际速度=水速+静水速度”,有顺水、逆水,取水速正、负值,两次航行提供了两个等量关系。
解:设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时
由题意,得8042740707x y x y x y x y
++-=++-=⎧⎨⎪⎪⎩⎪⎪
解得:经检验:是原方程的根
x y x y ==⎧⎨⎩==⎧⎨⎩173173
答:水流速度为3千米/小时,船在静水中的速度为17千米/小时。
例2. m 为何值时,关于x 的方程
22432x mx x x -+-=+2会产生增根 解:方程两边都乘以x 24-,得2436x mx x ++=-
整理,得()m x -=-110
当时,如果方程产生增根,那么,即或()若,则()若,则()综上所述,当或时,原方程产生增根
m x m x x x x m m x m m m ≠=-
--===-=--=∴=-=---=-∴==-110
1
402212101
2422101
263462 说明:分式方程的增根,一定是使最简公分母为零的根。