数学竞赛中解析几何问题的解法(一)-最新教育资料
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学竞赛中解析几何问题的解法(一)
解析几何是各种考试中的重点和难点内容,解析几何题的运算量往往较大,所以很多同学简易出错或者做着做着就做不下去了.所以减少运算量、降低难度常常是解析几何题能否顺利做出来的关键.本文就选了近年的部分考题,来说明解好解析几何题的一些方法.
一、抓住定义解题――要烂熟掌握圆锥曲线的两个定义,很多考题都是从定义出发求解的
二、用好韦达定理――韦达定理是解题的严重工具,圆锥曲线问题中恰当运用韦达定理可以减少不必要的运算
三、结合向量――近年解析几何题常常安一个向量的外壳,所以烂熟运用向量知识在解这类题中至关严重
例6对于两条互相垂直的直线和一个椭圆,已知椭圆无论如何滑动都与两条直线相切,求椭圆中心轨迹.(上海交大自主招生考试)
解以两条直线的交点为原点,两条直线为坐标轴建立直角坐标系.设椭圆的长轴长与短轴长分别为2a,2b(a>b>0).中心为P(x,y),两个焦点分别为F1,F2.
1/ 1