菱形的性质和判定(两课时)

合集下载

七中 张光华 菱形的性质与判定(第2课时)

七中 张光华 菱形的性质与判定(第2课时)

三、说教学方法
1、教学方法 本节课主要采用:讲授法、谈话法、
演示法、实验学导法、学案导学法。 2、学法指导 本节课学生主要采用的学习方法有:
自主探索法、实验法,小组合作式学 习法。
四、说教学过程
活动一、温故知新 活动二、发现新知 活动三、证明新知 活动四、再探新知 活动五、巩固新知 活动六、内化新知 活动七、升华新知
理 对角线互相垂直
性,不要过份强调推理的
的平等四边形是菱
形式。
形.
对已角知线:在互相A垂BC直D 中的,A平C行⊥ B四D 边形是菱A形.
求证: ABCD 是菱形
O
证明:
B
D
∵四边形ABCD是平行四边形
C
∴OA=OC
又∵ AC ⊥ BD;
∴BA=BC
(线段垂直平分线上的点到线段两 个端点的距离相等)
学生小组讨论, 每组6人,在组 长的组织下进行 充分交流、讨论 ,并在学案上写 出完整的证明过 程,展示学习成 果,并对展示的 成果进行充分评 议,提出自己的 看法。
推理的有机结合;交流与 展示能够地有效反馈学生 的证明情况,更是对学生 不同方法的认可,为学生 互相学习借鉴提供的平台 。
《课程标准》要求: 推理就贯穿数学教学的始 终,推理能力的形成和提 高需要一个长期的、循序 渐进的过程,义务教育阶 段要注重学生思考的条理
A
E
D 运用刚刚证明的两个判
定定理解决问题,进一步发
O
展学生的推理能力,同时,
B
F
C 通过对教材P7随堂练习的解
决,让学生找寻不同的解题
方法,培养学生的分析能力,
学生分组学习, 深刻体会数学思想的多样性
展示学习成果, 和灵活性。在一题多解的过

1.1菱形的性质与判定

1.1菱形的性质与判定

1.1菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 板块一、菱形的性质【例1】 ☆ ⑴菱形的两条对角线将菱形分成全等三角形的对数为⑵在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例2】 ⑴如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠=度.⑵如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【例3】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.【例4】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于.图21CBAP HFE DCBAE F D B C A【巩固】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例5】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为【巩固】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8【巩固】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒【例6】 ☆如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【巩固】 菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ⊥,AF CD ⊥,那么EAF ∠等于.【巩固】 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm图1HO DC BA图2DCBA图3E DP CF BA 图1DCBA【例7】 已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例8】 如图,菱形花坛ABCD 的周长为20m ,60ABC ∠=︒,•沿着菱形的对角线修建了两条小路AC 和BD ,求两条小路的长和花坛的面积.【例9】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,若AE AF EF AB ===,求C ∠的度数.板块二、菱形的判定 【例10】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是.【例11】 ☆如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形【巩固】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.【例12】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.图2DFEDCBADCAB FEDCBAODEFCAB【例13】 ☆如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分【巩固】 ☆已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.【例14】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DM EP 是菱形.【例15】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.【巩固】 ☆如图,M 是矩形ABCD 内的任意一点,将M AB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形;⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?C'DC BA EAB CDEF P PF EDC B A GF E DCBAPMF E DG CBA HF DECBA三、与菱形相关的几何综合题 【例16】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?1. 菱形周长为52cm ,一条对角线长为10cm ,则其面积为.2.如图,在菱形ABCD 中,4AB a E =,在BC 上,2120BE a BAD P =∠=︒,,点在BD 上,则PE PC +的最小值为3. 已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________. 4.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.5.如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.6.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应M'M DCBAMPFABCDE DBFEDCBAEDCB A的条件.⑵ 当BAC ∠为度时,四边形ADFE 为正方形.7.如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.FEDCBANMEFCBA。

《菱形的性质与判定》示范教学方案(第2课时)

《菱形的性质与判定》示范教学方案(第2课时)

第一章特殊的平行四边形1.1 菱形的判定和面积第2课时一、教学目标1.经历菱形判定定理的探索过程,进一步发展合情推理能力。

2.能够用综合法证明菱形的判定定理,进一步发展演绎推理能力。

3.体会探索与证明过程中所蕴含的抽象、推理等数学思想。

二、教学重点及难点重点:探索证明菱形的两个判定方法,掌握证明的基本要求、方法及思路.难点:明确推理证明的条件和结论能否用数学语言正确表达.三、教学用具多媒体课件、直尺或三角板。

四、相关资源《菱形的性质》动画,《菱形的判定》微课五、教学过程【复习引入】上一节课,我们学习了菱形的概念和菱形的性质,你能说出菱形的概念和菱形的性质定理吗?师生活动:教师出示问题,学生回顾上一节课所学内容.答:菱形的概念:有一组邻边相等的平行四边形叫做菱形.菱形的性质定理:菱形的四条边相等.菱形的两条对角线互相垂直.此图片是动画缩略图,本资源为《探究菱形的边、角性质》知识探究,通过交互式动画的方式,吸引学生的学习兴趣.若需使用,请插入【数学探究】探究菱形的边、角性质.此图片是动画缩略图,本资源为《探究菱形的边、角性质》知识探究,通过交互式动画的方式,吸引学生的学习兴趣.若需使用,请插入【数学探究】探究菱形的对角线性质.设计意图:通过复习,可以加深对菱形的概念和菱形性质的理解,也是探究菱形判定方法的基础.【探究新知】根据菱形的定义,有一组邻边相等的平行四边形是菱形.除此之外,你认为还有什么条件可以判断一个平行四边形是菱形?师生活动:教师出示问题,学生思考、讨论,教师引导.教师引导:我们学习平行四边形的判定时,是如何猜想并进行证明的呢?学生回答:……教师引导:与研究平行四边形的判定方法类似,我们研究菱形的性质定理的逆命题,看看它们是否成立.我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?师生活动:教师出示问题,学生猜想.学生猜想:对角线互相垂直的平行四边形是菱形.教师追问:如何证明你的猜想呢?师生活动:教师追问,引导学生写出已知、求证并完成证明过程.已知:如图,在□ABCD中,对角线AC与BD交于点O,AC⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD是菱形(菱形的定义).思考我们知道,菱形的四条边都相等.反过来,四条边相等的四边形是菱形吗?师生活动:教师出示问题,学生猜想.学生猜想:四条边相等的四边形是菱形.教师追问:如何证明你的猜想呢?师生活动:教师追问,引导学生写出已知、求证并完成证明过程.答:已知:如图,在四边形ABCD中,AB=BC=CD=DA.求证:四边形ABCD是菱形.证明:∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形(菱形的定义).设计意图:通过此环节让学生对菱形的性质和判定的关系有了一定的认识.总结菱形的判定方法:(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)判定定理1:对角线互相垂直的平行四边形是菱形.几何语言:∵□ABCD,AC⊥BD(已知),∴□ABCD是菱形(对角线互相垂直的平行四边形是菱形).(3)判定定理2:四条边相等的四边形是菱形.几何语言:∵AB=BC=CD=DA(已知),∴四边形ABCD是菱形(四条边相等的四边形是菱形).设计意图:通过类比平行四边形判定定理的探究过程,从菱形性质定理的逆命题出发,提出猜想,发现结论,并从定义出发证明结论,得到菱形的判定方法.议一议如图,分别以A,C为圆心,以大于12AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,四边形ABCD就是菱形.你认为这种做法正确吗?为什么?师生活动:教师出示问题,学生思考、讨论,教师找学生代表回答.答:这种做法正确;因为分别以A,C为圆心,以大于12AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A,B,C,D,则AB=BC=CD=DA.所以四边形ABCD是菱形(四边相等的四边形是菱形).做一做:先将一张长方形的纸对折、再对折,然后沿虚线剪下,将纸展开,就得到了一个菱形。

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

九年级数学上册 第一章 特殊平行四边形 第1节 菱形的性质与判定(第2课时)教案 (新版)北师大版

第一章《特殊平行四边形》《菱形的性质与判定》(第2课时)【教学目标】1.知识与技能(1).经历菱形判定定理的探索过程,进一步发展合情推理能力.(2).能够用综合法证明菱形的判定定理,进一步发展演绎推理能力.2.过程与方法在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果。

3.情感态度和价值观体会探索与证明过程中所蕴含的抽象、推理等数学思想.【教学重点】菱形判定定理的发现与证明.【教学难点】菱形判定定理的应用.【教学方法】合作、探究【课前准备】多媒体课件【教学过程】一、复习引入(1)菱形的定义;(2)菱形的特征;(3)菱形的性质;提出问题引入新课:想一想我们可以怎样判定一个四边形是菱形?二、探究新知1.菱形的判定1:定义法(有一组邻边相等的平行四边形叫做菱形)数学语言:∵四边形ABCD是平行四边形且AB=AD∴四边形ABCD是菱形2.菱形的判定2的探究:对角线互相垂直的平行四边形是菱形活动内容1:根据菱形的定义,有一组邻边相等的平行四边形是菱形,除此之外,你认为还有什么条件可以判断一个平行四边形是菱形,先想一想,再与同伴交流.处理方式:先由学生独立思考,尝试解答,再采取小组合作的方式,交流讨论,进而得到结论:对角线互相垂直的平行四边形是菱形.活动内容2:通过思考、交流,我们可以发现,对角线互相垂直的平行四边形是菱形,你能证明这个命题吗?处理方式:鼓励学生积极探索,大胆猜想,在此基础上再进行严格地证明.证明过程中,学生可能会有一定的困难,教师要及时予以指导和规范.此处可安排学生板演证明过程.但是要帮助引导学生写出已知、求证,并以本题为例,规范证明命题的一般步骤,即:先将命题改写为“如果···,那么···.”的形式,分析命题的条件和结论,再根据条件和结论画出图形,写出已知、求证,最后再规范证明.同时,本题可能会有学生用证明△AOB ≌△COB 的方法证明BA=BC ,对此,教师可引导学生思考,AC 和BD 的关系,即互相垂直平分,因而可以利用线段垂直平分线定理来证明BA=BC.并对两种方法进行比较.已知: ABCD 中,对角线AC 与BD 相交于点O,AC ⊥BD. 求证: ABCD 是菱形证明:∵四边形ABCD 是平行四边形, ∴AO =CO 又∵AC ⊥BD∴BD 是线段AC 的垂直平分线.∴BA =BC (线段垂直平分线上的点到线段两个端点的距离相等) ∴四边形ABCD 是菱形(菱形的定义).设计意图:由于要判定的是一个平行四边形,因此,若要考虑边,则容易想到定义,若要考虑对角线,则可能受到性质的启发,想到对角线互相垂直的平行四边形是菱形,进而对这一命题进行严格证明,得到结论.3.菱形的判定3的探究:四边相等的四边形是菱形活动内容1:已知线段AC ,你能用尺规作图的方法作一个菱形ABCD ,使AC 为菱形的一条对角线吗?你是怎么做的?思考并独立完成后,与同伴交流.处理方式:学生独立完成作图后可与课本作法进行对比,通过思考作法的正确性,探索得到菱形的另一种判定方法:四条边都相等的四边形是菱形.并对这一判定方法加以证明. 这里可能会有一个问题:对于作图要求,学生可能会不太明确,教师要及时点拨,作图要求是要使已知线段为对角线,因而可以借助菱形的对角线互相垂直且平分这一性质,通过作线段AC 的垂直平分线来完成作图.如还是无法完成,可借鉴课本作法.活动内容2:你所做的四边形是菱形吗?你能得到怎样的结论?你能证明这个结论吗? 处理方式:根据作图过程,学生能猜想出所在在四边形为菱形,进而猜想出菱形的另一种判定方法:四条边都相等的四边形是菱形.对于学生作法的正确性的证明,可以先证明所做四边形为平行四边形,再利用定义,证明是菱形.由此得出结论:四条边都相等的四边形是菱形.AB DC O已知: 在四边形 ABCD 中,AB=BC=CD=AD 求证: 四边形 ABCD 是菱形 证明:∵AB=CD ,BC=AD∴四边形ABCD 是平行四边形 又∵AB=BC∴四边形 ABCD 是菱形归纳:菱形的三个判定:1.有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.有四条边相等的四边形是菱形. 三、例题讲解例1.下列条件中,不能判定四边形ABCD 为菱形的是( C )A. AC ⊥BD ,AC 与BD 互相平分 B. AB=BC=CD=DAC. AB=BC ,AD=CD ,且AC ⊥BD D. AB=CD ,AD=BC ,AC ⊥BD解析:根据菱形的三个判定可得C 是错误的.例2、如图, ABCD 的两条对角线AC 、BD 相交于点O ,AB=5,AC=8,DB=6, 求证:四边形ABCD 是菱形.证明:∵ 四边形ABCD 是平行四边形 ∴OA=OC=4 OB=OD=3 又∵AB=5∴222BO AO AB += ∴∠AOB=90° ∴AC ⊥BD又∵ 四边形ABCD 是平行四边形 ∴四边形ABCD 是菱形. 四、巩固练习:1.判断下列说法是否正确?为什么?(1)对角线互相垂直的四边形是菱形; ( ×)BCAD(2)对角线互相垂直平分的四边形是菱形;(√)(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(×)(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.(×)2.对角线互相垂直且平分的四边形是( C )A.矩形B.一般的平行四边形C.菱形D.以上都不对3.如图所示,在△ABC中,AB=AC,∠A<90°,边BC,CA,AB的中点分别是点D,E,F,则四边形AFDE是( A )A.菱形 B.正方形 C.平行四边形 D.梯形4.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( A )A.AB=BC B.AC=BCC.∠B=60° D.∠ACB=60°五.拓展提高1.如图,在平行四边形ABCD中,对角线AC,BD交于点O,E是BD延长线上的点,且△ACE是等边三角形,求证:四边形ABCD是菱形。

菱形的性质及判定

菱形的性质及判定

菱形的性质及判定【知识梳理】1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.一、菱形的性质【例1】⑴菱形的两条对角线将菱形分成全等三角形的对数为⑵在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例2】如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.【例3】如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.【例4】如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE.(1)证明:∠APD=∠CBE;(2)若∠DAB=60°,试问P点运动到什么位置时,△ADP的面积等于菱形ABCD面积的,为什么?课堂练习:1.如图,菱形ABCD的周长是16,∠A=60°,则对角线BD的长度为()A.2 B.C.4 D.F EDCBA2.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD=120°,AC=4,则该菱形的面积是( )A 、B 、16C 、D 、83. 如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 的坐标是(3,4),则顶点M 、N 的坐标分别是( ) A 、M (5,0),N (8,4) B 、M (4,0),N (8,4)C 、M (5,0),N (7,4)D 、M (4,0),N (7,4)二、填空题4. 如图,菱形ABCD 的边长是2cm ,E 是AB 的中点,且DE 丄AB ,则菱形ABCD 的面积 为5. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH 丄AB ,垂足为H ,则点O 到边AB 的距离6. 如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD ,若AD=6cm ,∠ABC=60°,则四边形ABCD 的面积等于二、菱形的判定【例5】如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .【例6】☆如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F , 求证:四边形BEDF 是菱形第4题第5题第6题ODEFCABC'DCB A E【例7】已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.【例8】如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '. 求证:四边形CDC E '是菱形.【例9】如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DM EP 是菱形.PMF E DG CBA巩固练习:一.选择题1.已知菱形ABCD 中,对角线AC 与BD 交于点O ,∠BAD=120°,AC=4,则该菱形的面积是( ) A 、16错误!未找到引用源。

菱形的性质和判定

菱形的性质和判定

∠AOB=∠DOC=∠AOD=∠BOC =90° ∠1=∠2=∠3=∠4 ∠5=∠6=∠7=∠8
等腰三角形: △ABC △ DBC △ACD △ABD 直角三角形: Rt△AOB Rt△BOC Rt△COD
Rt△DOA 全等三角形:Rt△AOB
≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA
△ABD≌△BCD
已知:如图,四边形ABCD是边长为13cm 的菱形,其中对角线BD长10cm. 求:(1).对角线AC的长度; (2).菱形的面积
解:(1)∵四边形ABCD是菱形, ∴∠AED=900, DE
AE
1 1 BD 10 5cm. 2 2 AD 2 DE 2 13 2 52 12cm.
D
4
3
O B
C
有关菱形问题可转化为直角三角形或 等腰三角形的问题来解决
4、 已知:如图,AD平分∠BAC, DE∥AC交AB于E,DF∥AB交AC于F. 求证:EF⊥AD;
A E
3 12
F D C
B
• 5、已知,菱形对角线长分别为12cm和 16cm,求菱形的高。
补充例题:已知如图,菱形ABCD中, E是AB的中点,且DE⊥AB,AB=1。 求(1)∠ABC的度数; (2)对角线AC、BD的长; (3)菱形ABCD的面积。
A
D AC⊥BD B C B C A D
□ABCD
菱形ABCD
数学语言
∵在□ABCD中,AC⊥BD ∴ □ABCD是菱形
探究二
先画两条等长的线段AB、AD,然后分别以 B、D为圆心,AB为半径画弧,得到两弧的交点 C,连接BC、CD,就得到了一个四边形,猜一 猜,这是什么四边形?说出你的理由

1.菱形的性质与判定第2课时 菱形的判定PPT课件(北师大版)

1.菱形的性质与判定第2课时 菱形的判定PPT课件(北师大版)

第2课时 菱形的判定
新知导航
变式训练 1.如图,CE是△ABC外角∠ACD的平分线,AF∥CD 交CE于点F,FG∥AC交CD于点G. 求证:四边形ACGF是菱形. 证明:∵AF∥CD,FG∥AC, ∴四边形ACGF是平行四边形,∠2=∠3, ∵CE平分∠ACD,∴∠1=∠2, ∴∠1=∠3,∴AC=AF, ∴四边形ACGF是菱形.

∠EOD=∠FOB
∴△DOE≌△BOF(ASA);∴OE=OF,又∵OB=OD,
∴四边形EBFD是平行四边形, ∵EF⊥BD,∴四边形BFDE为菱形.
第2课时 菱形的判定
新知导航
3.将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE
(如图所示),点D与点F分别是斜边AB,AE的中点,连接
第2课时 菱形的判定
轻松过招
6.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE 垂直平分BC,垂足为D,交AB于点E. 点F在DE的延长线上,且AF=CE. 求证:四边形ACEF是菱形. 证明:∵AC⊥BC,DE垂直平分BC, ∴DE∥AC∴点E是BA中点,∴在Rt△ACB中,CE=AE 又∵∠BAC=60°,∴△ACE是等边三角形 ∴AC=CE=AE,又∵AF=CE,∴AF=AE 又∵DF∥AC,∴∠FEA=∠CAE=60° ∴△AEF为等边三角形,∴EF=AF. ∴CE=AC=AF=EF,∴四边形ACEF是菱形
第2课时 菱形的判定
轻松件是( B )
A. AC=AD B.BA=BC C.∠ABC=90° D.AC=BD
第2课时 菱形的判定
轻松过招
2.(202X·宁夏)如1题图,四边形ABCD的两条对
角线相交于点O,且互相平分.添加下列条件,仍不

(完整版)菱形的性质及判定

(完整版)菱形的性质及判定

菱形的性质及判断中考要求知识点 A 要求B要求C要求菱形会辨别菱形掌握菱形的观点、性质和判断,会用菱形的性质和会用菱形的知识解决有关判断解决简单问题问题知识点睛1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特别的平行四边形,它拥有平行四边形的全部性质,?还拥有自己独到的性质:① 边的性质:对边平行且四边相等.② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线相互垂直均分且每条对角线均分一组对角.④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.评论:其实只需四边形的对角线相互垂直,其面积就等于对角线乘积的一半.3.菱形的判断判断① :一组邻边相等的平行四边形是菱形.判断② :对角线相互垂直的平行四边形是菱形.判断③ :四边相等的四边形是菱形.重、难点要点是菱形的性质和判断定理。

菱形是在平行四边形的前提下定义的,第一她是平行四边形,但它是特别的平行四边形,特别之处就是“有一组邻边相等”,因此就增添了一些特别的性质和不一样于平行四的基础。

难点是菱形性质的灵巧应用。

因为菱形是特别的平行四边形,因此它不只拥有平行四边形的性质,同时还拥有自己独到的性质。

假如获得一个平行四边形是菱形,就能够获得很多对于边、角、对角线的条件,在实质解题中,应当应用哪些条件,如何应用这些条件,经常让很多学生惊慌失措,教师在教课过程中应赐予足够重视。

例题精讲板块一、菱形的性质【例 1】☆ ⑴菱形的两条对角线将菱形分红全等三角形的对数为⑵在平面上,一个菱形绕它的中心旋转,使它和本来的菱形重合,那么旋转的角度起码是【例 2】⑴如图 2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离 AB BC16cm ,则1度.A B C1图2⑵如图,在菱形ABCD 中, A 60 , E 、 F 分别是 AB 、 AD 的中点,若 EF 2 ,则菱形 ABCD的边长是 ______.AE FB DC【例 3】如图,E是菱形ABCD的边AD的中点,EF AC于 H ,交 CB的延伸线于 F ,交 AB于 P,证明: AB 与 EF 相互均分.DEHA CPBF【例 4】☆如图 1 所示,菱形ABCD中,对角线AC、BD订交于点O,H为AD边中点,菱形ABCD的周长为 24,则 OH 的长等于.AHB DOC图1【稳固】☆如图,已知菱形ABCD 的对角线AC8cm ,BD 4cm ,DE BC 于点E,则DE的长为【例 5】☆ 菱形的周长为20cm ,两邻角度数之比为2:1 ,则菱形较短的对角线的长度为【稳固】如图 2,在菱形ABCD 中, AC 6 , BD 8 ,则菱形的边长为()A.5B.10C.6D.8A DBC图 2【稳固】如图 3,在菱形ABCD中, A 110, E、 F 分别是边 AB和 BC的中点, EP CD 于点 P,则FPC ()A.35B.45C.50D.55DAE PCB F图3【例 6】☆如图,把一个长方形的纸片对折两次,而后剪下一个角,为了获得一个锐角为60 的菱形,剪口与折痕所成的角的度数应为()A.15或30 B .30或 45 C .45或60D.30或60【稳固】菱形 ABCD 中,E 、F 分别是 BC 、CD 的中点,且 AE BC ,AF CD ,那么EAF 等于.【稳固】如图,将一个长为10cm ,宽为 8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再翻开,获得的菱形的面积为()A. 10cm 2 B . 20cm 2C. 40cm2D. 80cm 2DA CB图1【例 7】☆已知菱形ABCD的两条对角线AC,BD的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例 8】如图,菱形花坛ABCD的周长为20m,ABC 60,?沿着菱形的对角线修筑了两条小道AC和BD ,求两条小道的长和花坛的面积.AOB DC图2【例 9】已知,菱形ABCD 中, E 、 F 分别是 BC 、 CD 上的点,若AE AF EF AB ,求 C 的度数.AB DE FC板块二、菱形的判断【例 10】如图,假如要使平行四边形ABCD 成为一个菱形,需要增添一个条件,那么你增添的条件是.A DB C【例 11】☆如图,在ABC 中, BD 均分ABC , BD 的中垂线交AB 于点 E ,交 BC 于点 F ,求证:四边形 BEDF 是菱形AE DB FC 【稳固】已知:如图,平行四边形ABCD 的对角线 AC 的垂直均分线与边AD 、 BC 分别订交于 E、 F .求证:四边形 AFCE 是菱形.A EDOBF C【例 12】如图,在梯形纸片ABCD中,AD / / BC,AD CD ,将纸片沿过点 D 的直线折叠,使点 C 落在AD 上的点 C 处,折痕 DE 交 BC 于点 E ,连接 C E .求证:四边形 CDC E 是菱形.A C'DB EC 【例 13】☆如图,E是菱形ABCD的边AD的中点,EF AC于 H ,交 CB的延伸线于 F ,交 AB于 P ,证明: AB 与 EF 相互均分A E D A E DP PF B C F B C【稳固】☆已知:如图,在平行四边形ABCD 中, AE 是 BC 边上的高,将ABE 沿 BC 方向平移,使点E 与点 C 重合,得GFC .若 B 60 ,当 AB 与 BC 知足什么数目关系时,四边形ABFG是菱形?证明你的结论.A G DB E FC【例 14】如图,在ABC中,AB AC,M是BC的中点.分别作MD AB于D,ME AC于 E ,DF AC 于 F , EG AB 于 G . DF 、EG 订交于点 P .求证:四边形DMEP 是菱形.AG P FD EB MC 【例 15】如图,ABC中,ACB 90,AD是BAC 的均分线,交 BC 于D ,CH 是 AB 边上的高,交 AD 于 F , DE AB于 E ,求证:四边形CDEF 是菱形.CDFAH E B【稳固】☆如图, M 是矩形 ABCD 内的随意一点,将MAB 沿 AD 方向平移,使 AB 与 DC 重合,点 M 移动到点 M ' 的地点⑴画出平移后的三角形;⑵连接 MD ,MC ,MM ' ,试说明四边形MDM 'C 的对角线相互垂直,且长度分别等于AB,AD 的长;⑶当 M 在矩形内的什么地点时,在上述变换下,四边形MDM 'C 是菱形?为何?A DMM'B C三、与菱形有关的几何综合题【例 16】已知等腰△ABC中,AB AC , AD 均分 BAC 交 BC 于 D 点,在线段 AD 上任取一点 P ( A 点除外),过 P 点作 EF∥ AB,分别交 AC 、 BC于 E 、 F 点,作 PM ∥ AC,交 AB于 M 点,连结ME.⑴求证四边形AEPM 为菱形⑵当 P 点在哪处时,菱形AEPM 的面积为四边形EFBM 面积的一半?CDE PFABM课后练习1.菱形周长为 52cm ,一条对角线长为 10cm ,则其面积为.2.如图,在菱形 ABCD 中,AB4a ,E 在BC上, BE 2a, BAD120 ,P 点在BD上,则PE PC的最小值为A DPB E C3.已知菱形的一个内角为60 ,一条对角线的长为 2 3 ,则另一条对角线的长为________.4.已知,菱形 ABCD中, E 、 F 分别是 BC 、 CD 上的点,且 BEAF60, BAE 18 .求:A DFBE C5.如图,在ABC 中, AB AC ,D 是 BC 的中点,连接 AD ,在 AD 的延伸线上取一点 E ,连接 BE ,CE .当 AE 与 AD 知足什么数目关系时,四边形ABEC 是菱形?并说明原因.BADE C6.如图,ACD 、ABE 、BCF 均为直线 BC 同侧的等边三角形.已知AB AC .⑴按序连接 A 、 D 、 F 、 E 四点所组成的图形有哪几类?直接写出组成图形的种类和相应的条件.⑵当BAC 为度时,四边形ADFE 为正方形.FEDAB C7.如图,已知BE、CF分别为ABC 中B、 C 的均分线, AM BE于M,AN CF于N,求证: MN ∥ BC.AFENMB C。

菱形的性质与判定(二)

菱形的性质与判定(二)
课时教学流程
教 师 行 为
学 生 行 为
第一环节:课前准备
活动内容:制作菱形
(1)在一张纸上用尺规作图做出边长为10cm的菱形;
(2)想办法用一张长方形纸剪折出一个菱形.
(3)利用长方形纸你还能想到哪些制作菱形的方法.
第二环节:温故知新
通过练习复习上节课探究过的菱形的性质
第三环节:展示交流,引导探究.
课时教学设计首页
课题
1.菱形的性质与判定(二)
课型
新授
授课时间
2015.9
教学目标
(1)经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.
(2)经历实际操作,探索菱形判定定理的证明过程,发展合情推理能力和初步的演绎推理的能力;
(3)在具体问题的证明过程中,有意识地渗透实验论证、逆向思维的思想,提高学生的能力。
本节课,学生将探究菱形的判定定理,应该说,有了上节课的铺垫,本节课可以更多地让学生自主探索。第一个定理的证明中,需要首先明确判定定理与性质定理的关系,这样为后面一系列定理的证明打下基础;第二个定理教科书中是通过设置一个尺规作图的问题引入的,在学生自行完成尺规作图并明确了作法的可行性后,引导学生自主完成证明过程。
用实物投影、课件、板书等方式罗列发现的学生资源:
(1)对角线垂直的平行四边形是棱形
(2)四条边相等的四边形是菱形请学生交流大体思路
(3)菱形的尺规作图
(4)利用长方形纸剪折菱形
学生主动讲解、
相互补充完成本部分内容.
课时教学流程
教 师 行 为
学 生 行 为
求证:四边形AECF是菱形
第六环节:课堂小结
活动内容:学生互相交流菱形的性质与判定定理,何时该选用性质定理,何时选择判定定理,菱形与平行四边形的关系,遇到菱形实际题目时如何分析思路,以及遇到困难时如何克服等。

第2课时菱形的判定

第2课时菱形的判定

第2课时菱形的判定1.探索证明菱形的判定方法,掌握证明的基本要求、方法及思路.2.经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.3.经历实际操作,探索菱形判定定理的证明过程,发展合情推理的能力.4.在具体问题的证明过程中,有意识地渗透试验论证、逆向思维的思想,提高学生解决问题的能力.重点菱形判定定理的证明及应用.难点菱形的判定方法的综合运用.一、复习导入1.菱形的定义是什么?2.菱形有哪些性质?教师:同学们对菱形的性质都掌握得很好,那么怎样判定一个四边形是菱形呢?这就是我们这节课所要研究的内容.二、探究新知1.菱形的判定方法一教师:根据菱形的定义,有一组邻边相等的平行四边形是菱形.这可以作为菱形的第一种判定方法.2.菱形的判定方法二课件出示:用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可动的十字,四周围上一根橡皮筋,做成一个四边形.教师转动木条,提出问题:(1)转动木条,这个四边形总有什么特征?(2)继续转动木条,什么时候橡皮筋围成的四边形变成菱形?引导学生猜想:当木条互相垂直时,平行四边形的一组邻边相等,此时四边形为菱形.教师:你能证明你的猜想吗?学生独立完成,指名板演,教师点评.已知:如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥BD.求证:▱ABCD是菱形.证明:∵四边形ABCD是平行四边形,∴OA=OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA=BC.∴四边形ABCD 是菱形(菱形的定义).3.菱形的判定方法三教师:已知线段AC ,你能用尺规作图的方法作一个菱形ABCD ,使AC 为菱形的一条对角线吗?学生独立尝试作图,教师点评,并进一步讲解用尺规作菱形的方法:如图,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两条弧分别相交于点B ,D ,依次连接A ,B ,C ,D.教师:你能说明得到的四边形为什么是菱形吗?学生小组讨论交流,找到原因:该四边形四边相等.教师:你能证明四边相等的四边形是菱形吗?学生独立完成,指名板演,教师点评.已知:如图,在四边形ABCD 中,AB =BC =CD =DA.求证: 四边形ABCD 是菱形.证明:∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形.又∵AB =BC ,∴四边形ABCD 是菱形(菱形的定义).教师:你能用折纸等办法得到一个菱形吗?学生动手操作,教师巡视指导.三、举例分析例 已知:如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,AB =5,OA =2,OB =1.求证:▱ABCD 是菱形.思考:(1)观察题目中的数据,AB ,OA ,OB 有什么数量关系?(2)利用勾股定理的逆定理能否判定△ABO 是直角三角形?(3)如果可以得到直角三角形,那么利用菱形的哪一个判定定理进行判断?四、练习巩固1.教材第7页“随堂练习”.2.教材第7页习题1.2第1题.五、小结1.怎样判定一个四边形是菱形?2.通过本节课的学习,你还学到了哪些知识?六、课外作业教材第7页习题1.2第2,3题.在本节课中,课前复习为本节课的探究作了有效的铺垫.学生资源的灵活运用提高了学生参与探究的兴趣,证明思路的分析过程让学生体会了逆向思维、一题多解等数学思想.另外,学生通过经历试验—猜想—证明—应用的探索过程提高了自身的科学素养.。

菱形的判定PPT课件

 菱形的判定PPT课件

课后训练
13.(2020·岳阳)小明家里有一台透明电冰箱,他发现电冰箱 的门相当于一个开关,当打开电冰箱的门时,灯亮,将 门关上时,灯熄;电冰箱 主要是利用压缩机(M)工 作,压缩机(M)由温控开 关控制。下列电路图符合 上述要求的是( C )
课堂导练
5.开关的控制作用:在串联电路中,开关控制___所__有___ 用电器,开关的位置改变,它的控制作用___不__变___; 在并联电路中,干路上的开关控制___所__有___用电器, 支路上的开关只控制_该__支__路___的用电器。
(1)求证:△ECG≌△GHD;
证明:∵AF=FG,∴∠FAG=∠FGA. ∵AG平分∠CAB,∴∠CAG=∠FAG. ∴∠CAG=∠FGA.∴AC∥FG.
∵DE⊥AC,∴FG⊥DE. ∴∠DHG=90°. ∵FG⊥BC,∴DE∥BC. ∴AC⊥BC,∠CGE=∠GED. ∴∠C=∠DHG=90°. ∵F是AD的中点,FG∥AE,∴H是ED的中点. ∴FG是线段ED的垂直平分线.∴GE=GD. ∴∠GDH=∠GED. ∴∠CGE=∠GDH. ∴△ECG≌△GHD(AAS).
*4.如图,O是菱形ABCD的对角线的交点,E,F分别是OA, OC的中点,给出下列结论: ①四边形BFDE是菱形; ②S四边形ABCD=EF·BD; ③∠ADE=∠EDO; ④△DEF是轴对称图形. 其中正确的有( ) A.1个 B.2个 C.3个 D.4个
【点拨】由菱形的性质可得AO=CO,BO=DO,AC⊥BD,由 菱形的判定可判断①正确,由菱形的面积公式可判断②正确, 容易判断③不正确,由等腰三角形的性质可判断④正确.
(2)小亮同学经过探究发现:AD=AC+EC,请你帮助小亮同 学证明这一结论;
【思路点拨】欲证AD=AC+EC,可考虑“截长补短法”, 结合角平分线的性质,可作GP⊥AB于点P,则构造 Rt△CAG≌Rt△PAG,Rt△ECG≌Rt△DPG,可得AC =AP,EC=PD,从而易得结论.

菱形的性质和判定(二)

菱形的性质和判定(二)

教学设计备课日期: 2018 年4 月 2 日课题菱形的性质和判定(2)1课时课型新授教材分析上节课讲解了菱形的性质,学生有了一定的基础,抓住菱形的性质思考其判定学情分析利用已有的知识解决问题,促使学生从感性认识向理性思维发展,从形象思维向抽象思维转型。

教学目标知识与技能:探究菱形的判定方法,掌握菱形的判定定理.了解菱形在实际问题中的应用.过程与方法:经历思索菱形判定思考的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的基本方法.情感态度与价值观:培养良好的思维意识以及合情推理能力,感悟其应用价值.教学重难点重点:菱形判定定理的证明. 菱形判定定理的应用.难点:学生独立完成证明的过程,增强学生对待科学的严谨治学态度。

.教学策略1、对比教学2、建立知识结构图教学资源Ppt课件班班通课时安排1课时上课时间4月10号2、8.4;5、8.5教学过程一、学前准备:1、菱形的定义是什么?2、菱形具有哪些性质呢?3、填空①菱形的周长为12cm,一个内角等于150°,则它的面积②矩形的一条边长为4cm,面积为20cm2,则这个矩形的一条对角线长为______.③菱形中较大角是较小角的3倍,高为5cm,•则这个菱形边长为______.二、探究活动:(一)独立思考•解决问题如图:在两根细木条的中点处固定一个小钉子,做成一个可转动的十字,再将四周围上一根橡皮筋,做成一个四边形,问:这个四边形是怎样的四边形?问:将木条转成互相垂直的位置,这时这个平行四边形是怎样的平行四边形呢?为什么?由此可得菱形的判定方法:(二)师生探究•合作交流1、如图, ABCD的对角线AC、BD交于O,AB=5,AO=4,BO=3,求证 ABCD是菱形.2、如图,在矩形ABCD中,BC=2AB,E是AD上的点,∠BCE=75°,•求证:•BE=BC.练一练:课本P88 “练习”3三、学习体会:现在你对菱形有怎样的认识?四、随堂检测:1、填空:⑴如图,菱形花坛ABCD的边长为6m,∠B=60°,•其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为().A.12 m B.20m C.22m D.24m⑵如图,在菱形ABCD中,∠ABD=60°,AD=4,则BC的长为().A.8 B.4 C.2 D.82、如图所示,四边形ABCD、DEBF都是矩形,AB=BF,AD、BE相交于M,BC、DF交于N,求证:四边形BMDN是菱形.3、求证:连接矩形四边中点的四边形是菱形(要求画出图形,写出已知、求证,•证明)4、如图所示,菱形ABCD,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE=18°,求∠CEF的度数.五、应用与拓展Rt△ABC,∠A=90°,∠B的平分线交AC于D,自A作BC的垂线交BD于E,自D•作DF•⊥BC,求证:AEFD为菱形.板书设计6.1菱形的性质与判定(2)引例例2:学生练习教学反思在证明思路的分析过程中体会了逆向思维、一题多解等的数学思想。

第1讲 菱形的性质与判定(解析版)

第1讲  菱形的性质与判定(解析版)

第1讲 菱形的性质与判定 1.理解掌握菱形的概念性质及判定定理2.会用菱形的有关知识进行证明,会计算菱形的面积 知识点01 菱形的性质(1)菱形的定义:有一组邻边相等的平行四边形叫做菱形.(2)菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)菱形的面积计算①利用平行四边形的面积公式. ②菱形面积12ab .(a 、b 是两条对角线的长度) 【知识拓展1】菱形的两条对角线长的比是32,面积是cm 12,则它的对角线的长分别是 cm , cm . (★)解答方法:∵ 设菱形的两条对角线的长分别为厘米厘米x x 3,2,∴ 122132=⋅⋅=x x S 菱形,∴ 解得舍去)(2,221-==x x , ∴ 对角线的长分别为cm cm 6,4。

答案:cm cm 6,4。

【总结方法】菱形的面积等于对角线乘积的一半。

【即学即练】两对角线分别是6cm 和8cm 的菱形面积是 _________ cm 2,周长是 _________ cm . (★) 解答方法:菱形面积是224286cm =÷⨯;∵菱形的对角线互相垂直平分,根据勾股定理可得,边长为5cm ,则周长是20cm . 知识精讲目标导航故答案为24,20.解答:24,20【知识拓展2】菱形的周长是它的高的8倍,则菱形较小的一个角为()(★★) A.60°B.45°C.30°D.15°解答方法:菱形的周长为边长的4倍,又∵菱形周长为高的8倍,∴AB=2AE,∵△ABE为直角三角形,∴∠ABC=30°.故选 C.答案:C【总结方法】本题考查了菱形各边长相等的性质,考查了直角三角形中的特殊角,本题中根据特殊角求得∠ABC=30°是解题的关键.【即学即练1】菱形的一条对角线与边长相等,则菱形中较小的内角是()(★★) A.60°B.15°C.30°D.90°解答方法:因为菱形的一条对角线与边长相等,所以该对角线和菱形的两边组成的是等边三角形,可得该菱形较小内角的度数是60°.解答:A【即学即练2】如果菱形的周长等于一条对角线长的4倍,那么这个菱形较小的一个内角等于度.(★★)解答方法:∵菱形的周长等于一条对角线长的4倍,∴AB=BD=AD,∴△ABD是等边三角形,∴∠A=60°.即这个菱形较小的一个内角等于60°.解答:60【知识拓展3】已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE. (★★)答案:证明:∵ 四边形ABCD 是菱形,∴ BCD CA CD CB ∠=平分,.∴ CE CE DCE BCE =∠=∠又.,∴ △BCE ≌△COB (SAS ).∴ ∠CBE=∠CDE .∵ 在菱形ABCD 中,AB ∥CD , ∴∠AFD=∠FDC∴ ∠AFD=∠CBE .【总结方法】通过菱形的基本性质可以得到三角形全等,进而推出对应角相等,然后利用平行内错角相等进行转化即可得到要证明的结论。

人教版八年级数学下册18.2.2 第1课时+菱形的性质 课件

人教版八年级数学下册18.2.2 第1课时+菱形的性质 课件
∠BAC=∠DAC, ∠BCA=∠DCA
菱形是轴对称图形,它有两条对称轴.
O┐
B
D
C
新知探究
1.下列性质中,菱形具有而矩形不一定具有的是( D ).
A.对角线相等
B.对角线互相平分
C.邻边互相垂直
D.对角线互相垂直
新知探究
2.菱形ABCD的两对角线AC、BD的长为8、6,则其边长
D
为多少?
解:∵四边形ABCD是菱形
18.2.2 菱形的性质
人教版八年级下册
知识回顾
矩形的性质有哪些?
对边平行且相等
四个角都是直角
对角线相等且互相平分
轴对称图形,有两条对称轴
教学目标
1.理解并掌握菱形的概念和性质.
2.能熟练运用菱形性质进行计算和证明.
新知导入
你认识这些生活中常见的图形吗?能找出它们的共同特点吗?
都具有
新知导入
将一张矩形的纸对折,然后沿着图中的虚线剪下,看看打开是个什么
图形,与前面图中特别的四边形一样不?自己动手做一做.
思考
观察得到的四边形的形状,它是一个怎样的四边形呢?
新知探究
根据折叠的情况,得到的四边形的四条边 相等 .
这个四边形叫菱形,什么样的平
行四边形可以成为菱形?四条边
相等吗?
这个四边形四条边都相等,所以这个四边形一定
证明呢?
有一组邻边相等的平行四边形叫做菱形.
已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与
BD相交于点O.
A
求证: AB = BC = CD =AD;
B
D
C
新知探究
已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与

菱形的性质与判定ppt课件

菱形的性质与判定ppt课件
四边形
_______.
【探究提升】 取两张短边长度相等的平行四边形纸条和
< , ≤ ,其中 = ,∠ = ∠,将它们按图2放
置,落在边上,,与边分别交于点,.求证:四边形
是菱形.
证明:∵ 四边形纸条和是
折叠,使得落在边上,折痕为,
展平纸片.如图2,再次折叠该三角形
纸片,使点与点重合,折痕为,再
次展平后连接,.求证:四边形是菱形.
证明:由第一次折叠,得为∠
的平分线.∴ ∠ = ∠.
由第二次折叠,得∠ = ∠,
= , = .
= = = = , = .若∠ = ∘ ,则
∠的度数为( B )
A.∘
B.∘
C.∘
D.∘
第10题图
11.
如图,将△ 沿着方
向平移得到△ ,只需添加一个条件即可证
明四边形是菱形,这个条件可以是
= (答案不唯一)
∴ 四边形为菱形.
第7题图
(2)求的长.
解:∵ 四边形为菱形,
∴ = = , = , ⊥ .
在 △ 中, = − = ,
∴ = = .
第7题图
8.张师傅应客户要求加工4个菱形零件,在交付客户之前,张师傅需要对
4个零件进行检测,根据零件的检测结果,图中有可能不合格的零件是
( C )
A.
B.
C.
D.
9.(2023洛阳期中改编)如图1,四边形
是菱形,在直线上找两点,,
使四边形是菱形,则甲、乙两个方
案( C )
A.甲对,乙错
B.乙对,甲错
C.甲、乙都对
D.甲、乙都错
10.如图,四边形内有一点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.2.1寻宝:菱形的性质
Team : _______________ I D : _______________ 寻宝
技能
1、知道菱形在边”、对角线”上的特性;口
寻宝之旅一、探索:菱形的性质:
1、菱形的定义:
2、根据平行四边形、矩形、菱形的性质填表:
对称性边角对角线
平行四
边形
矩形
菱形
1922寻宝:菱形的性质应用
寻宝 技能 1、运用菱形的边、对角线特性解题; □
1、如图,在菱形 ABCD 中,/ BAD= 2/ B.求出/B
的大小,并证明厶ABC 是等边
三角形.
A
K
>
C
2、如图,已知菱形 ABCD 的一条对角线BD 恰好与其边AB 的长度相等.
求这个菱
形各内角的大小.
D
C
寻宝 之旅
7
B
3、如图,菱形 ABCD 的对角线 AC 与BD 相交于点 O AE 垂直平分CD
垂足为点
E.求/ BCD 的大小.
A
, D
B /
c
Team : _______________ I D : _______________
19.2.3寻宝:菱形的判定
Team :ID
寻宝
技能
1、能从四边形边”、对角线”的特征判定菱形;口
一、探索:
•猜想
1、菱形在“边”、“对角线”上的特性是什么?能从这两个方面找到判定菱形的
方法?
猜想一: _______________________________________________________________________ 猜想二: _______________________________________________________________________ •作图:
2、作一个四条边相等的四边形(见秘籍114页)
3、作一个对角线互相垂直且平分的四边形•(见秘籍116页)
寻宝
之旅
上面的作的两个四边形是否都是菱形?为什么?
I。

相关文档
最新文档