三视图的还原法
完整版三视图还原技巧
核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
三视图还原几何体的方法
一、 首先要掌握简单几何体的三视图。
正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。
二、 掌握简单组合体的组合形式。
简单组合体主要有拼接和挖去两种形式。
三、 三视图之间的关系。
正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽。
四、清楚三视图各个线段说表示几何体位置,如上图所表示。
五、由三视图画出直观图的步骤和思考方法。
1、首先看俯视图,根据俯视图画出几何体地面的直观图2、观察正视图和侧视图找到几何体前、后、左、右的高度。
3、画出整体,让后再根据三视图进行调整。
1.熟悉正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图和还原图的转换。
2.要熟悉立体图当中底面形状为三角形、正方形、梯形、多边形、圆形的画法,立体图的底面按照俯视图的外框用虚线画,一般后方都要向右偏,如正方形画成平行四边形、圆形画成椭圆形等3.不能将后面的线重叠,画的时候不要把前后的2点画在一个L形直角上4.俯视图中间是虚线说明立体图上面打下面小。
三视图还原为几何体的方法1.首先根据俯视图确定立体图底面图形,用虚线画好;2.根据正视图确定上顶点在左边还是右边3.根据左视图确定上顶点在立体图的里面还是外面4.连接顶点和底面的各点,有多个顶点时的原则是先连接各顶点同一侧的底面点,再参考正视图中间连线情况连接顶点与另一侧的底面点;5.根据三视图验证立体图,将立体图中能看到部分虚线画实五、举例说明:例如1(2011年天津高考试题)10.一个几何体的三视图如右图所示(单位:m),则该几何体的体积m为__________3分析:从集合体的三视图可以看出是一个拼接的组合体,其中上部分是圆锥,下面部分是一个长方体。
圆锥的底面直径是2m,高是3m;长方体的长是3m,宽为2m,高是1m.可以计算出几何体的体积。
立体几何之三视图高效还原法:拔高法,解题神级方法!
同学们,今天我们来讲一下立体几何里面的三视图,其实三视图主要考察点是空间想象,如果同学们的空间想象能力比较强,如果你能快速还原出对应的立体图形,那么这道问题就马上解决,它无非就是考察几个点:1、让你判断其形状;2、由两个试图读出另一视图;3、考察的综合运算——让你去求多面体棱长最大值、求体积或者表面积。
对于这些问题,你只要把立体图形还原出来,这个题目没有任何难度了。
那么有的同学空间想象稍微偏弱,那种问题就不会得到快速解决,那么怎样快速准确还原对应的三视图呢?方法有很多种,可以是凭你的空间想象直接去还原;三线交汇、或者正方体切等方法,但是我给同学们讲,这些方法都不能最高效、最准确的还原三视图,如果你所有的立体图形都用三线交汇、或者正方体切等方法,我告诉大家就想小题大做了,你会发现解题会比较困难。
那么我今天给大家讲一种方法叫——拔高法,它能够还原90%以上的三视图,还有10%是偏难的要用别的方法:六字箴言——先去除再确定,就能够把所有的三视图题快速准确还原出来,这个方法我以后再给大家讲。
首先,我们来看一下拔高法的步骤:1、拔高法最主要的就是俯视图,是三视图的根基,首先标出俯视图的所有节点;画出俯视图所对应的直观图;2、由主、侧视图的左、中、右找出所被拔高的点。
什么意思?那我们先来看一道题,大家要好好理解,好好掌握,只要理解透彻以后,再解题可能就10来秒一道题,是非常快速,而且非常准确。
拔高法还原三视图1.某多面体的三视图如圏所示’则这个多面体的最长棱长为好,我们先将俯视图作底座,这个最重要:(请注意:我们先只画俯视图外轮廓的直观图,至于哪个虚线那个实线,我们先不管它,先都画成虚线。
最终哪个需要是实线,到后面再看)。
③然后由俯视图看主视图,我们在俯视图和主视图上都标出它们相对应的节点左、中、右f4+47 PA j? AA拔高法还原三视图1.某多面体的三视图如圏所示’则这个多面体的最长棱长为现在大家看,不难发现,主视图的左边是没有被拔高的,中间虽然高了,但没有节点,我们 可以认为他没有高或者不用管它,那么由俯看主就只有右边被拔高了。
三视图还原几何体的方法
三视图还原——xyz 定位法一、首先要掌握简单几何体的三视图。
正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。
二、掌握简单组合体的组合形式。
简单组合体主要有拼接和挖去两种形式。
三、三视图之间的关系。
几何体的长:正视图、俯视图的长;几何体的宽:俯视图的高、侧视图的长;几何体的高:正视图、侧视图的高。
(口诀:主俯定长,俯左定宽,主左定高)(下面)左视左侧(后面)正视左侧(左面)正视右侧(右面)左视右侧(前面)(下面)四、清楚三视图各个线段说表示几何体位置,如上图所表示。
五、由三视图画出直观图的步骤和思考方法。
1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视角为三角形,为椎体特征。
选择底面还原(求体积可不用还原);3、凡是想不出来的,可用xyz 坐标定位法还原。
前面俯视左侧(左面)【类型一】:(三线交汇)例2:【类型二】:例3:连接这五个点的四棱锥,不满足俯视图。
而顶点又必须在这五点交点中,所以当点数超过4个,可能不需要全部连接,则这些点有所取舍。
第一法:俯视图看到的面不可以为上面四个点构成的整个四边形,而是中间有一条折痕,故只能说左半边三角形乡下折。
即舍弃前面左上方的点。
故得,第二:唯一法:正视图看,已标记下面的点必不可少;从俯视图看,上面有3个点必不可少;故只能舍弃前面左上方的点。
第三:口诀:实线两端的点保留,虚线两端的点待定。
从俯视图一看,便知道答案了。
取舍关键:墙角点是取舍的备选。
练习【类型三】:(八点齐飞,直观图不唯一)例4此题八点齐飞,通过类型二中的第三取舍法,我们很容易就能还原出来。
答案:然而,我们发现这个三视图也可以看成,是上图中的三棱锥与另外一个三棱锥组合而成。
如下图所示:M为顶点的三棱锥(四种)与上图的组合。
同理,还有其他两种形式,此处就不一一画图了。
由此得出,上题中的三视图至少有5种不同的直观图。
【三视图题目几点技巧】1,部分椎体求体积,直接用公式(可以不还原)2,斜二测画法与原图面积比例为定值(可以不还原)3,三视图中,和视线垂直的线段,长度不变。
三视图还原口诀
三视图还原口诀
三视图还原口诀如下:1、长对正:主视图与俯视图的长对正。
2、高平齐:主视图与左视图的高平齐。
3、宽相等:俯视图与左视图的宽必须相等。
三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形。
三视图是哪三视
三视图是主视图,俯视图,左视图三个基本视图。
能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图,这是工程界一种对物体几何形状约定俗成的抽象表达方式。
三视图是观测者从上面、左面、正面三个不同角度观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来的图形称为视图。
三视图复原技巧
当物体某部分被其他部分遮挡时,需要在视图中进行相应的处理,如使用虚线表示被遮挡部分的轮廓。
处理遮挡关系
在复原三视图时,应注意细节部分的处理,如倒角、圆角、螺纹等。这些细节部分对于准确表达物体形状至关重要。
注意细节处理
在三视图中,各视图之间的比例关系应保持以确定长方体的宽度。
根据三个视图的信息,可以绘制出长方体的三维图。
主视图通常显示圆柱体的一个端面,呈现为一个圆。通过主视图可以确定圆的直径。
确定主视图
确定俯视图
确定左视图
绘制三维图
俯视图也显示圆柱体的上面,呈现为一个圆。这个圆应该与主视图的圆大小和位置一致。
左视图显示圆柱体的侧面,呈现为一个矩形。矩形的长度应该等于圆的直径,高度等于圆柱体的高度。
主视图
从物体的正面看去的视图,反映物体的主要形状和特征。
俯视图
从物体的上面看去的视图,反映物体的水平投影和上下位置关系。
左视图
从物体的左侧看去的视图,反映物体的左侧形状和左右位置关系。
02
CHAPTER
三视图复原步骤
仔细分析三视图中的每一个视图,理解其表达的空间形状和位置关系。
注意视图中的图线、符号等细节信息,特别是虚线和实线的含义。
根据三个视图的信息,可以绘制出圆柱体的三维图。
确定主视图
主视图通常显示圆锥体的一个侧面,呈现为一个等腰三角形。通过主视图可以确定圆锥体的高度和底面的直径。
确定俯视图
俯视图显示圆锥体的底面,呈现为一个圆。这个圆应该与主视图中三角形的底边大小和位置一致。
确定左视图
左视图也显示圆锥体的一个侧面,呈现为一个直角三角形。直角三角形的直角边应该等于圆的直径,斜边等于圆锥体的母线长。
三视图还原技巧
三视图还原技巧随着计算机辅助设计的发展,三维建模已经成为了现代工程设计不可或缺的一部分。
然而,在进行建模之前,我们通常需要先绘制物体的三视图。
三视图是指物体从不同角度观察所得的正视图、俯视图和左视图。
正确绘制和还原物体的三视图对于后续的建模工作至关重要。
本文将介绍几种三视图还原的技巧,以帮助您准确且高效地进行工程设计。
I. 正视图正视图是物体从正方向观察所得的投影图。
绘制正视图时,需要注意以下几点:1. 视角选择:正视图应该选择一个能够清楚显示物体主要特征的视角。
一般选择与物体对称轴垂直的方向作为正视图。
2. 尺寸标注:在绘制正视图时,需要标注物体的尺寸,包括长度、宽度和高度等。
尺寸标注应该准确明了,以便于后续的建模工作。
3. 强调关键特征:正视图是物体的主要展示视图,因此需要强调物体的关键特征,如突出显示物体的对称轴、重要结构和尺寸等。
II. 俯视图俯视图是物体从上方观察所得的投影图。
在绘制俯视图时,需要注意以下几点:1. 视角选择:俯视图应该选择一个能够清楚显示物体平面结构的视角,一般选择与物体平面垂直的方向作为俯视图。
2. 尺寸标注:在绘制俯视图时,同样需要标注物体的尺寸,包括长度、宽度和高度等。
尺寸标注应与正视图一致,以确保准确性。
3. 表达平面结构:俯视图是展示物体平面结构的视图,因此需要清楚地显示物体的平面轮廓,如底面的形状、平面结构和关键尺寸等。
III. 左视图左视图是物体从左方观察所得的投影图。
在绘制左视图时,需要注意以下几点:1. 视角选择:左视图一般选择一个能够清楚显示物体侧面特征的视角,一般选择与物体侧面垂直的方向作为左视图。
2. 尺寸标注:与正视图和俯视图一样,绘制左视图时仍需要标注物体的尺寸,确保尺寸的一致性和准确性。
3. 突出侧面特征:左视图是展示物体侧面特征的视图,应当突出显示物体的侧面轮廓、角度和关键特征等。
IV. 三视图的配合与校对在完成正视图、俯视图和左视图的绘制之后,需要对三个视图进行配合和校对。
由三视图还原几何体的方法及技巧
由三视图还原几何体的方法及技巧
通过三视图来还原几何体是许多机械设计中常用的一种方式,它
主要是将物体的三个视图分别表示为侧视、正面视图和俯视图,从而
获得物体的整体结构。
还原几何体是建立任何零部件的基础,因此学
会还原几何体的方法十分重要,这里就给大家介绍一下三视图还原几
何体的方法及技巧。
首先,需要根据所提供的三视图,在平面上画出它们的几何图形,包括侧视图正面视图和俯视图。
其次,我们需要确定几何图形的轴心,将侧视图图形看作中心轴,而正面视图图形和俯视图图形则作为各轴
的切面。
再次,把几何图形的各个边长统称为参数,将其加以记录,
以备后用。
最后,以中轴为旋转轴,将正面视图和俯视图旋转,将它
们的角度根据参数的记录,按照实际角度旋转,即可获得物体的三维
图形,从而完成几何体的还原。
通过以上步骤,我们可以轻松地还原几何体,它不仅能获得物体
的三维图形,还能按照实际角度,对物体进行设计。
当然,三视图还
原几何体也有其局限性,例如,它不能精确的反映物体的真实形状,
因此在使用时,应该谨慎考虑,以免出现设计上的错误。
总之,在机械设计中,三视图还原几何体是常用的一种方式,熟
练掌握这一技术对于我们来说非常重要,希望以上介绍能为大家在机
械设计中提供一定的帮助。
三视图还原技巧
三视图还原技巧在制图和设计领域中,三视图还原技巧是一个非常重要的概念。
三视图是指通过正面图、侧面图和俯视图来完整、准确地呈现一个物体的三个视角。
这种视图呈现方式有助于我们更好地理解和表达物体的尺寸、形状和细节。
为了实现三视图的精确还原,我们需要掌握一些技巧和方法。
下面将介绍几种常用的三视图还原技巧,帮助你更好地完成这项任务。
1. 添加参考线和尺寸标注:在绘制三视图时,参考线和尺寸标注是非常重要的辅助工具。
通过添加参考线,我们可以确保不同视图之间的元素位置和比例一致。
而尺寸标注可以更清晰地传达物体的尺寸信息,使得三视图更加准确可靠。
2. 考虑投影和透视效果:三视图是通过正交投影来绘制的,因此在还原时要注意将物体的原始形状与投影的不同之处加以区分。
某些元素在不同视图中可能会有细微的变化,这是由于透视效果造成的。
在绘制过程中,我们应该根据这些变化来进行调整,以实现更真实、精确的三视图还原。
3. 注意比例和对称:在绘制三视图时,比例和对称是非常重要的考虑因素。
正确地绘制物体的比例能够保证各个视图之间的一致性和准确性。
而对称性则能够使得三视图更加美观和易于理解。
因此,在进行绘制时要特别关注物体的比例关系和对称性,避免出现错误或者不协调的情况。
4. 使用适当的图形工具和软件:在进行三视图还原时,选择适当的绘图工具和软件是非常重要的。
使用专业的CAD软件可以极大地提高效率和准确性。
这些软件通常提供各种辅助工具和功能,使得三视图的制作更加灵活、方便。
当然,熟练掌握绘图工具的使用也是至关重要的。
总结起来,三视图还原技巧是制图和设计中不可或缺的一部分。
通过掌握适当的技巧和方法,我们可以更好地完成三视图的制作,使其更加准确、美观和易于理解。
相信通过不断的练习和实践,你会成为一名出色的三视图绘制者。
(经典)高考数学三视图还原方法归纳
高考数学三视图还原方法归纳方法一:还原三步曲核心内容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在正方体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D—ABC,且AB=BC=4,2,可得DA=6.故最长的棱长为6.AC=24,DB=DC=5方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
汇总三视图还原方法及练习题.pptx
.精品课件.
17
5、典型例题
.精品课件.
18
.精品课件.
19
.精品课件.
20
.精品课件.
21
.精品课件.
22
.精品课件.
23
.精品课件.
24
.精品课件.
25
无论哪一种方法,还原几何体时都必须时刻 谨记:
1. 实线是直接能看到的线,虚线是不能直接 看见的线;
2. 三视图对应几何体的方向是确定的;
(3)切割式组合体三视图还原的题目类型灵活易 变问题集中于两方面;第一、该组合体是由哪种简 单几何体切割形成的;第二,三视图中轮廓线内部 的实线和虚线在原来的几何体中是怎样切割形成的。
.精品课件.
3
① 牢记 三视图对应的方向
.精品课件.
4
② 分析出几何体的类型(先分析是简单 几何图还是组合体)
a) 定性:两尖为锥体,两平行四边形为 柱体,两梯形为台体
A.10 B.12 C.14 D.16
.精品课件.
8
对一些多面体的还原,往往可以借 助一个长方体或者正方体来帮助我们解 题,而往往在借助长方体正方体的时候 也是有一定技巧的! ① 画长方体 ② 排除点
③ 连线(注意结合三视图,尤其注意 三视图中有虚线的情况)
.精品课件.
9
(2)(2017·北京高考)某四棱锥的三视图如图所示,则该四 棱锥的最长棱的长度为( )
.精品课件.
12
① 画长方体或正方体 ② 根据主视图画出点所在直线 ③ 根据侧视图画点所在直线 ④ 根据俯视图画点所在直线 ⑤ 找出三线交点,结合三视图还原几何体 注意:直线用不同颜色 ;
三视图中有虚线时,若出现多顶情况,需 要观察三视图,确定几何体顶点,再连线, 便可准确画图。
三视图还原技巧
三视图还原技巧
三视图还原技巧是指将一个三维物体的形状、大小、位置等信息通过三个相互垂直的视图(俯视图、前视图和左视图)来表达的技巧。
下面是一些三视图还原技巧:
1. 了解三视图的基本概念:俯视图是从物体的上方看下去,前视图是从物体的正面看,左视图是从物体的左侧看。
三视图的比例必须相同,才能正确表达物体的形状和大小。
2. 确定物体的主轴:物体的主轴是指物体的最长轴线,通常是物体的长度或高度。
在三视图中,主轴通常与前视图的竖直方向相同。
3. 从主轴开始绘制:在三视图中,从主轴开始绘制可以保证三视图的比例正确,并且可以更容易地确定物体的位置和大小。
4. 确定物体的对称性:许多物体都具有对称性,例如圆柱体、立方体等。
在绘制三视图时,可以利用物体的对称性来简化绘图过程。
5. 确定物体的重心:物体的重心是物体的质心,是物体平衡的中心。
在三视图中,可以通过确定物体的重心来确定物体的位置和方向。
6. 绘制物体的细节:在绘制三视图时,需要注意物体的细节,例如物体的边缘、凹凸等。
这些细节可以通过在三视图中添加细节线来表达。
7. 使用投影线和标注:在三视图中,可以使用投影线和标注来表达物体的深度和尺寸。
投影线是从物体的边缘向外延伸的线,标注是用数字或符号来表示物体的尺寸。
总之,三视图还原技巧需要掌握一定的绘图技能和空间想象能力,通过不断的实践和学习,可以逐渐提高三视图还原的能力。
(经典)高考数学三视图还原方法归纳
高考数学三视图还原方法归纳方法一:还原三步曲核心容:三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画体或长方体,在体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体。
还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的表面积为()答案:21+3计算过程:步骤如下:第一步:在体底面初绘制ABCDEFMN 如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )答案:(6)还原图形方法一:若由主视图引发,具体步骤如下:(1)依据主视图,在长方体后侧面初绘ABCM如图:(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:2,解:置于棱长为4个单位的体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=5可得DA=6.故最长的棱长为6.方法2若由左视图引发,具体步骤如下:(1)依据左视图,在长方体右侧面初绘BCD如图:(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C、D处不可能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个体做载体还原:(1)根据正视图,在体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1:
1.画长方体+平铺俯视图
2 . 划点+升线
3+ 升 线
第三步:连接“划掉点”以及“升高点”
连接“划掉点”以及“升高点”,结合俯视图,得 到几何体的直观图。 划掉点,其实可以理解为升高距离为 0 的点。在此,就 相当于确定好各个位置是否升高,然后连线,围出所要 造就的几何体! 如图所示:
这样,我们就能够还原出三视图对应的几何体了!
三视图的还原法
模法讲解:
第一步:画长方体+平铺俯视图
第二步:划点+升线
看主视图: 1 、从主视图底边的左侧点开始看起,左侧点为锐角顶 点,所以说明此处的棱线不是垂直于底面的。我们将这 个位置对应的俯视图点暂时用叉号(×)划去——不是 不要此点,是告诉我们此处没有顶梁柱! 2 、主视图的底边中间竖直上方有点,可以如图所示, 理解成底边蓝色点为直角顶点。说明此处的棱线是垂直 于底面的,即顶梁柱。那么我们需要将这个位置对应的 俯视图的点,再垂直底面升高至相应高度,这里就是 2 。 (有些同学会问,明明底边没有蓝色点啊?其实,是因 为主视图底边绿、蓝、红三色点在一条直线上,才会隐 藏掉蓝色点。总之,你先尝试接受这么处理。再慢慢练 习,慢慢思考) 请仔细看图: