三 角 形 的 内 角 和

合集下载

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)

人教版数学四年级下册三角形的内角和优秀教案(精推3篇)〖人教版数学四年级下册三角形的内角和优秀教案第【1】篇〗《三角形内角和》教学设计教材分析:《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是学生在学习了上册《平行与垂直》中的《角的认识》和本册本单元《三角形的特性》以及《三角形三边关系》、《三角形的分类》等知识之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习、掌握“三角形的内角和是 180°”这一规律具有重要意义。

首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。

三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是 180 度。

二是把三个内角折叠在一起,发现也能组成一个平角。

每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。

另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是直角三角形里的两个锐角和等于 90 度,钝角三角形里的两个锐角和小于90 度。

本节课的教学重点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

而教学难点则放在对不同探究方法的指导和学生对规律的灵活运用。

学情分析:四年级的学生已初步具备了动手操作的意识和能力,并能够在探究问题的过程中,运用已有的知识和经验,通过交流、比较、评价等寻找解决问题的途径和策略。

“三角形的内角和是 180°”这一结论,大多数学生在四年级上册“角的度量”也有接触,但不一定清楚道理,所以本课的重点不在于了解,而在于验证,让学生在课堂上经历研究问题的全过程。

学生在本课学习前已经认识了三角形的基本特征及分类,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

三角形的内角和(林舒韵)

三角形的内角和(林舒韵)

剪拼
为逻辑推理三角形 内角和定理作铺垫
推理证明 辅助线的添加
方法一
方法二
教师示范证明过程 学生书写证明过程
得到定理 (三角形的内角和180°)
课堂练习 例题讲解 课堂小结
课后作业
一、情景导入
1、平角等于_1_80_度。
2、平行线的性质 (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。
谢谢观赏
You made my day!
我们,还在路上……
3、在运用三角形内角和定理解题时,关键是如何把与 条件和结论有关系的角放在同一个三角形当中,并找出 其中两角的度数。
六、课后作业
1、(必做题)在△ABC 中,∠A =50°, ∠B =80°,则∠C = 度。
2、(必做题) 在△ABC 中,∠A:∠B:∠C =1:2:3,则∠B 为多
少度?
A
3、(必做题)如图:已知在△ABC中,EF 与AC 交于点G,与BC 的延长线交于点F,∠B =45° ,∠F =30°,∠CGF =70°,求∠A

13、知人者智,自知者明。胜人者有 力,自 胜者强 。21.8.1 21.8.11 4:32:50 14:32:5 0Augus t 1, 2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021 年8月1 日星期 日下午2 时32分 50秒14 :32:502 1.8.1
D
∴ ∠ADB=180°-∠B-∠BAD
A
B
=180°-75°-20°=85°.
四、
例 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,
C岛在B岛的北偏西40 °方向。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

《三角形的内角和》优秀一等奖说课稿

《三角形的内角和》优秀一等奖说课稿

《三角形的内角和》优秀一等奖说课稿1、《三角形的内角和》优秀一等奖说课稿一、教学目标课程标准这样描述:通过观察、操作了解三角形内角和是180。

分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。

在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。

积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。

教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。

课前我对学情进行了分析:1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。

2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。

通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。

2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。

二、评价设计针对这一目标的完成,我设计了一下评价方式:1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。

2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。

3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价评价题目1、通过3个练习题(1、做一做。

2、说一说3、拼一拼、想一想)检测学习目标1的掌握情况。

2、通过小组、同桌合作、汇报,教师引导学生理解本节课所蕴含的学习方法,检测学习目标2的掌握情况三、教具学具准备教具准备:课件、3个直角三角形,2个锐角三角形、2个钝角三角形、一张表格学具准备:三角板、量角器.四、教学过程这节课的教学我通过一下四个环节完成。

《三角形的内角和》【人教版】

《三角形的内角和》【人教版】
能力等数学素养。
1
小学数学教学设计
四、教学重点、难点及教学关键
1、教学重点 理解和掌握三角形内角和是 180°。 2、教学难点 验证三角形内角和是 180°。 3、教学关键 大部分学生在课前已经知道三角形的内角和是 180°,但是并不知道它的验证过程, 本节课关键在引导学生通过动手实践、亲身感知、集体交流等操作活动,使学生经历猜想 ——验证——结论——运用这一研究问题的完整过程,为学生今后数学学习和其他学科学 习提供研究方法。
第二个环
节:动手操 作,探索新

2、探究验证。(17′) 活动一:制定方案。 以小组为单位,制定验证方 案,小组长汇报。(3′) (注:教师巡视各个小组, 了解学生的想法,在能够想出剪 拼的小组中适时提示“如果不剪 出三角形的 3 个内角,可以把三 个内角拼在一起吗?”)
2、学生小组合作 探究验证猜想。 活动一:小组共 同制定验证方 案。 预设一:量算 预设二:剪拼 预设三:折拼
三、教学目标(知识技能,数学思考,问题解决,情感态度)
1、知识技能 学生经历三角形内角和的探究过程,理解和掌握三角形内角和是 180°。 2、数学思考 在操作实验中,渗透“转化”的数学思想,体验到“特殊到一般”的科学探索方法。 3、问题解决 运用三角形的内角和的知识解决实际问题。 4、情感态度 在学习活动中,提高学习的能力,培养学生合作的意识、动手实践能力以及逻辑推理
师:从刚才的谈话中,你知道它
“内角和”之争,从而
们在争辩什么吗?
展开后续的一系列猜
想探究实验,极大地激
第一个环 节:情境引 入,设疑导 新
2、认识三角形的内角和。(1′) 2、学生用自己的
(1)什么三角形的内角? 语言理解三角形

《三角形的内角和》教案

《三角形的内角和》教案

《三角形的内角和》名师教案一、学习目标(一)学习内容《义务教育教科书数学》(人教版)四年级上册第67页例6及做一做。

例6教学三角形的内角和。

教材先让学生通过“量、算”不同类型的三角形的内角度数,初步感受到它们的内角和大约是180°,然后又构建了“剪、拼、看”的活动用实验的方法验证三角形的内角和是180°。

三角形的内角和是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

(二)核心能力通过交流“量、算”的结果,培养实事求是、严谨的实验态度,感受误差的存在,在此基础上,通过“剪、拼”的操作活动,用实验的方法推理归纳出三角形的内角和,提高探究推理能力。

(三)学习目标1. 通过“量、算、剪、拼”等操作活动,推理得出三角形的内角和是180°。

2. 充分经历探究的过程,感受误差的存在,培养实事求是、严谨的实验态度。

3. 能灵活运用三角形的内角和解决生活中的简单问题。

(四)学习重点探究并掌握三角形的内角和是180度。

(五)学习难点用实验的方法验证(六)配套资源实施资源:《三角形的内角和》名师教学课件、不同种类的三角形纸片、课时作业。

二、教学设计(一)课前设计1.预习任务:在练习纸上分别画出一个锐角三角形、直角三角形、钝角三角形。

量一量每个三角形中三个角的度数,并标记出来。

(二)课堂设计1.创设情景,引出问题(1)猜谜语:(课件)形状似座山,稳定性能坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形(板书)(2)猜三角形(课件)老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?提问第3个图形时问:被遮住的两个角是什么角?会是两个直角吗?为什么?(引导学生开始对“三角形的内角和是多少”进行思索。

)(3)引出课题。

师:看来三角形的三个角之间一定藏着秘密,这节课我们就来研究有关三角形角的知识“三角形内角和”。

(板书课题)【设计意图】通过猜谜语、猜角引入本节课所探究问题:“三角形内角和是多少度”,让孩子们带着问题走入课堂,激发探究的欲望。

《三角形的内角和》典型例题

《三角形的内角和》典型例题

《三角形的内角和》典型例题例1 三角形一个角是第二个角的23倍,第三个角比这两个角的和大30°,求这个三角形的三个角.例2 根据条件,判断ABC ∆的形状〔锐角三角形、直角三角形、钝角三角形〕〔1〕︒=∠︒=∠89,76B A〔2〕C B A ∠=∠+∠〔3〕C B A ∠=∠︒=∠2,30例3 在ABC ∆中,5:4:3::=∠∠∠C B A ,求ABC ∆各内角的度数.参考答案例1 分析:如果设第二个角是︒x ,那么有第一个角是︒)23(x ,第三个角是︒++)3023(x x ,由三角形内角和等于180°可以列出方程,从而求出各个角. 解:设第二个角是︒x ,那么第一个角是︒)23(x ,第三个角是︒++)3023(x x ,根据三角形三个内角和是180°,得︒=++++180)3023(23x x x x 解这个方程,得30=x 所以1053023,4523=++=x x x . 答:这个三角形第一个角是45°,第二个角是30°,第三个角是105°.说明:一般在三角形求内角问题时,我们首先应考虑应用三角形三个内角间的关系.例2 分析:三角形中如果有一个内角是钝角〔或直角〕那么这个三角形一定是钝角三角形〔或直角三角形〕,但是如果有一个内角是锐角,那么它未必是锐角三角形,因为锐角三角形必须是三个内角均为锐角.可以根据三角形内角和定理确定各内角的度数,进而确定三角形的形状.解:〔1〕︒=︒-︒-︒=∠158976180C ,∴ABC ∆是锐角三角形.〔2〕∵在ABC ∆中,︒=∠+∠+∠180C B A又C B A ∠=∠+∠ ,∴︒=∠1802C ,︒=∠90C∴ABC ∆是直角三角形.〔3〕︒=︒-︒=∠+∠15030180C B ,又C B ∠=∠2 ,∴︒=∠1503C ,∴︒=∠50C ,∴︒=︒-︒=∠10050150B ∴ABC ∆是钝角三角形.例3 分析:告诉各内角之间的比例关系,求各内角,可以根据比例关系设未知量,比方此题可以设三个内角分别为3x ,4x ,5x ,这样只要求出x 的值,就可以得知三个内角的度数.要求x 的值可以根据三角形内角和定理列方程.解:设x A 3=∠,那么x C x B 5,4=∠=∠∴︒=++180543x x x 〔三角形内角和定理〕∴︒=15x ,∴︒=∠︒=∠︒=∠75,60,45C B A。

三角形内角和证明方法

三角形内角和证明方法

三角形内角和证明方法三角形内角和是指三角形的三个内角的度数之和,它是三角形最基本的性质之一。

在本文中,我们将介绍一些关于三角形内角和的证明方法。

1.我们可以使用三角形内角和定理来证明三角形内角和的性质。

根据该定理,三角形的内角和等于180度。

证明方法:假设ABC是一个三角形,我们可以作三角形的外接圆O。

连接AO,BO,CO,以及连接AO与BC的垂线OD。

根据外接圆的性质,AO的长度等于半径R,而R为定值。

又因为AO与OD相交,所以AO的垂足D到外接圆的距离等于OD的长度。

由于OD与BC垂直,并且是BC的中线,所以OD的长度等于BC的一半,即OD=BC/2。

根据三角形ABC的内角和定理,∠A+∠B+∠C=180度,而∠A和∠B是三角形的两个锐角,它们可以理解为AO和BO在三角形内角A和B上的倒影,所以∠A和∠B的和等于AO和BO的倒影两个角之和,即∠A+∠B=∠DOA+∠DOB。

同理,∠B+∠C=∠BOC+∠BOA,∠C+∠A=∠COA+∠COD。

因为∠DOA+∠DOB+∠BOC+∠BOA+∠COA+∠COD=360度,而∠A+∠B+∠C=180度,所以∠DOA+∠DOB+∠BOC+∠BOA+∠COA+∠COD-∠A-∠B-∠C=360度-180度=180度。

同理∠DOA+∠COA=180度-∠A-∠C,∠DOB+∠BOA=180度-∠A-∠B,∠BOC+∠COD=180度-∠B-∠C。

将上述等式代入∠A+∠B+∠C=180度,得到:(180度-∠A-∠C)+(180度-∠A-∠B)+(180度-∠B-∠C)=180度。

化简上述等式,可以得到3*180度-2*(∠A+∠B+∠C)=180度,即3*180度=2*(∠A+∠B+∠C),进一步化简为∠A+∠B+∠C=180度。

证明完毕。

2.另一种证明三角形内角和的方法是使用拓扑学中的欧拉公式。

根据欧拉公式,一个简单多边形的顶点数、边数和面数之间存在着一个关系。

《三角形的内角和》教案

《三角形的内角和》教案

《三角形的内角和》教案《三角形的内角和》教案1一、学生知识状况分析学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.二、教学任务分析上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

为此,本节课的教学目标是:知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

(2)灵活运用三角形内角和定理解决相关问题。

数学能力:用多种方法证明三角形定理,培养一题多解的能力。

情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.三、教学过程分析本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。

想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪下一个角呢?活动目的:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

垂直三角形角度计算公式

垂直三角形角度计算公式

垂直三角形角度计算公式1、主要的一些公式:在△ABC中,C=90°,AB=c,AC=b,BC=a。

2、(1)三边之间的关系:a^2+b^2=c^2。

3、(勾股定理)(2)锐角之间的关系:A+B=90°;(3)边角之间的关系:(锐角三角函数定义)sinA=cosB=a/c ,cosA=sinB=b/c ,tanA=a/b 。

4、在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。

5、(1)三角形内角和:A+B+C=π。

6、(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等, a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC。

7、三角形的面积公式:(1)△= 1/2*a*ha=1/2*b*hb=1/2*c*hc(ha、hb、hc分别表示a、b、c上的高);(2)△=1/2absinC=1/2bcsinA=1/2acsinB;(3)△=a^2sinBsinC/2sin(B+C)=b^2sinCsinA/2sin(C+A)=c^2sinAsinB/2sin(A+B) ;(4)△=2R^2sinAsinBsinC。

8、(R为外接圆半径)(5)△=abc/4R;(6)△=根号[s(s-a)(s-b)(s-c)] ;s=(a+b+c)/2 ;(7)△=r•s解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC的三边为a、b、c,对应的三个角为A、B、C。

帕斯卡验证三角形内角和的方法

帕斯卡验证三角形内角和的方法

帕斯卡验证三角形内角和的方法引言:帕斯卡(Pascal)出版的著名《数学原理》第五卷中是三角形内角和的证明。

帕斯卡在书中运用了他的“Mystica figura”法,给出了一种非常漂亮的证明方法。

本文将介绍这一证明方法,并加以详细的说明和解释。

一、问题的陈述我们先来看一下这个问题的陈述:证明三角形的内角和等于 180 度。

这是初中和高中数学课程中经常学习的内容,但它的证明并不是很简单。

本文将介绍帕斯卡的证明方法。

二、帕斯卡的“Mystica figura”法帕斯卡在他的书中提到了一个神秘的几何图形,叫做“Mystica figura”,这个图形被用来证明三角形的内角和等于 180 度。

Mystica figura 由等边三角形和它的三条中线组成,如下所示:我们可以先证明三角形 ABC 和三角形 ABD 的内角和相等,因为它们有一条公共边AB。

同理可以证明三角形 ABD 和三角形 BDC 的内角和相等。

我们可以得到如下等式:∠ABC + ∠ABD = ∠ABD + ∠BDC通过两边同时减去∠ABD,我们得到:同样地,我们可以证明∠ACB = ∠CDB。

我们可以得到:由于三角形 ABC 和三角形 ABD 的内角和相等,我们可以得到:三、简单证明我们也可以通过其他的方法来证明三角形的内角和等于 180 度。

我们可以假设在三角形 ABC 中,有一条边 AB 并将其延长,使其交另一边的延长线于点 D。

然后,我们可以通过平行线的性质,得知∠ABC = ∠CDE 和∠ACB = ∠BDE。

我们可以得到:这个方法比较简单,但缺点是需要构造一条边的延长线,并且需要平行线的性质。

四、结论帕斯卡的“Mystica figura”法的证明比较优美,因为它避免了构造和平行线的性质。

但对于初中和高中学生来说,这种证明方法可能会比较复杂。

我们可以采用简单的证明方法,以帮助学生更好地理解这一问题。

需要注意的是,我们在这篇文章中证明了三角形的内角和等于 180 度。

平面几何中的三角形和三角形的内角和定理

平面几何中的三角形和三角形的内角和定理

平面几何中的三角形和三角形的内角和定理三角形是平面上最简单、最基本的几何图形之一。

它由三条线段所围成,每条线段称为三角形的边,两条相邻的边所夹的角称为三角形的角。

在三角形中,有一些角具有特殊的性质,它们的和也有着特别的规律。

本文将介绍三角形中的三角形内角和定理,帮助读者更好地理解和应用平面几何。

一、三角形的内角和对于任意一个三角形ABC,三个内角的和应该等于180度,即∠A+∠B+∠C=180°。

这个结论可以用多种方法来证明。

方法一:利用三角形的等角定理。

我们先假设三角形ABC中的角A等于90度,则∠B和∠C互为余角,即∠B=90°-∠C。

将等式代入∠A+∠B+∠C=180°中,可以得到∠A+(90°-∠C)+∠C=180°,化简后得到∠A+90°=180°,即∠A=90°。

因此,三角形ABC是一个直角三角形。

方法二:利用平行线与交线的性质。

我们用线段AC作为三角形ABC的一条边,通过点B画一条平行于线段AC的直线DE,使DE与BC相交于点F。

因为AC与DE平行,所以∠A=∠E。

同时,∠EBF和∠CBF都是180度减去∠C,即∠EBF=∠CBF=180°-∠C。

因此,∠E+∠B+∠F=∠A+∠B+∠C=180°,即∠E+∠B+(180°-∠C)=180°,化简后得到∠E=∠C。

所以,∠A+∠B+∠C=∠E+∠B+∠C=180°。

方法三:利用三角形的面积公式。

我们将三角形ABC绕某个顶点旋转,使其底边平移至一条与底边平行的直线上,然后将三角形划分成两个梯形和一个三角形。

根据相似三角形的性质,两个梯形面积之和与三角形面积之比等于梯形的中线之比,即hA:hB=AC:BD。

因为BD=AC,所以hA=hB。

同理,再用梯形的面积公式,可得hA=hB=hC,即三角形ABC的三个高相等。

《三角形的内角和》评课稿[通用9篇]

《三角形的内角和》评课稿[通用9篇]

《三角形的内角和》评课稿[通用9篇]在教学工作者实际的教学活动中,通常会被要求编写评课稿,通过评课的反馈信息可以调节教师的教学工作,了解、掌握教学实施的效果,反省成功与失败原因之所在,激发教师的教学积极性、创造性,及时修正、调整和改进教学工作。

怎么样才能写出优秀的评课稿呢?下面是小编帮大家整理的《三角形的内角和》评课稿,欢迎阅读,希望大家能够喜欢。

《三角形的内角和》评课稿1在整个教学设计上谢老师充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入——猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。

具体体现在以下几点:1、善用激趣设疑导入:教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。

刚开始上课,谢老师用选王大会设悬念,三种类型的角在激烈的争执,到的谁的内角和大呢?这样,在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,而且也很自然地揭示了课题。

2、巧用猜想:学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时谢老师就提到到底三角形的内角和是不是180度呢,我们总不能口说无凭吧?使后边的探索和验证活动有了明确的目标。

3、善用验证{自主探索}:学生形成统一的猜想{即三角形的`内角和等于180度}后,谢老师就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{即验证三角形的内角和是否是180度?},在活动中,把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。

不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。

具体过程为:量一量——拼一拼——看一看。

4、善于引导巩固内化:俗话说的好:“熟能生巧”。

数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。

养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。

《三角形的内角和》教学反思

《三角形的内角和》教学反思

《三角形的内角和》教学反思《三角形的内角和》教学反思11、课堂教学要有预见性,更重视课堂生成性。

教师对学生在课堂上可能出现的问题有一定的预见,教师才能设计出最适合本班学生的教案,才能更好地把握课堂动态。

在这节课上,我让学生猜三角形的内角和,结果学生非常肯定的说是180度。

还说不论什么样的三角形内角和都是180度。

这时候与老师的预见是不同的。

原本以为学生会猜出不同的结论的。

但是付老师表现出了教学机智,他问,究竟是不是180度呢?你怎么证明呢?这进一步的提问一下子把学生的思考的引向了课堂的中心所在。

2、找准教师“导”与学生“行”的平衡点,关键词是相信学生是能行的。

满堂灌的课堂教学模式在新的教育理念的一轮轮冲击下,逐渐被广大教师在思想上摒弃,但是要真正实现教师变满堂讲为适时导,学生变“听”为多方面“行”的课堂局面,还需要教师找准“导”与“行”的平衡点。

本节课中,三角形的内角和是180度这个结论很多同学早就知道了,但是这节课的目的很显然不在于只教给学生结论,而是要通过学习活动,培养学生的动手能力,遇到问题努力求证的科学精神,和同学合作交流的能力,归纳推理判断的能力。

我认为这节课还可以放手更多一些,采取小组合作学习的方式,让学生去实验求证结论。

在相互的争辩中明晰概念。

新的课程标准要求教师要根据孩子已经具有的知识和生活经验,对受教育者进行有目的启发和引导,把学生的好奇心转化为求知欲,逐步形成稳定的学习数学的兴趣。

教师要在课堂上以与生活密切联系的素材来激起学生对数学本身的浓厚兴趣,通过学生自主探索活动,让学生获得成功的体验,增进学生学好数学会用数学的信心。

通过课堂上学生的表现,我们看出,学生有独立探索的精神,也有去证明求知的能力,我们要的只是信任他们,设计好实验方案,做好组织,让学生的操作、讨论、练习等活动有条有理。

真正让学生成为学习的主人。

《三角形的内角和》教学反思2我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《多边形的内角和》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。

三角形内角和教学设计(共6篇)

三角形内角和教学设计(共6篇)

三角形内角和教学设计(共6篇)第1篇:“三角形内角和”教学设计“三角形内角和”教学设计教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。

教学目标:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。

并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:学生理解不同探究方法的内涵和对所得结论的灵活运用。

设计思路:三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。

四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。

《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。

因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。

并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。

同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。

教学准备:多媒体课件、三角尺等。

教学过程:一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠1、∠2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陈省身:三角形内角和不等于180°
外角和为360°
作为公认的劳模,平日里,超模君不但要码字,工作之余还要监督表妹做作业,也难怪表妹成绩总是能名列前茅。

今天表妹做作业时,遇到一道判断题:“三角形的内角和等于180°”,她毫不犹豫打了勾。

超模君告诉表妹,这道题你可以打勾,但也要知道这个说法是不完全正确的。

表妹急了,怎么会呢?课本上明明说“三角形的内角和等于180°”,而且老师上课还再三强调大家一定要记住这个定理呢。

为了从小培养表妹严谨的科研精神,超模君决定给她上一课!
三角形的外角和为360°
我们从小就滚瓜烂熟的“三角形的内角和等于180°”这种数学常识其实是不严谨的。

我们先从伟大的华人数学家陈省身的一场讲学说起。

那是1980年,陈省身教授受邀在北京大学的一次讲学中语惊四座:“人们常说,三角形内角和等于180°。

但是,这是不对的!”
当时现场一片哗然,目瞪口呆,三角形内角和等于180°不是数学常识吗?怎么回事?
紧接着,陈教授就大家的疑惑作出了精彩的解答:
说“三角形内角和为180°”不对,不是说这个事实不对,而是
说这种看问题的方法不对,应当说“三角形外角和是360°”!
把眼光盯住内角,只能看到:
三角形内角和是180°;
四边形内角和是360°;
五边形内角和是540°;
n边形内角和是(n-2)×180°。

这就找到了一个计算内角和的公式,公式里出现了边数n。

如果看外角呢?
三角形的外角和是360°;
四边形的外角和是360°;五边形的外角和是360°;
任意n边形外角和都是360°。

这就把多种情形用一个十分简单的结论概况起来了。

用一个与n 无关的常数代替了与n有关的公式,找到了更一般的规律。

在这次讲学中,陈教授给我们传递了一个观点:数学不是罗列更多的现象,也不是追求更妙的技巧,而是要从更普遍的、更一般的角度寻求规律和答案。

不只盯着多边形的内角看,用一个与n无关的常数代替了与n有关的公式,可找到了更一般的规律:任意n边形的外角和都是360°。

下面举个例子,简单证明任意n边形的外角和都是360°这个规律。

假设一只蚂蚁在多边形的边界上绕圈子(如下图)。

每经过一个顶点,它前进的方向就要改变一次,改变的角度恰好是这个顶点处的外
角。

爬了一圈,回到原处,方向和出发时一致了,角度改变量之和当然恰好是360°。

这样看问题,给“任意多边形外角和等于360°”这条普遍规律找得到了直观上的解释。

陈教授在那次讲学中,没有否定“三角形的内角和等于180°”,因为其中涉及欧式几何和非欧几何。

三角形的内角和不一定等于180°
“三角形的内角和等于180°”是从欧式几何里的公理五(又称之为平行公设)衍生出来的公理。

在欧式几何里,“三角形的内角和等于180°”是正确的。

下面简单证明一下”三角形的内角和等于180°“的一般规律:随着数学研究的进步,到了高斯时代,欧氏几何里的公理五备受质疑。

俄罗斯数学家罗巴切夫斯基、匈牙利人波尔约表示:第五公理只是公理系统的一种可能选择,并非必然的几何真理,即“三角形的内角和不一定等于180°”,从而发现非欧几里得的几何学,即非欧几何。

举个例子,地球的赤道、0 度经线和 90 度经线相交构成一个“三角形”,这个“三角形”的三个角都应该是90°,它们的和就是270°!
相反,在凹面上的三角形内角和自然小于180°,所以在非欧几何里,三角形的内角和不一定等于180°。

那些有趣的三角形
我们的生活中存在着许多有趣的三角形,他们的内角和或大于180°,或小于180°,有的还被人们巧妙得利用到各个领域。

比如,可以用作运输的莱洛三角形:
谢尔宾斯基三角形:一个正三角形,挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),在剩下的小三角形中又挖去一个“中心三角形”,如此无限循环,谢尔宾斯基三角形面积越趋近于零,而它的周长越趋近于无限大。

三维世界不存在的彭罗斯三角形:彭罗斯三角形被称为“最纯粹形式的不可能”,它将三个不同角度的三角顶角整合为一个整体,因而本应是一个平面的面发生了扭转,这样的三角形在三维世界是不可能存在的。

这样的“三角形”被艺术家巧妙地用在作品中,比如世界名画:埃舍尔的《瀑布》。

《瀑布》
还有澳大利亚东珀斯的地标建筑就是彭罗斯三角形的模型。

澳大利亚东珀斯彭罗斯三角形
股民眼中的三角形:三角形整理突破分析是高阶股民必备的技能。

程序员眼中的三角形:行吧,在程序员的世界里,什么都是字母加数字的。

非欧几何应用
回到开头和表妹讲的题目:三角形内角和等于180°的对与错。

其实在小学里,学的默认是欧式几何,所以是正确的。

然而在非欧几何里,三角形的内角和等于180°就不成立了。

非欧几何的应用在生活中和欧式几何一样十分常见,如在航海学上:地球本身就是曲面的,如果使用欧式几何,只会得到错误的结论。

近代黎曼几何学在广义相对论里得到了重要的应用。

物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。

爱因斯坦在看到了罗巴切夫斯基和黎曼的发现之后,在广义相对论里,放弃了关于时空均匀性的观念,他认为时空是弯曲的。

非欧几何成了解释相对论的数学工具。

数学的意义就在于,它经常走在其他科学的前面,我们通过数学的研究,可以为其他科学提供很多帮助。

即使学数学会让人头凉凉的,依然有人抱着“我不秃谁秃”的死士精神走在数学研究的道路上。

所以这一杯,敬所有爱数学的人儿。

另外,表妹你懂了嘛?
1. 我们发现当抛筛子次数少数,期望波动很大。

这就是小数定律,如果统计数据很少,那么事件就表现为各种极端情况,而这些情况都是偶然事件,跟它的期望值一点关系都没有。

设想一只蚂蚁在多边形的边界上绕圈子(图1)。

每经过一个顶点,它前进的方向就要改变一次,改变的角度恰好是这个顶点处的外角。

爬了一圈,回到原处,方向和出发时一致了,角度改变量之和当然恰好是360°。

当三角形为一条线,p在线上,则有无数解,p在线外则无解否则有唯一解。

61
printf("%lf %lf %lf %lf %lf %lf",d.x,d.y,e.x,e.y,f.x,f.y);
float angleACP = Vector3.Angle(posA - posC, posP - posC);
做数学是倒过来的——在2009年“翱翔计划”启动会上的科学家报告
v2 ? v1 = u * (v0 ? v1) + v * (v1? v1) ? -- 式2
程序员眼中的三角形:行吧,在程序员的世界里,什么都是字母加数字的。

连接点P和三角形的三个顶点得到三条线段PA,PB和PC,求出这三条线段与三角形各边的夹角,如果所有夹角之和为180度,那么点P在三角形内,否则不在,此法直观,但效率低下。

正如Milnor的所言,双曲几何在Riemann几何出现前只是没手没脚的躯干而已。

Riemann让这个躯干成为正常人体。

相关文档
最新文档