一致收敛判别法总结

合集下载

一致收敛的判别方法

一致收敛的判别方法

一致收敛的判别方法在数学中,一致收敛是一种函数序列的收敛方式,它比点态收敛更强。

一致收敛的判别方法是判断函数序列是否一致收敛的方法。

我们需要了解一致收敛的定义。

如果对于任意给定的正数ε,都存在正整数N,使得当n>N时,对于所有的x∈D,都有|fn(x)-f(x)|<ε成立,那么函数序列{fn(x)}在D上一致收敛于f(x)。

接下来,我们介绍一致收敛的判别方法。

1. Weierstrass判别法Weierstrass判别法是一种常用的判别方法。

它的基本思想是将函数序列中的每个函数表示为一个收敛的无穷级数,然后通过比较级数的收敛性来判断函数序列的一致收敛性。

具体来说,如果对于所有的x∈D,都有|fn(x)-an(x)|<bn(x)成立,其中{an(x)}是收敛于f(x)的函数序列,{bn(x)}是一个非负的收敛于0的函数序列,那么函数序列{fn(x)}在D上一致收敛于f(x)。

2. Cauchy判别法Cauchy判别法是另一种常用的判别方法。

它的基本思想是通过比较函数序列中的两个函数之间的差值来判断函数序列的一致收敛性。

具体来说,如果对于任意给定的正数ε,都存在正整数N,使得当m,n>N时,对于所有的x∈D,都有|fn(x)-fm(x)|<ε成立,那么函数序列{fn(x)}在D上一致收敛。

3. Dini定理Dini定理是一种特殊的判别方法,它适用于函数序列在紧致集上的情况。

具体来说,如果函数序列{fn(x)}在紧致集K上逐点收敛于f(x),且f(x)在K上连续,那么函数序列{fn(x)}在K上一致收敛于f(x)。

一致收敛的判别方法有很多种,我们需要根据具体情况选择合适的方法。

在实际应用中,我们可以结合多种方法来判断函数序列的一致收敛性,以保证结果的准确性。

函数项级数一致收敛判别(Word)

函数项级数一致收敛判别(Word)

1.函数项级数定义定义 设(){}nu x 是定义在数集E 上的一个函数列表达式:()()()12......n u x u x u x ++++ x E ∈ (1)称为定义在E 上的函数项级数,简称为函数级数.记作为1()nn ux ∞=∑或()n u x ∑.1()()nn k k S x u x ==∑称为函数项级数(1)的部分和函数列.若0x E ∈函数项级数: ()()()10200......n u x u x u x ++++ (2) 收敛,即部分和001()()nn k k S x u x ==∑,当n →∞时,极限存在,则称级数(1)在点0x 收敛,0x 称为收敛点.级数(1)在D 上的每一点x 与其所对应的数项级数(2)的和()S x 构成一个定义在D 上的函数称为级数(1)的和函数,即lim ()()n n S x S x →∞=.2.函数项级数一致收敛的几种判别法判别法1 (函数项级数一致收敛的定义)设函数级数()1n n u x ∞=∑在区间D 收敛于和函数()S x ,若0,,,N N n N x D ε+∀>∃∈∀>∀∈有:()()()n n S x S x R x ε-=< 则称函数级数()1n n u x ∞=∑在区间D 上一致收敛或一致收于和函数()Sx .例1 证明函数项级数nn x∞=∑在区间 []1,1δδ-+-(其中01δ<<)一致收敛.证明 ∀()0,1x ∈有01()1knnn k x S x x x =-==-∑.1()lim ()1n n S x S x x→∞==-. 11()()()1111nn nn n x x x S x S x R x x x x x-∴-==-==----. 对∀[]1,1x δδ∈-+-,对∀ε>要使不等式(1)()()()1nnn n xS x S x R x xδεδ--==≤<-成立.从而要不等式(1)nδεδ-<解得ln ln(1)n εδδ>-.取ln ln(1)N εδδ⎡⎤=⎢⎥-⎣⎦.于是∀0ε>,存在ln ln(1)N N εδδ+⎡⎤=∈⎢⎥-⎣⎦,∀n N >∀[]1,1x δδ∈-+-有:()()()n n S x S x R x ε-=<成立.所以函数项级数nn x∞=∑在区间[]1,1δδ-+-(其中01δ<<)一致收敛.非一致收敛的定义设函数项级数()1n n u x ∞=∑在区间I 非一致收敛于和函数()S x ,若∀0oε>,∀N N +∈,0,o n N x I ∃>∃∈有:000()()n S x S x ε-≥成立.则称函数项级数()1n n u x ∞=∑在区间I 上非一致收敛或非一致收敛于()S x .例2 证明函数项级数nn x∞=∑在区间 ()1,1-非一致收敛.证明 01ε∃=,∀N N +∈,()00111,1x n ∃=-∈-有: 000000001(1)1()()()(1)11n n n n n S x S x R x n n n --===-≥ 00000111lim(1)(1)1n n n n N n n e n +→∞⎛⎫-=∃∈-≥ ⎪⎝⎭所以,使.即函数项级数0nn x∞=∑在()1,1-非一致收敛.函数项级数一致收敛的几何意义函数项级数()1n n u x ∞=∑在区间I 一致收敛于()S x 的几何意义是,不论给定的以曲线()()S x S x εε+-与为边界的带形区域怎样窄,总存在正整数N (通用的N ),n N ∀>,任意一个部分和()n S x 的图像都位于这个带形区间内(如图1).若函数项级数在某个区间不存在通用的N ,就是非一致收敛.判别法2 (确界判别法)函数项级数()1n n u x ∞=∑在数集D 上一致收敛于()S x 的充要条件:limsup ()limsup ()()0n n n n x Dx DR x S x S x →∞→∞∈∈=-=.证明 (⇒) 已知函数项级数()1n n u x ∞=∑在区间D 一致收敛于()S x .即0,,,N N n N x D ε+∀>∃∈∀>∀∈有: ()()n S x S x ε-<.从而()()sup n x DS x S x ε∈-≤,即limsup ()()0n n x DS x S x →∞∈-=. (⇐)已知limsup ()()0n n x DS x S x →∞∈-=,即0,,,N N n N x Dε+∀>∃∈∀>∀∈有()()sup n x DS x S x ε∈-<.从而x D ∀∈有()()n S x S x ε-<.即函数项级数()1n n u x ∞=∑在区间D 上一致收敛于()S x .例3 证明 函数项级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛.证明 ()()()111nn k S x x k x k ==+++∑1111n k x kx k =⎛⎫=- ⎪+++⎝⎭∑11111111...122311x x x x x n x n x n x n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪+++++-++++⎝⎭⎝⎭⎝⎭⎝⎭1111x x n =-+++; ()0,x ∈+∞. ()()111lim lim111n n n S x S x x x n x →∞→∞==-=++++. 1lim sup ()()lim sup01n n n x Dx DS x S x x n →∞→∞∈∈∴-==++.所以函数级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛. 判别法3 (柯西一致收敛准则)函数级数()1n n u x ∞=∑在区间I 一致收敛0,,,,N N n N p N x I ε++⇔∀>∃∈∀>∀∈∀∈有:()()()12...n n n p u x u x u x ε++++++<.证明 必要性()⇒已知函数级数()1n n u x ∞=∑在区间I 一致收敛.设其和函数是()S x ,即0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈有()()n S x S x ε-<也有()()n p S x S x ε+-<.于是()()()()12()n n n p n p n u x u x u x S x S x +++++++=-()()()()n p n S x S x S x S x +=-+-()()()()2n p n S x S x S x S x εεε+≤-+-<+=.充分性()⇐:已知0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈,有:()()()()12()n n n p n p n u x u x u x S x S x ε+++++++=-<所以当P →+∞时上述不等式有:()()()n n S x S x R x ε-=≤即函数项级数()1n n u x ∞=∑在区间I 一致收敛.例4 讨论函数项级数111n n n x x n n +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-的一致收敛性. 解 应用柯西一致收敛准则[]1,1x ∀∈-即1,0x ε≤∀>,要使不等式()()12231223n n n n n p n x x x x S x S x n n n n +++++⎛⎫⎛⎫-=-+- ⎪ ⎪++++⎝⎭⎝⎭11n p n p x x n p n p ++-⎛⎫++- ⎪++-⎝⎭11111212n n p n n p x x x x n n n n ++++++=-≤+++++ 112111n n p n ε≤+<<++++ 成立,从不等式21n ε<+解得21n ε>-取21N ε⎡⎤=-⎢⎥⎣⎦于是0,ε∀>21,N ε⎡⎤∃=-⎢⎥⎣⎦[],,1,1n N p N x +∀>∀∈∀∈-,有()()n p n S x S x ε+-<,即函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛.在这个例子中我们用确界判别法来也可以判断它的收敛性方法2 122311()()()()...()12231k k n n nn k x x x x x x x S x x kk n n ++=⎛⎫=-=-+-++- ⎪++⎝⎭∑ 11n x x n +=-+.lim ()()n n S x S x x →∞==故[][]11,11,11lim sup ()()lim suplim 011n n n n n x x x S x S x n n +→∞→∞→∞∈-∈--===++. 所以函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛. 判别法4 (M 判别法)有函数项级数()1n n u x ∞=∑,I 是区间,若存在收敛的正项级数1,,nn an N ∞+=∀∈∑x I ∀∈,有()n n u x a ≤,则函数级数()1n n u x ∞=∑在区间I 一致收敛.证明 正项级数1nn a∞=∑收敛根据柯西一致收敛准则,即0,,,N N n N ε+∀>∃∈∀>p N +∀∈,有 12n n n p a a a ε+++++<由已知条件,x I ∀∈,有()()()12n n n p u x u x u x ++++++ ()()()12n n n p u x u x u x +++≤+++12n n n p a a a ε+++≤+++<即函数级数()1n n u x ∞=∑在区间I 一致收敛.例5 判断函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上是否一致收敛.解∀[],x r r ∈-,有(1)!(1)!n nx r n n ≤--. 令(1)!n n r a n =-,则11(1)!lim lim lim 0!n n n n n n na r n ra n r n ++→∞→∞→∞-===. 所以(1)!n r n -∑是收敛.由M 判别法函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上一致收敛.例6 证明4211n xn x ∞++∑在R 一致收敛. 证:x R ∀∈,有()224221210n x n x n x-+=-≥所以24221n x n x ≤+,即242211n x n x ≤+.故242422212111122n x n x n x n n =⋅≤++已知优级级数2112n n ∞=⎛⎫⎪⎝⎭∑收敛,根据M 判别法.函数级数4211n xn x ∞++∑在R 中一致收敛. 注 M 判别法是判别函数项级数一致收敛的很简使得判别法.但是这个方法有很大的局限性,凡能用M 判别法函数项级数必是一致收敛,此函数项级数必然是绝对收敛;如果函数项级数是一致收敛,而非绝对收敛,即条件收敛,那么就不能使用M 判别法.判别法5 (狄利克雷判别法)若级数()()1nnn a x b x ∞=∑满足如下条件:(1)函数列(){}n a x 对每个x I ∈是单调的且在区间I 一致收敛于0. (2)函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界,则函数级数()()1nnn a x b x ∞=∑在I 一致收敛.证明 已知函数列(){}n a x 一致收敛于0即0,N N ε+∀>∃∈,n N ∀>,x I ∀∈有1n a ε+<.又已知函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界。

一致收敛性及其判别法(22页)

一致收敛性及其判别法(22页)

单调递减且当 y ? ?? 时,对参量 x ,g (x, y) 一致
???
地收敛于 0 , 则 f(x,y)g(x,y)dy c
在 [a,b ] 上一致收敛.
首页 ×
阿贝尔判别法 设
? ⑴
??
f(x,y)dy 在 [ a,b ] 上一致收敛.
c
⑵ 对每一个固定的 x ∈[a, b],函数 g (x, y) 为 y
首页 ×
定理19.12 设 f(x,y)在
[a,?? )? [c,?? )上连续.若
??? f(x,y)dx 关于 y在任何闭区间
[c,d ]上一致收敛,
a
??? f(x,y)dy 关于 x在任何闭区间 [a ,b]上一致收敛, c
? ? ? ? ??
??
积分 dx | f(x,y)|dy
a
c

?? dy ?? | f(x,y)|d x
c
a
中有一个收敛,则另一个积分也收敛,且
? ? ? ? ??
??
??
??
dx f(x,y)dy ? dy f(x,y)dx
a
c
c
a
首页 ×
例5 计算
? I ?
?? 0
e? px
sinbx ? sinax x
dx
(p ? 0,b ? a)
例6 计算
? I ?
?? sinax dx 0x
例7 计算
? ? (r)? ?? e? x2 cosrxdx 0
都收敛,由反常积分收敛的定义,即
? ? ? 0,?N (?,x)? c, 使得 ? M ? N ,
?| M c
f(x,y)dy ? I(x)|? ?

函数项级数一致收敛性判别法归纳

函数项级数一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳一定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n→→()∞→n ,Dx ∈设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n Ex ∈)1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1,E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当Nn >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明显然∑∞=1n n x 在)1,1(-内收敛于xx-1.对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+成立,只要当N n >时,恒有()rr n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二函数项级数一致收敛性的判定方法定理1Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或()()()ε<++++++x u x u x u p n n n 21或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D上一致收敛于0.定理2]2[函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S .定理4确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n 证明充分性设(){}x S n 是函数项级数()∑x u n 的部分和函数列,)(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题.定理5若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明充分性假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时,()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3(则函数项级数()x u n ∑在D 上一致收敛.证明由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的.推论2设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()n n a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有推论2'设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得,∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明已知()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数).又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c ∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc 从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知,函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知,()x u n n∑∞=1在D 上也一致收敛于)(x S .定理10由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u n n 在D 上也一致收敛证明由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21()()ε<++++++x v x v x v p n n n 21)(所以()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++ ()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u n n 在D 上也一致收敛定理11Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12Abel 判别法[]1证明推论6设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u p n nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k p n nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调;(ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明充分性由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n ,时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++ 于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数,()x u n∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛.证明由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得,()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知,()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时,对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u ()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u ()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u ()ε12+≤M 因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.定理17设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微,()x u nn∑/在上一致收敛,记()=x S ()x u nn∑.定理18设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n∑∞=1在点0x处收敛;()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛,()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛.证明∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知,∑n nx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n n x n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知,∑∞=1sin n n nx在()π2,0不一致收敛.推论7若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,,()x u n∑皆收敛.证明与定理19类似,略.定理20[]7设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明必要性用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明与定理20的类似,略.推论12[]4设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε)1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性.证明因为11)(1≤=xx u ,且11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛.定理23[]8(根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8(根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51'设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()x nx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n Dx n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛.推论16[]8有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8(对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln ,即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛.②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛.③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14试证()∑+--211x n n 在区间[]b a ,一致收敛.证明⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k nk k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15证明()∑-x nn11在[)+∞,δ上一致收敛.证明因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k 211,由Cauchy 准则证毕.定理27[]9利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1Cauchy 准则与M 判别法比较实用一般优先考虑;2Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三非一致收敛性的判别1利用非一致收敛的定义定义3,略.例16讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2利用确界原理的逆否命题定理28若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明它是确界原理的逆否命题,故成立.例17函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3利用定理5的逆否命题定理29设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明略.注:此定理比较实用.4利用Cauchy 准则逆否命题定理30函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明它是Cauchy 准则的逆否命题,故成立.例18讨论∑nnxsin 在[]π2,0=D 上的一致收敛性.解取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin 121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>oε=故∑nnxsin 在[]π2,0=D 上非一致收敛.注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明它是推论1的逆否命题,故成立.例19设()()()()12sin 1212cos+⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛.5利用求极值的方法定理31()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛.注:极限函数知道时,可考虑用.6利用一致收敛函数列的一个性质判别[]10引理2若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim 证明由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}Dx n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22讨论∑+221x n x在()+∞∞-,上一致收敛性.解显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim ()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx =4π=()00=≠s 故知∑+221xn x在()+∞∞-,上非一致收敛.推论20设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。

一致收敛判别法

一致收敛判别法

一致收敛判别法
稳定性一致收敛判别法是一种监督学习方法,它结合了一致性收敛和稳定性测试,以提高分类准确率。

该方法是建立在Model-Agnostic Meta-Learning(MAML)框架上的。

当训练一个由其他数据学习的模型时,反馈获得的一致性是一种有效的测试稳定性的方法,并且可以提高分类任务的准确度。

整个算法主要包括3个步骤。

首先,在训练中执行模型训练,对每一个样本执
行反馈,通过奖励机制达到稳定的收敛状态。

其次,将每一个样本的反馈结果的稳定性度量统计在一起,估算模型的稳定性。

最后,根据稳定性度量,判断是否训练成功,并依据判断结果来进行最优化解码。

稳定性一致收敛判别方法能够有效地对模型稳定性进行评估,从而提高模型的
准确率。

该方法使用了奖励函数,以便于强调稳定的优势,并且可以在训练过程中快速收敛。

基于稳定性统计,判断模型训练是否达到一致性,从而知道解码器是否有效。

因此,稳定性一致收敛判别法可以有效提升模型的准确率,并在实践中发挥重要作用。

数项级数一致收敛

数项级数一致收敛

数项级数一致收敛(原创实用版)目录1.数项级数一致收敛的定义2.数项级数一致收敛的性质3.数项级数一致收敛的判定方法4.数项级数一致收敛的实际应用正文一、数项级数一致收敛的定义数项级数一致收敛是指,当级数的各项绝对值趋于 0 时,级数的和趋于一个确定的常数。

换句话说,如果一个级数的各项绝对值都小于某个正数ε,且级数的项数趋向于无穷,那么这个级数就是一致收敛的。

二、数项级数一致收敛的性质一致收敛的级数具有以下性质:1.有界性:级数的每一项都趋于 0,因此级数的和也有界。

2.有序性:当项数增加时,级数的和单调增加或单调减少。

3.极限存在:当级数的项数趋于无穷时,级数的和存在极限。

三、数项级数一致收敛的判定方法判断一个级数是否一致收敛,可以使用以下几种方法:1.ε-δ法:如果对于任意正数ε,总存在正数δ,使得当项数 n>δ时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。

2.柯西准则:如果对于任意正数ε,总存在正数 N,使得当项数 n>N 时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。

3.列恩哈德准则:如果对于任意正数ε,总存在正数 N,使得当项数n>N 时,级数的各项绝对值的倒数之和趋于 0,那么这个级数就是一致收敛的。

四、数项级数一致收敛的实际应用一致收敛的级数在数学分析中有广泛的应用,例如求和、求积分、求极限等。

在实数域、复数域以及更高级的数学领域,一致收敛的级数都是研究的重要对象。

同时,一致收敛的级数也是许多实际问题的数学模型,如求解数列的和、计算定积分等。

综上所述,数项级数一致收敛是数学分析中的一个基本概念,具有重要的理论和实际意义。

一致收敛weierstrass判别法

一致收敛weierstrass判别法

一致收敛weierstrass判别法
一致收敛的Weierstrass判别法是一种判断函数列或函数项级数是否一致收敛的方法。

具体来说,如果函数项级数的每一项满足一定的条件,并且这个条件与函数项的位置无关,那么就可以利用Weierstrass判别法来判断这个函数项级数是否一致收敛。

具体来说,设函数项级数为∑u_n(x),如果对于任意给定的ε>0,总存在N,使得当n>N 时,对于一切x∈D(D是函数项级数的定义域),都有|u_n(x)|<ε,那么就说函数项级数∑u_n(x)在D上一致收敛。

Weierstrass判别法指出,如果函数项级数的每一项u_n(x)满足|u_n(x)|≤a_n(对于所有x∈D),并且数列∑a_n收敛,那么函数项级数∑u_n(x)在D上一致收敛。

这个判别法的优点在于,它不需要知道函数项级数的和的具体形式,只需要知道每一项的绝对值满足的条件,以及这个条件与x的位置无关,就可以判断函数项级数是否一致收敛。

因此,它是研究函数项级数收敛性的重要工具之一。

此外,一致收敛的函数项级数具有一些很好的性质,比如可以交换极限运算和无限求和运算的顺序,这在处理一些复杂的数学问题时非常有用。

因此,研究函数项级数的一致收敛性对于数学分析来说具有重要的意义。

三个一致收敛判别法

三个一致收敛判别法

三个一致收敛判别法
一致收敛是数学中重要的概念,一致收敛判别法是在研究函数序列一致收敛性时常用的方法。

本文将介绍三种常用的一致收敛判别法,分别为Weierstrass判别法、M-test判别法和Abel判别法。

首先是Weierstrass判别法。

该法的核心思想是通过比较函数序列和一组已知收敛函数来检验函数序列的一致收敛性。

具体来说,若存在一组函数{fn}和一组数列{Mn},使得对于任意n和任意x,满足|fn(x)|≤Mn且∑Mn收敛,则函数序列{fn}一致收敛于某个函数f(x)。

其次是M-test判别法。

该法与Weierstrass判别法类似,也是
通过比较函数序列和一组已知收敛函数来检验函数序列的一致收敛性。

不同的是,M-test判别法要求原函数序列的每个函数在一定区
间内都要满足一个上界条件,即存在一个正数M,使得对于任意n和任意x∈[a,b],都有|fn(x)|≤M,同时∑M收敛。

若原函数序列满足该条件,则其一致收敛于某个函数f(x)。

最后是Abel判别法。

该法适用于一些特定的函数序列,如幂级
数序列。

它的核心思想是根据Abel公式,利用函数序列的收敛性来
判断其一致收敛性。

具体来说,如果一个幂级数序列∑an(x-a)n的
每一项函数都满足以下两个条件:1)在区间[a,b]上单调有界;2)
在区间[a,b]上一致收敛于某个函数f(x),则该幂级数序列在区间[a,b]上一致收敛于f(x)。

- 1 -。

一致收敛判别法总结

一致收敛判别法总结

学年论文题目:一致收敛判别法总结学院:数学与统计学院专业:数学与应用数学学生姓名:***学号:************指导教师:***一致收敛判别法总结学生姓名:张学玉 指导教师:陶菊春摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。

首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。

同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。

并通过例题的讨论说明这些判别法的可行性及特点。

Abstract :Function Series Uniform Convergence prove mathematical analysisof the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics.关键词: 函数项级数;函数序列;一致收敛;判别法Keywords: series of functions; function sequence; uniform convergence; Criterion引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛发判别法及推广汇总含参数的反常积分是指在积分中包含一个或多个参数的情况下的积分运算。

一致收敛是指在定义域上的每个点上,函数项级数都收敛于同一个函数。

一致收敛的发散判别法是用来判断含参数的反常积分是否一致收敛的方法。

它的基本思想是先对含参数的反常积分的被积函数进行求和,然后通过逐项求和的结果进行判断。

一般来说,当积分区间是有界区间时,可以直接采用一般的单调收敛判别法,若积分区间是无界区间,则需要使用其他方法来判断其一致收敛性。

以下是一些常见的含参数反常积分的一致收敛发判别法及推广:1.魏尔斯特拉斯判别法:该判别法适用于被积函数在区间上无上界的情况。

若函数项级数的每一项在区间上都存在可求得的上界,并且级数的系数与参数无关,即参数只出现在积分区间上,则该函数项级数在该区间上一致收敛。

2.绝对收敛发散判别法:若被积函数在积分区间上绝对收敛,则函数项级数在该区间上一致收敛。

3.阿贝尔判别法:若函数项级数在积分区间上逐项收敛,且在积分区间上一致有界,则函数项级数在该区间上一致收敛。

4.一致收敛的推广汇总:对于参数函数项级数的一致收敛判别,可以将其推广为参数函数项广义积分的一致收敛判别。

具体而言,可以参考以下几种情况的判别方法:a.线性组合的情况:若参数函数项级数与常数函数项级数的线性组合在积分区间上一致收敛,则参数函数项级数在该区间上一致收敛。

b.积分换元法的情况:若参数函数项级数的积分变量进行换元,得到的新的参数函数项级数在积分区间上一致收敛,则原参数函数项级数在该区间上一致收敛。

c.参数函数项级数的逐项积分的情况:若参数函数项级数的逐项积分在积分区间上一致收敛,则参数函数项级数在该区间上一致收敛。

d.参数函数项的相对收敛性:若参数函数项级数的每一项与参数的函数项级数的每一项的绝对值相比,在积分区间上一致有界,并且参数的函数项级数在该区间上一致收敛,则原参数函数项级数在该区间上一致收敛。

一致收敛的比较判别法

一致收敛的比较判别法

一致收敛的比较判别法一致收敛的比较判别法是数学分析中的一种重要策略,适用于求解函数序列的收敛性问题。

其主要思想是通过比较函数序列与已知函数的大小关系,来推断函数序列的收敛性。

下面我们就来详细介绍一下这一方法。

1. 一致收敛的概念在介绍一致收敛的比较判别法之前,我们先来了解一下一致收敛这个概念。

对于一个函数序列{f_n(x)},如果存在一个函数f(x),使得对于任何给定的正数ε,都存在一个正整数N,当n>N时,有|f_n(x)-f(x)|<ε成立,那么我们称这个函数序列一致收敛于函数f(x)。

这种收敛方式相比于点态收敛和平均收敛而言,更加强一些,也更适合于一些特殊函数的收敛性分析。

2. 比较判别法的基本思路有了一致收敛的概念之后,我们就可以开始介绍一致收敛的比较判别法了。

这种方法的基本思路就是通过一个已知函数g(x),与函数序列{f_n(x)}相比较,从而来推断{f_n(x)}的收敛性。

具体来说,如果存在一个正整数N和正数M,使得对于任意的x和n>N,有|f_n(x)|≤M|g(x)|成立,那么我们就可以得出结论:若g(x)一致收敛,那么{f_n(x)}一致收敛;反之,若{f_n(x)}不一致收敛,则g(x)也不一致收敛。

3. 举例说明为了更好地理解一致收敛的比较判别法,我们举个例子来说明。

考虑两个函数序列{a_n(x)}和{b_n(x)},其中a_n(x)=x^n/(1+x^n),b_n(x)=x^n。

我们想知道这两个函数序列是否一致收敛。

由于比较判别法的思路是将未知的函数序列与已知的函数相比较,因此我们可以先找到一个已知函数g(x),它能够与{a_n(x)}或{b_n(x)}进行比较。

因为a_n(x)的极限函数是f(x)=1(当x>0时),因此我们取g(x)=1,那么对于任意的x和n,有|a_n(x)|≤1|g(x)|成立。

因此,根据比较判别法,可以得出结论:{a_n(x)}一致收敛于f(x)=1。

三个一致收敛判别法

三个一致收敛判别法

三个一致收敛判别法三个一致收敛判别法在数学中,收敛是一个十分重要的概念。

“一致收敛”则更是有着尤为深远的影响,并广泛应用于函数论中,它在解析学、实变函数论、概率论等领域都有着重要的应用。

在这个领域中,三个一致收敛判别法特别值得注意。

本文将分别介绍这三个一致收敛判别法,以期帮助读者更好地理解这一基础性概念。

一、Weierstrass 判别法Weierstrass 判别法是一种非常广泛应用于函数分析领域的一致收敛判别法。

对于一列函数 $f_n(x)$,若它满足:1.至少有一个 $M$ 使得对于所有 $n$ 和 $x$,有$|f_n(x)|≤M$。

2.对于所有 $x$,$\lim\limits_{n→∞}f_n(x)=0$。

那么就可以得到该列函数一致收敛于 $0$。

这个判别法的意义在于它表明,只要上述条件成立,我们可以放心地断言这些函数一定是一致收敛于 $0$ 的。

二、M-Test 判别法M-Test 判别法又称为 Weierstrass-M 判别法。

对于一列函数 $f_n(x)$,若它满足:1.存在一列正数$M_n$,使得对于所有$n$ 和$x$,有 $|f_n(x)|≤M_n$。

2.级数 $\sum\limits_{n=1}^∞ M_n$ 收敛。

那么该级数一致收敛。

这个判别法的意义在于它通过控制每个函数项的上界,使得级数可以变换为数列的形式,并且该数列由于是收敛的,所以可以推出级数一致收敛。

三、Abel 判别法Abel 判别法是用于判断在某些点上一致收敛的一个判别法。

对于一列可微函数 $f_n(x)$,且它满足:1.在某个区间 $I$ 上,$|f_n(x)|$ 单调递减且$∑f_n(x_0)$ 收敛。

2.对于所有 $x∈I$,有 $\lim\limits_{n→∞}f_n(x)=0$。

那么在 $I$ 上,该列函数一致收敛。

这个判别法的意义在于,它可以在符合一定条件的情况下,通过单调性的保证,轻松地推出函数列一致收敛的结论。

一致收敛判别法

一致收敛判别法
n 1 n 1


(2) M判别法是绝对收敛的判 别法, 凡是能用M判别法判别函数项级数 一致收敛的, 此函数项级数一定是绝对收敛.
例6 讨论函数项级数
的一致收敛性
例7
定理12 狄利克雷判别法
若级数 anbn满足下列条件, 则级数 anbn收敛.
n 1 n 1
(1)数列{an }单调减少,且lim an 0.
i 1 n 1
y
a1 a2
3
ai bi
i 1
5
表示以bi 为底,以ai 为高的所有 竖条矩形面积之和 .
a a
a5
4
1 2
3
(ai ai 1 ) i a5 5
i 1
51
b1 b2 b3 b4
4
b5
5
x
推论(阿贝尔引理) 若 (i)a , a ,, a , 是单调数组
定理3 狄利克雷判别法
若函数项级数 an ( x)bn ( x)满足下列两个条件,
n 1
则函数项级数 an ( x)bn ( x)在区间一致收敛 .
n 1
(1)函数列{an ( x)}对每一个x I是单调的, 且在区间I一致收敛于0(an ( x) 0).
( 2)函数项级数 bn ( x) 的部分和函数列
u n ( x ) an ,
n 1
则称函数项 级数 un ( x)在 区间I上一致收敛.
注:魏尔斯特拉斯(Weierstrass)判别法
注 : (1)满足不等式un ( x) an的数项级数 an ,
n 1

称为函数项级数 un ( x)在 区间I上的
n 1

函数列一致收敛的判别方法

函数列一致收敛的判别方法

函数列一致收敛的判别方法一致收敛是函数列中每个函数都在一些集合上趋于同一个极限的性质。

本文将介绍几种判别函数列一致收敛的方法,包括Cauchy准则、Weierstrass判别法、Dini定理以及一些常见的特殊函数列。

1. Cauchy准则Cauchy准则是函数列一致收敛的重要判别法之一、设函数列{f_n(x)}在集合E上定义,对于任意ε>0,存在N,使得当n,m>N时,对于任意的x∈E,有,f_n(x)-f_m(x),<ε。

当满足这个条件时,函数列{f_n(x)}在集合E上一致收敛。

2. Weierstrass判别法Weierstrass判别法是函数列一致收敛的常用方法之一、设函数列{f_n(x)}在集合E上定义,如果存在一个收敛的正数级数∑M_n,使得对于任意的n和x∈E,有,f_n(x),<M_n,则函数列{f_n(x)}在集合E上一致收敛。

3. Dini定理Dini定理是另一种判别函数列一致收敛的方法。

设函数列{f_n(x)}在集合E上定义,如果函数列逐点收敛于函数f(x),且对于集合E中的任意一个点x,以及任意的ε>0,存在函数列的一个有限子列{f_{n_k}(x)},使得,f_{n_k}(x)-f(x),≤ε,那么函数列{f_n(x)}在集合E上一致收敛。

4.常见特殊函数列除了上述常用的方法外,对于一些特殊函数列,也可以使用特定的方法来判别它们的一致收敛性。

(1)幂级数的一致收敛性:对于幂级数∑a_n(x-x_0)^n,其一致收敛域为该级数的收敛域。

(2)可导函数列的一致收敛性:如果函数列{f_n(x)}在集合E上的导函数都存在,且导函数的函数列{f_n'(x)}一致收敛于函数g(x),那么函数列{f_n(x)}在集合E上一致收敛于一些函数f(x),且f(x)可导,且导函数为g(x)。

(3)连续函数列的一致收敛性:如果函数列{f_n(x)}在集合E上的函数都连续,且函数列{f_n(x)}一致收敛于函数f(x),那么函数f(x)也连续。

函数列和函数项级数一致收敛的判别方法

函数列和函数项级数一致收敛的判别方法

函数列和函数项级数一致收敛的判别方法函数列的一致收敛是指对于任意给定的正数ε,存在自然数N,使得当n>N时,对于任意的x,都有,fn(x)-f(x),<ε。

函数列一致收敛的判别方法有几种:1. 利用函数列的收敛性:若函数列fn(x)一致收敛于f(x),则对于任意给定的ε>0,存在自然数N,当n>N时,fn(x)-f(x),<ε对于所有的x成立。

2. Cauchy准则:若函数列fn(x)满足对于任意给定的ε>0,存在自然数N,当n,m>N时,对于所有的x,有,fn(x)-fm(x),<ε。

3. Weierstrass判别法:若函数列fn(x)满足对于任意给定的ε>0和x,存在自然数N,当n>N时,fn(x)-f(x),<ε,则函数列一致收敛。

函数项级数是指形式为∑an(x)的级数,其中an(x)为函数项。

函数项级数的一致收敛是指对于任意给定的正数ε,存在自然数N,当n>N时,对于任意的x,都有,S(x)-Sn(x),<ε,其中S(x)为函数项级数的和函数。

函数项级数一致收敛的判别方法有几种:1. 利用级数的收敛性:若函数项级数∑an(x)一致收敛,则对于任意给定的ε>0,存在自然数N,当n>N时,对于所有的x,有,S(x)-Sn(x),<ε。

2. Abel判别法:若函数项级数∑an(x)满足以下两个条件:a)对于所有的x,函数项an(x)单调;b)∑an(x)在其中一区间上一致收敛则函数项级数一致收敛。

3. Dirichlet判别法:若函数项级数∑an(x)满足以下两个条件:a)∑an(x)在其中一区间上部分和有界;b)函数项bn(x)单调并趋于0则函数项级数一致收敛。

以上是函数列和函数项级数一致收敛的一些判别方法。

在实际应用中,我们需要根据具体问题的特点选择合适的方法进行判断。

一致收敛的函数列和函数项级数在数学分析、微积分等领域中有广泛的应用,深入理解并正确应用这些判别方法对于解决实际问题具有重要意义。

含参量反常积分的一致收敛性的判别方法

含参量反常积分的一致收敛性的判别方法

含参量反常积分的一致收敛性的判别方法一、定义首先,我们来回顾一下含参量反常积分的定义。

设函数$f(x,t)$定义在区间$[a,b]$上的一个闭区间$[c,d]$,则含参量反常积分可以表示为:$$\int_a^b f(x,t)dx$$其中,函数$f(x,t)$称为被积函数,参数$t$称为参数。

参数$t$取值在闭区间$[c,d]$上。

1.依据一致收敛的定义如果对任意给定的$\epsilon>0$,存在正数$\delta$,当$,x-a,<\delta$且$t\in[c,d]$时,$,f(x,t)-f(a,t),<\epsilon$,则函数$f(x,t)$在区间$[a,b]$上关于$x$一致收敛。

这是最常用的判别方法之一2.莱布尼茨定理对于含参量反常积分,如果被积函数$f(x,t)$在闭区间$[c,d]$上关于$t$是逐点收敛的,并且对所有$x\in[a,b]$,极限$\lim_{t\to\infty}f(x,t)$存在,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

3.狄利克雷判别法狄利克雷判别法主要用于判别含参变量正交级数的一致收敛性,但同样适用于含参量反常积分。

如果被积函数$f(x,t)$和其导数$f'(x,t)$在$[a,b]$上对于$t$关于$x$一致有界,并且在区间$[c,d]$上关于$x$一致收敛,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

4.魏尔斯特拉斯判别法魏尔斯特拉斯判别法是判别含参量反常积分收敛性的重要方法之一、如果被积函数$f(x,t)$在闭区间$[c,d]$上对于$t$关于$x$一致有界,并且对于任意给定的$x\in[a,b]$,被积函数$f(x,t)$对于参数$t$在闭区间$[c,d]$上关于$x$一致收敛,则函数$f(x,t)$在区间$[a,b]$上一致收敛。

5.独立变量法独立变量法是一种常用的判别方法。

对于含参量反常积分$\int_a^bf(x,t)dx$,将被积函数$f(x,t)$视为关于$x$的函数,并对其进行研究。

函数项级数一致收敛性判别法及其应用.doc

函数项级数一致收敛性判别法及其应用.doc

函数项级数一致收敛性判别法及其应用函数项级数一致收敛性的判别是试题中经常会遇到的问题,这里我把常用的函数项级数一致性的判别法归纳如下:1.定义法这种方法常用于证明函数项级数在某个区间的一致收敛性,下面我们一起来看一个关于用定义法证明的例题:例1 证明函数项级数∑∞=-11k k x 在[-21,21]上的一致收敛性。

证明:由题意得 ∑∞=-11k k x =xx n --11 则∞→n lim (x x n --11)=x -11 其中]21,21[-∈x ε<≤-≤-=--1211|1|)()(n n n n x x x x x s x s 其中]21,21[-∈x 故 取N=[21ln ln ε],则 对有,上述的,,0N n N >∀∃>∀εε<|s(x )-(x )s |n 因此,由定义可知,此级数在]21,21[-上一致收敛。

2.Cauchy 收敛原理用Cauchy 收敛原理既可以证明级数一致收敛,也可以证明级数不一致收敛,我们经常看到的是用它来证明级数一致收敛,下面我们看一个用它来证明级数不一致收敛的例子。

例2 判别级数 ∑∞=1sin n n nx 的一致收敛性。

其中)2,0(π∈x 解: 由Cauchy 收敛原理有:有:),2,0(,,,,00πε∈∃>∃∀>∃x N m n Nm|sinmx ...2)x sin(n 1)x sin(n ||sin ...2)2sin(1)1sin(|+++++≥+++++++m mx n x n n x n 取nx n m 1,2==,则:21sin 1sin 2sin ...)12sin()11sin(ε==≥+++++≥mn mn n故此级数不一致收敛。

3.weierstrass 判别法这种判别法往往通过正项级数的收敛性来判断,用起来比较方便。

下面我们来看一下有关的例子。

例3 若∑∞=1n n a 绝对收敛,由weierstrass 判别法易知:nx a n n cos 1∑∞=在),(+∞-∞上一致收敛。

9.2 函数项级数的一致收敛判别法

9.2 函数项级数的一致收敛判别法
§9.2 函数项级数
四、函数项级数的一致收敛判别法
定理 1 (柯西一致收敛准则 ) 函数项级数 un ( x )在区间I

一致收敛 0, N N , n N , p N , x I , 有 | Sn p ( x ) Sn ( x ) | | un1 ( x ) un2 ( x ) un p ( x ) | .
函 数 项 级 数 ne nx 在(0, )非 一 致 收 敛 .
n 1
1 (0,), 有 n0
高州师范学院
一致收敛判别法
§9.2 函数项级数
定理2 (M判别法,魏尔斯特拉斯判别法,或优级数判别法)
设 有 函 数 项 级 数 un ( x ), I是 区 间 若存在收敛的正项级数 .
n 1

1)函数列{an ( x)}对每个x I是单调的,且在区间I一致有界;
2)函数项级数 bn ( x )在I 一致收敛;
则级数 an ( x )bn ( x )在I 一致收敛.
n 1
n 1
高州师范学院
一致收敛判别法
§9.2 函数项级数
例4、 证 明 : 函 数 项 级 数 sinnx 在 区 间 ,2 ](0 ) [ n n 1
单调增加或单调减少统称为单调.
2)若M 0, n N , x A, 有 | un ( x) | M ,
则称函数列un ( x )}在A一致有界 { .
高州师范学院
一致收敛判别法
§9.2 函数项级数
定理3 (狄利克雷判别法)
若级数 an ( x )bn ( x )满足条件:
x n1 x n p1 | x |n1 | x |n p1 | | n 1 n p 1 n 1 n p 1

一致收敛的狄利克雷判别法

一致收敛的狄利克雷判别法

一致收敛的狄利克雷判别法狄利克雷判别法是一种用于判断无穷级数是否收敛的方法。

它是基于比较判别法和积分判别法的思想,适用于某些特殊的级数。

在一些情况下,狄利克雷判别法能够更加方便和快捷地判断级数的收敛性,特别是对于一些经典的数学问题,如黎曼猜想等,狄利克雷判别法也具有不可替代的作用。

狄利克雷判别法的核心思想是在原级数的基础上构造一个新的序列,使得这个新序列收敛。

具体地说,我们可以考虑将原序列中的前缀和和后缀部分分别相乘,得到一个新序列。

如果这个新序列收敛,那么原序列也就收敛了。

这个思想可以用下面的式子来表示:∑(a_n * b_n) = lim (A_n * B_n)其中a_n和b_n分别是原序列的前缀和和后缀,A_n和B_n是相应的部分和。

当A_n收敛而B_n单调有界时,我们就可以证明新序列收敛,从而原序列也收敛。

这个结论被称为一致收敛的狄利克雷判别法。

一致收敛的狄利克雷判别法的证明并不复杂。

我们可以首先证明新序列的收敛性,然后利用比较判别法来证明原序列的收敛性。

具体地说,我们可以构造一个比原序列绝对值更小的收敛序列,从而证明原序列也收敛。

这个证明过程需要使用到单调有界数列定理、Cauchy准则等基本的数学定理。

在实际应用中,一致收敛的狄利克雷判别法可以用于判断一些特殊的级数,如Dirichlet级数、Abel级数等。

对于这些级数,狄利克雷判别法可以比其他方法更加方便和快捷地判断收敛性。

此外,狄利克雷判别法在一些经典的数学问题中也具有重要的应用,如黎曼猜想等。

一致收敛的狄利克雷判别法是一种重要的数学工具,它能够用于判断一些特殊的级数的收敛性。

虽然这个方法并不适用于所有的级数,但在一些特殊的问题中,它具有不可替代的作用。

因此,在学习数学的过程中,我们应该掌握这个方法,并善于运用它来解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学年论文题目:一致收敛判别法总结学院:数学与统计学院专业:数学与应用数学学生姓名:***学号:************指导教师:***一致收敛判别法总结学生姓名:张学玉 指导教师:陶菊春摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。

首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。

同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。

并通过例题的讨论说明这些判别法的可行性及特点。

Abstract :Function Series Uniform Convergence prove mathematical analysisof the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics.关键词: 函数项级数;函数序列;一致收敛;判别法Keywords: series of functions; function sequence; uniform convergence; Criterion引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。

初学者需用灵活的思维以便在使用时选出正确又快捷的证明方法和技巧。

为了更好的培养我们这方面的能力,总结出了函数项级数一致收敛性的若干证明方法。

一、定义设(){}x S n 是函数项级数()x u n∑的部分和函数列.若(){}x S n在数集D 上一致收敛于函数()x S ,则称函数项级数()x u n∑在D 上一致收敛于函数()x S ,或称函数项级数()x u n∑在D 上一致收敛.定理:若对∀n ,∃n a >0使得()()n n a x S x S ≤-()D x ∈∀,并且当∞→n 时有0→n a .则当∞→n 时()x S n 一致收敛于()x S .例1:若()x f n 在[]b a ,上可积, ,2,1=n ,且()x f 与()x g 在[]b a ,上都可积()()⎰=-∞→bax n n d x f x f 0lim .设()()()()()()⎰⎰==xat n x a n t d t g t f x h d t g t f x h ,则在[]b a ,上()x h n 一致收敛于()x h .证明: ()()x h x h n - = ()()()()⎰⎰-xaxat n t d t g t f d t g t f=()()()()⎰-x atndt g t f t f ≤()()()⎰-xatndt g t f t f≤ ()()()212212⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-⎰⎰xa t xa t n d t g d t f t f≤ ()()()212212⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-⎰⎰ba t bat n d t g d t f t f 0→ ()∞→n所以∞→n 时,()x h n 一致收敛于()x h .二、函数项级数一致收敛的柯西收敛原理 函数项级数()∑∞=1n n x u 在D 上一致收敛的充分必要条件是对于任意给定的ε>0,存在正整数()εN N =,使()()()x u x u x u m n n ++++21<ε. 对一切正整数m>n>N 与一切x ∈D 成立.证明:(必要性) 设()∑∞=1n n x u 在D 上一致收敛.记和函数为()x S ,则对任意给定的ε>0,存在正整数()εN N =.使得对一切n>N 与一切D x ∈ 成立()()∑=-nk k x S x u 1<2ε于是对一切m>n>N 与一切x ∈D ,成立 ()()()x u x u x u m n n ++++21=()()∑∑==-m k nk kkx u x u 11=()()()()()()()()∑∑∑∑====⎪⎭⎫⎝⎛---=+--mk n k k k mk nk k k x S x u x S x u x S x u x S x u 1111()()()()∑∑==-+-≤nk km k kx S x u x S x u 11<ε(充分性) 设对任意给定的ε>0,存在正整数()εN N =,使得对一切m>n>N 与一切D x ∈ 成立()()()x u x u x u m n n ++++21=()()∑∑==-m k nk kkx u x u 11<2ε固定D x ∈,则函数项级数()∑∞=1n n x u 满足可惜收敛原理,因而收敛。

设()()D x x u x S n n ∈=∑∞=,1在()()∑∑==-mk nk kkx u x u 11<2ε中,固定n. 令m>∞,则得到()()21ε≤-∑=nk k x S x u <ε对一切D x ∈成立. 因而()∑∞=1n n x u 在D 上一致收敛于()x S可以相应的得出函数序列一致收敛的柯西收敛原理:函数序列(){}x S n 在D 上一致收敛⇔对任给的正数ε,总存在正数N ,使得当m >n >N 时,对一切D x ∈,都有()()x S x S n m -<ε例2: 若在区间I 上,对任何正整数n, ()()x U x M n n ≤. 证明:当()∑x U n在I 上一致收敛时,级数()∑x U n 在I 上也一致收敛.证明:因为()∑x U n在I 上一致收敛. 故对任给的ε>0,总存在N >0,使得当n >N 时,对任意I x ∈ 及任意+∈z p ,有()()()≤++++++x U x U x U p n n n 21()()()x U x U x U p n n n ++++++ 21<ε 从而由 ()()x U x M n n ≤ 得()()()x U x U x U p n n n ++++++ 21 ≤ ()x U n 1++()()x U x U p n n ++++ 2< ()()()x U x U x U p n n n ++++++ 21<ε所以,由柯西准则知,级数()∑x U n在I 上一致收敛.三、设函数序列(){}x S n 在集合D 上点态收敛于()x S ,定义()x S n 与()x S 的距离为 ()S S d n ,=()()x S x S n Dx -∈sup则(){}x S n 在D 上一致收敛于()x S 的充分必要条件是: ()S S d n n ,lim ∞→=0.证明: 设(){}x S n 在D 上一致收敛于()x S ,则对任意给定的ε>0,存在()εN N =, 当n >N 时,()()x S x S n -<2ε 对一切D x ∈成立. 于是对n >N ,()S S d n ,2ε≤<ε, 这就说明 ()S S d n n ,lim ∞→=0.反过来,若 ()S S d n n ,lim ∞→=0 则对任意给定的ε>0,存在()εN N =,当n >N 时,()S S d n , < ε, 此式表明()()x S x S n -<ε. 对一切 D x ∈成立.所以 (){}x S n 在D 上一致收敛于 ()x S . 例3:设()x S n =221xn x+,则(){}x S n 在()+∞∞-,上收敛于极限函数()0=x S . 证明:由于 ()()x S x S n - =221x n x +n 21≤等号成立当且仅当 nx 1+=.可知 ()S S d n ,=021→n()∞→n 因此 (){}x S n 在()+∞∞-,上一致收敛于()0=x S . 例4:证级数∑∞=0n nx在()1,1+-上不一致收敛但在()1,1+-上内闭一致收敛.证明:()()()x S x S n x -+-∈1,1sup =()≥-+-∈1sup1,1x xnx ()111+-+n nn n n=∞→⎪⎭⎫⎝⎛+-11n n n n ()∞→n ,知道级数∑∞=0n nx在()1,1+-不一致收敛.对任意 a (0<a <1),[]()()x S x S n a a x -+-∈,sup =[]xx na a x --+-∈1sup ,=01→-a a n ()∞→n 可得 级数∑∞=0n nx在()1,1+-上内闭一致收敛.四、魏尔斯特拉斯判别法: 设()∑x u n为一个函数项级数,若存在一个收敛的正项级数∑nM,且∃0N ,当n >0N ,D x ∈时,有()n n M x u ≤. 则函数项级数()∑x u n 一致收敛.证明: ∵正项级数∑nM收敛∴ 对任意的ε>0 存在N ,当n >N 时,对任意的p 有≤++++++p n n n M M M 21p n n n M M M ++++++ 21<ε又 ∵()n n M x u ≤ 故 对任意的D x ∈,有()()()≤++++++x u x u x u p n n n 21()()()x u x u x u p n n n ++++++ 21 ≤p n n n M M M ++++++ 21<ε ∴ 函数项级数()∑x u n一致收敛例5: 函数项级数nx n ae x-∞=∑1(a >1)在[0,+∞)上一致收敛.证明 : 记 ()x M n =nxae x -, 则()x u n '=nxa ex--1()nx a -.于是容易知道()x u n 在na x =外达到最大值()a ane a1,即 ()≤≤x u n 0()a ane a1,∈x [0,+∞). 由于a >1,正项级数()a an ne a 11∑∞=收敛. 由魏尔斯特拉斯判别法nx n ae x-∞=∑1(a >1)在[0,+∞)上一致收敛.五、阿贝尔判别法: 设(Ⅰ)()∑x u n在区间I 上一致收敛;(Ⅱ)对于每一个I x ∈,(){}x v n 是单调的;(Ⅲ)(){}x v n 在I 上一致有界,即对一切I x ∈和正整数n ,存在正整数M ,使得 ()M x v n ≤, 则 级数()()∑x v x u nn在I 上一致收敛.证明: 由(Ⅰ),任给ε>0,存在某正数N ,使得当n >N 及任何正整数p ,对一切I x ∈,有 ()()x u x u p n n ++++ 1<ε又由(Ⅱ),(Ⅲ)及阿贝尔引理 得到()()()()x v x u x v x u p n p n n n ++++++ 11()()()εεM x v x v p n n 321≤+≤++.于是根据函数项级数一致收敛的柯西准则,得级数()()∑x v x u nn在I 上一致收敛.例6:设∑∞=1n na收敛,则∑∞=1n n nx a在[]1,0上一致收敛.证明:显然{}nx关于n 单调, 且 1≤nx,[]1,0∈x .对一切n 成立;∑∞=1n na是数项级数,它的收敛性就意味着关于x 的一致收敛性.由 阿贝尔判别法,得到 ∑∞=1n n nx a在[]1,0上一致收敛.六、狄利克雷判别法: 设 (Ⅰ)()∑x u n的部分和函数列 ()x U n=()∑=nk kx u 1() ,3,2,1=n 在I 上一致有界;(Ⅱ)对于每一个I x ∈,(){}x v n 是单调的;(Ⅲ)在I 上()x v n 一致收敛于0 ()∞→n , 则 级数()()∑x v x u nn在I 上一致收敛.证明:由(Ⅰ),存在正数M ,对一切I x ∈,有()M x U n ≤.因此当p n ,为任何正整数时,()()()()M x U x U x u x u n p n p n n 21≤-=+++++对任何一个I x ∈ ,再由(Ⅱ)及阿贝尔引理,得到()()()()x v x u x v x u p n p n n n ++++++ 11()()()x v x v M p n n +++≤221再由(Ⅲ),对任给的ε>0,存在正数N ,当n >N 时,对一切I x ∈,有()x v n <ε,所以 ()()()()x v x u x v x u p n p n n n ++++++ 11<()εεεM M 622=+ 于是由一致收敛性的柯西准则,得级数()()∑x v x u nn在I 上一致收敛.例7:设{}n a 单调收敛于0,则∑∞=1cos n nnx a与∑∞=1sin n n nx a 在()π20,上内闭一致收敛.证明: 数列{}n a 收敛于0,意味着关于x 一致收敛于0. 另外,对任意0<δ<π 当 []δπδ-∈2,x 时,∑=nk kx 1cos =2sin 12sin22sin 21sin δ≤-⎪⎭⎫ ⎝⎛+x x x n ;∑=nk kx 1sin =2sin 12sin22cos 21cos δ≤-⎪⎭⎫ ⎝⎛+x x x n ; 由狄利克雷判别法,得到∑∞=1cos n nnx a与∑∞=1sin n n nx a 在[]δπδ-2,上一致收敛,故∑∞=1cos n nnx a与∑∞=1sin n n nx a 在()π20,上内闭一致收敛.七、设函数序列(){}x S n 在闭区间[]b a ,上点态收敛于()x S ,如果 (1)()x S n () ,3,2,1=n 在[]b a ,上连续; (2)()x S 在[]b a ,上连续;(3)(){}x S n 关于n 单调,即对任意固定的[]b a x ,∈,(){}x S n 是单调数列.则 (){}x S n 在[]b a ,上一致收敛于()x S .证明: 用反证法。

相关文档
最新文档