神奇的数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《生活中的数学》(2课时)
教学目标:
1、引导同学们领略数学隐藏在生活中的迷人之处;
2、培养同学们对数学的兴趣。教学内容:生活中的数学。教学方法:
启发探索、小游戏教具安排:
多媒体、剪纸、小剪刀三把教学过程:师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗? 学生讨论。师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:
请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示)
[1] 首先 ,随意挑一个数字(0、1、2、3、4、5、6、7) [2] 把这个数字乘上2 [3] 然后加上 5 [4 ] 再乘以 50
[5] 如果你今年的生日已经过了,把得到的数目加上 1759 ; 如果还没过,加 1758
[6] 最后一个步骤,用这个数目减去你出生的那一年 (公元的 )
师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸,如图所示:
现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。
学生思考。
师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个奇结点开始,到另一个奇结点结束。
师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。现在请同学们自己在练习本上解决这个问题:(PPT演示)
下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?
学生思考讨论。
师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。那如果农场主将门的形状做成这样呢?(PPT演示)
学生尝试。
师:是不是可以啦,为什么呢?生:奇结点个数为2.
师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像某些时候想的那样没什么用处了吧?
下面我们继续我们的奥秘之类吧。
今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。
其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。
为什么呢?这里我们用到三角形等高等底面积相等的性质。吃完了蛋糕,我们来观赏一下百合花。(PPT演示):一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?学生讨论。
师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加
一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!其实,除了以上我们看到的一些有趣的数学影子外,我们的日常生活中还处处透着数学的魅力,比如,在车站时我们看到的两车甚至三车同到的现象,并不是偶然的,里面也包含了丰富的数学知识,比如,为什么四叶草那么罕见;下雨时在什么情况下慢慢走比快快跑淋到的雨少;怎样使烤面包所需的能量削减25%;魔术是怎样产生的;还有侦探家福尔摩斯为什么这样神奇….这些,数学都可以为你解释,帮你解决。认真细细探究,你会发现数学和生活的结合紧密到令你感到惊奇,而且你必然会发现数学是多么迷人的家伙。希望同学们能在学习、生活中发现数学的美,享受数学带给我们的惊喜和乐趣!