高中数学立体几何单元测试卷
立体几何单元测试题
立体几何单元测试题 姓名一、选择题 (每题6分)1、下列命题正确的是 ( )A 经过三点确定一个平面 ;B 经过一条直线和直线外一点确定一个平面C 四边形确定一个平面;D 两两相交的三条直线确定一个平面。
2、直线l 垂直于平面α ,直线α⊂m ,下列关于直线l 、m 的位置关系不存在的是 ( ) A 相交 ;B 垂直; C 平行; D 异面。
3、已知βα、是两个平面,a 、b 是两条直线,以下四个命题中正确的个数是( ) (1)α若//β,b a b a //.则,βα⊂⊂(2) 若a//b,a 、b 都平行于α,a 、b 都平行于β。
则α//β (3) α若//β,α⊂a ,则a//β (4)若a//α,a//β.则α//β.A 1;B 2;C 3;D 4. 二、填空题(每题6分)1、已知两条相交直线a 、b ,a 平行于平面α,则b 与α的位置关系是______2、直线α⊄a ,直线α⊂b ,a//b.则a 和α的位置关系是______3、过三角形ABC 所在的平面α外一点P 作PO ⊥α,垂足为O ,连接PA 、PB 、PC 。
若PA ⊥PB 、PB ⊥PC 、PA ⊥ PC 。
则点O 是三角形ABC 的________心。
4某几何体的三视图如图所示,则其体积是___________C 1A 1CA4题 5题5、已知长方体ABCD---A 1B 1C 1D 1中,AB=AD=23,AA 1=2,则异面直线,AA 1和BC 1所成的角是______6、在正方体ABCD---A 1B 1C 1D 1中AB 1与平面A 1B 1CD 所成的角是__________C1A1CAA C6题7题7、三棱锥V---ABC中,V A=VB=AC=BC=2,AB=23,VC=1,则二面角V—AB—C的平面角是________三、解答题(每题20分)1、四棱锥V—ABCD中,四边形ABCD是矩形,VD⊥平面ABCD.求证:(1)BC⊥平面VDC(2) AB⊥VAAC三、1题2、如图、四棱锥P—ABCD的底面是矩形,E、F分别是AB、PC的中点。
高中数学立体几何初步单元测
第八章 立体几何初步 (单元测)第八章 立体几何初步(单元测试)_一、单选题1.已知圆锥的底面半径为1,侧面展开图的圆心角为,则该圆锥的高为( )A.B.C.D.42.若水平放置的四边形按“斜二测画法”得到如图所示的直观图,其中,,,,则原四边形中的长度为( )A.B.C.2D.3.如图,古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以为豪的发现.记图中圆柱的体积为,表面积为,球的体积为,表面积为,则下列说法正确的是( )A.B.C.D.4.已知,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①如果,,,,那么;②如果,,那么;③如果,,,那么;④如果,,,那么.其中正确命题的个数有( )A.4 个B.3 个C.2 个D.1 个5.梯形ABCD中,,∠ABC=90°,AD=1,BC=2,∠DCB=60°,在平面ABCD内过点C作l⊥CB以l所在直线为轴旋转一周,则该旋转体的表面积为( )A.B.C.D.6.如图所示,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F,G分别为所在棱的中点,则下列结论中正确的序号是( )①三棱锥D1﹣EFG的体积为;②BD1∥平面EFG;③BD1∥EG;④AB1⊥EG. A.③④B.①②④C.②③④D.①③7.直三棱柱中,,,则与平面所成的角为( )A.B.C.D.8.在棱长为1的正方体ABCD﹣A1B1C1D1中,点M,N分别是棱BC,CC1的中点,动点P在正方形BCC1B1(包括边界)内运动.若平面AMN,则P A1的最小值是( )A.1B.C.D.二、多选题9.如图是一个正方体的展开图,如果将它还原为正方体,则下列说法中正确的是( )A .直线与直线共面B.直线与直线异面C .直线与直线共面D.直线与直线异面10.高空走钢丝是杂技的一种,渊源于古代百戏的走索,演员手拿一根平衡杆,在一根两头拴住的钢丝上来回走动,并表演各种动作.在表演时,假定演员手中的平衡杆是笔直的,水平地面内一定存在直线与演员手中的平衡杆所在直线( )A.垂直B.相交C.异面D.平行11.在长方体中,O为与的交点,若,则( )A.B.C.三棱锥的体积为D.二面角的大小为12.攒尖是我国古代建筑中屋顶的一种结构形式,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,多见于亭阁式建筑、园林建筑下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则该正四棱锥的( )A.底面边长为6米B.侧棱与底面所成角的余弦值为C.侧面积为平方米D.体积为立方米三、填空题13.如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面圆周和圆锥的顶点均在体积为的球面上,若圆柱的高为2,则圆锥的侧面积为______.14.《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球O的球面上,则球O的体积为___________15.在正四面体ABCD中,E为BC的中点,则异面直线AE与CD所成角的余弦值为_ __________.16.如图,在正方体中,E为的中点,F为正方体棱的中点,则满足条件直线平面的点F的个数是___________.四、解答题17.如图,四棱锥中,底面为边长为2的菱形且对角线与交于点O,底面,点E是的中点.(1)求证:∥平面;(2)若三棱锥的体积为,求的长.18.如图,已知四棱锥的底面是直角梯形,,,,,.(1)若为侧棱的中点,求证:平面;(2)求三棱锥的体积.19.如图,在棱长为的正方体中,、分别为棱、的中点.(1)证明:平面平面;(2)求异面直线与所成角的余弦值.20.如图,直三棱柱的体积为4,的面积为.(1)求到平面的距离;(2)设D为的中点,,平面平面,求线段BC的长度.21.在等腰梯形(图1)中,,是底边上的两个点,且.将和分别沿折起,使点重合于点,得到四棱锥(图2).已知分别是的中点.(1)证明:平面.(2)证明:平面.(3)求二面角的正切值.22.如图,垂直于⊙所在的平面,为⊙的直径,,,,,点为线段上一动点.(1)证明:平面AEF⊥平面PBC;(2)当点F与C点重合,求 PB与平面AEF所成角的正弦值.一、单选题23.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.24.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( )A.B.C.D.25.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则( )A.B.C.D.26.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )A.B.C.D.二、多选题27.如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则( )A.B.C.D.28.已知正方体,则( )A.直线与所成的角为B.直线与所成的角为C.直线与平面所成的角为D.直线与平面ABCD所成的角为三、填空题29.已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________. 30.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.31.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm,高为2 cm,内孔半径为0.5 cm,则此六角螺帽毛坯的体积是 ____ cm3.四、解答题32.如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.参考答案:1.C【分析】由扇形弧长公式求圆锥的母线长,再根据圆锥的母线、高和底面半径的关系求高.【详解】因为底面半径,所以母线长,所以圆锥的高.故选:C2.B【分析】过点作,垂足为,求出直观图中的长度即得解.【详解】解:过点作,垂足为.因为,,,;,所以原四边形中的长度为2.故选:B3.B【分析】根据已知条件得出球的直径恰好与圆柱的高相等,设球的半径为r,进而分别表示出圆柱的体积为,表面积为,球的体积为,表面积为,进而求出.【详解】由已知条件,设球的半径为r,可知圆柱的底面半径为r,圆柱的高为2r,则圆柱的表面积,体积,球表面积,答案第1页,共2页体积,.故选:B.4.D【分析】根据空间中线线、线面、面面的位置关系一一判断即可.【详解】解:对于①如果,,,,那么或与相交,故①错误;对于②如果,,由线面垂直的性质可知,故②正确;对于③如果,,,那么或或与相交(不垂直)或与异面(不垂直),故③错误;对于④如果,,,那么或与相交(不垂直),当且仅当,,,,那么,故④错误.故选:D5.B【分析】旋转体为圆柱去去掉一个圆锥,计算圆柱的高和圆锥的底面半径和母线长,分别计算各面的面积,得出表面积.【详解】解:旋转体为圆柱去去掉一个圆锥,过作于,则,,,,圆锥的底面半径为,圆柱的底面半径为,圆柱和圆锥的高均为,圆锥的母线为,几何体的表面积为.故选:B.6.B【分析】利用等积法处理①,用面面平行得到线面平行处理②,用平行的传递性处理③,利用线面垂直得到线线垂直处理④.【详解】对于①,由等体积法可得:,故正确;对于②,连接,由面面平行的判定易得平面平面,由平面与平面平行的性质可得平面,故正确;对于③,如下图,连接,取的中点,连接,则,若,则,矛盾,故错误;对于④,由题意,,,可得平面,又平面,可得,故正确.故选:B.7.A【分析】将直三棱柱补全为正方体,根据正方体性质、线面垂直的判定可得面,由线面角的定义找到与平面所成角的平面角,进而求其大小.【详解】由题意,将直三棱柱补全为如下图示的正方体,为上底面对角线交点,所以,而面,面,故,又,面,故面,则与平面所成角为,若,所以,,则,故.故选:A8.C【分析】由平面,可以找到点在右侧面的运动轨迹,从而求出的最小值【详解】如图所示,取的中点,的中点,连接,因为分别是棱 的中点,所以,,又因为,,,所以平面平面,平面,且点在右侧面,所以点的轨迹是,且,,所以当点位于中点处时,最小,此时,.故选:C9.ACD【分析】作出正方体的直观图,逐项判断可得出合适的选项.【详解】如图,点与点重合,则与相交,故A正确;在正方体中,且,故四边形为平行四边形,,则、共面,故B错误;因为,故、共面,故C正确;由图可知,、不在同一个平面,且、既不平行也不相交,、为异面直线,故D正确.故选:ACD.10.AC【分析】对直线l与平面的任何位置关系,平面内均存在直线与直线l垂直;平衡杆所在直线与水平地面的位置关系:平行或相交,根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面;理解判断.【详解】根据题意可得:对直线l与平面的任何位置关系,平面内均存在直线与直线l垂直,A正确;平衡杆所在直线与水平地面的位置关系:平行或相交根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面C正确;B、D错误;故选:AC.11.BCD【分析】由题意,根据长方体的结合性质,结合线面垂直判定定理以及二面角的平面角定义和三棱锥的体积公式,可得答案.【详解】连接.因为,所以,又易证平面,所以,所以,所以为二面角的一个平面角.在中,,因为在中,,,所以,所以二面角的大小为..故选:BCD.12.AD【分析】画出几何体的直观图,结合已知条件求得棱锥的底面边长,逐项求解,即可得到答案.【详解】对A,如图所示,在正四棱锥中,为正方形的中心,且,设底面边长为,正四棱锥的侧面与底面所成的二面角为,所以,则,在直角中,可得,即,解得,所以正四棱锥的底面边长为,所以A正确;对B,因为平面,所以为侧棱与底面所成的角,在直角中,可得,所以B错误;对C,正四棱锥的侧面积为平方米,所以C错误;对D,正四棱锥的体积为立方米,所以D正确.故选:AD.13.【分析】根据题意画出该几何体的轴截面,如图,设是球心,是圆锥的顶点,是圆锥的母线,求出球的半径,从而可求出,进而可求得圆锥的侧面积.【详解】其中,是球心,是圆锥的顶点,是圆锥的母线,由题意可知,解得,由于圆柱的高为2,,,,母线,∴圆锥的侧面积为.故答案为:14.【分析】根据题意,得到为球的直径,求得的长,得到球的半径,进而求得球的体积,得到答案.【详解】如图所示,取的中点,根据直角三角形的性质,可得,所以为球的直径,且,可得球的半径为,所以球的体积为.故答案为:.15.##【分析】取BD的中点F,作出异面直线AE与CD所成的角,再利用三角形计算作答.【详解】在正四面体ABCD中,取BD的中点F,连接,如图,设,因E为BC的中点,则,,即有是异面直线AE与CD所成的角或其补角,而,在等腰中,,所以异面直线AE与CD所成角的余弦值为.故答案为:16.【分析】为了得到直线平面,只需求得平面平面,即平面内的任意一条直线都与平面平行,进而求得点的个数.【详解】分别取的中点,连接,,在正方体中,,,四边形是平行四边形,,,又平面,平面,平面,同理平面,又,平面,平面,平面平面,平面内的任意一条直线都与平面平行,则满足条件直线平面的点可以是的任何一个,点F的个数是个.故答案为:.17.(1)证明见解析(2)【分析】(1)由中位线证得,即可证得∥平面;(2)取中点F,证得平面,再由结合棱锥的体积公式即可求解.【详解】(1)证明:连接.∵点O,E分别为的中点,∴,∵平面平面,∴∥平面;(2)取中点F,连接.∵E为中点,∴为的中位线,∴,且.由菱形的性质知,为边长为2的等边三角形.又平面,∴平面,,点E是的中点,∴,∴.18.(1)证明见解析(2)【分析】(1)取的中点,通过,即可证明平面;(2)利用等积法,即求解即可【详解】(1)取的中点,连接,,在中,,在梯形中,,∴,,∴四边形是平行四边形,∴,而平面,平面,∴平面;(2)∵,,而∴平面,即为三棱锥的高,因为,,所以,又,所以19.(1)证明见解析(2)【分析】(1)证明出平面,平面,再利用面面平行的判定定理可证得结论成立;(2)分析可知异面直线与所成角为或其补角,计算出的三边边长,利用余弦定理可求得结果.【详解】(1)证明:连接,因为四边形为平行四边形,则且,、分别为、的中点,则且,所以,四边形为平行四边形,则且,因为且,且,故四边形为平行四边形,所以,,平面,平面,平面,同理可证且,所以,四边形为平行四边形,所以,,平面,平面,平面,,所以,平面平面.(2)解:,所以,异面直线与所成角为或其补角,在中,,,由余弦定理可得,所以,异面直线与所成角的余弦值为.20.(1)到平面的距离为(2)线段BC的长为2【分析】(1)利用体积法可求点到平面的距离;(2)利用面面垂直,线面垂直得线线垂直,最后利用的面积为即可求得线段BC的长.【详解】(1)解:由直三棱柱的体积为4,可得,设到平面的距离为,由,,,解得.即到平面的距离为;(2)解:连接交于点由直三棱柱,故四边形为正方形,,又平面平面,平面平面,平面,,由直三棱柱知平面,,又,平面,,,,又,解得,则线段BC的长为2.21.(1)证明见解析;(2)证明见解析;(3).【分析】(1)由题可得四边形是平行四边形,然后利用线面平行的判定定理即得;(2)利用线面垂直的判定定理可得平面,进而即得;(3)过点作,由题可得是二面角的平面角,结合条件即得.【详解】(1)由题意可得,在等腰梯形中,,在中,因为,所以,四边形为正方形.在四棱锥中,连接,因为分别是的中点,所以,且,在正方形中,因为是的中点,所以,且,所以,且,∴四边形是平行四边形,,因为平面,平面,所以平面;(2)由(1)知,在中,,因为为的中点,所以,在等腰梯形中,,所以在四棱锥中,,因为, 平面,平面,所以平面,因为平面,所以,又因为,,平面,平面,所以平面;(3)在中,过点作,垂足为,连接,由(2)知平面,平面,所以,因为,平面,平面,所以平面,平面,∴,故是二面角的平面角,由(1)知,在四棱锥中,,设,则,在中,,所以,在中,,故二面角的正切值为.22.(1)证明见解析(2)【分析】(1)由垂直于⊙所在的平面,可得,再由圆的性质可得,则由线面垂直的判定可得平面,则,从而平面,进而由面面垂直的判定可证得结论,(2)过点作∥交于点,则,设点到平面的距离为,利用可求出,然后由可求得结果.【详解】(1)证明:因为垂直于⊙所在的平面,即平面,平面,所以,又为⊙的直径,所以,因为,所以平面,又平面,所以,因为,所以平面,又平面,所以平面平面.(2)因为,,所以,又,所以,由,得,如图,过点作∥交于点,则,可得,又,所以,所以,设点到平面的距离为,由,可得,所以解得,所以当点移动到点时,与平面所成角的正弦值为.23.C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.24.A【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.25.C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.26.C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是27.CD【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.28.ABD【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD29.【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵∴∴∴.故答案为:.30..【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【详解】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.31.【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为圆柱体积为所求几何体体积为故答案为:【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题. 32.(1)证明详见解析(2)【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【详解】(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)[方法一]:判别几何关系依题意,,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小过作,垂足为,在中,,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.[方法二]:等体积转换,,是边长为2的等边三角形,连接。
高一数学(必修二)立体几何初步单元测试卷及答案
高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
高中数学第二册(下B)立体几何单元测试题-旧人教[原创
上杭二中2006—2007学年第二学期三月份月考高二数学试题(考试时间:120分钟 满分:150分)一.选择题(本大题共12小题,每小题5分,共60分)1.过空间三个不同的点可以确定的平面的个数是 ( C ) A . 1个 B .无数个 C . 1个或无数个 D .无法确定2.两条异面直线是指 ( D )A .分别位于两个不同平面内的两条直线;B .空间内不相交的两条直线;C .某一平面内的一条直线与这个平面外的一条直线;D .空间中两条既不平行也不相交的直线。
3.在空间中,有下列命题:①有两组对边相等的四边形是平行四边形。
②四边相等的四边形是菱形。
③平行于同一条直线的两条直线平行。
④连结空间四边形各边中点得到的四边形一定是平行四边形。
上述命题中,真命题的个数是( B )个A . 1B . 2C . 3D . 4 4.三棱锥P —ABC 中,若PA ⊥平面ABC ,∠ACB =90°,那么在三棱锥的侧面和底面中,直角三角形的个数为 ( A ) A .4个 B . 3个C . 2个D . 1个5.已知P 是矩形ABCD 所在平面外一点,PA ⊥平面 ABCD ,则下列各式中,可能不成立的是( B )A .0=⋅AB PAB .0=⋅BD PCC .0=⋅AB PD D .0=⋅CD PA6.点P 在正方形ABCD 所在平面外,PD ⊥平面 ABCD ,PD =AD ,则PA 与BD 所成的角为( C )A . 30°B . 45°C . 60°D .90°7.在△ABC 中,∠ACB =90°,点P 是平面ABC 外一点,PA =PB =PC ,AC =12,P 到平面ABC 的距离为8,则P 到BC 的距离为 ( C )A . 6B . 8C . 10D . 128.一棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:2,则此棱锥的高被分成的两段(自上而下)之比为 ( D ) A .2:1 B .1:4 C .)12(:1+ D .)12(:1- 9.在北纬60°圈上有A 、B 两地,它们的纬线圈上的劣弧长等于R 2π(R 为地球半径),则这两点的球面距离是 ( A )A .R 3πB .4arcsinπ⋅R C .4arcsin2π⋅R D . 2R10.自二面角内一点,到两个面的距离分别为22和4 ,到棱的距离为24,则此二面角的度数为 ( D )A . 60°B . 75°C . 165°D .75°和165°11.(理科)直平行六面体的底面是菱形,一个底面面积为4,两个对角面面积分别为5和6,那么它的体积为 ( C )A .302B .30C .152D . 154(文科)已知一个正四面体的顶点是一个正方体的顶点,那么正方体的表面积是正四面体的表面积的( C )倍A .22 B . 36C . 3D .2612.(理科)长方体一个顶点上的三条棱长分别是3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是( C )A . π220B .π225C .π50D . π200(文科)设三棱锥的三个侧面两两互相垂直,且侧棱长均为32,那么其外接球的面积为( C ) A . π12 B .π32 C .π36 D . π48 二.填空题(本大题4小题,每小题4分,共16分)13.已知直线a ∥平面α,且距离为1,则到直线a 和平面α距离都为54的点的轨迹为是 .[两条平行直线]14.已知平行六面体1111D C B A ABCD -中,11===AA AD AB ,且BAD ∠=AD A 1∠=AB A 1∠=θ,则1AC = .[θcos 63+]15.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱1DEB 1BAFD 1 C A 1CB C D A BC D 1111 E O②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 [②④](写出所有正确结论的编号).16.有六根细木条,其中较长的两根木条长分别为3,2,其余四根长均为1,若用它们搭成一个三棱锥,则其中两条较长的棱所在直线所成的角的余弦值为 。
高中数学第一章-空间向量与立体几何单元测试(基础卷)(解析版)
第一章空间向量与立体几何单元过关基础A 版解析版学校:___________姓名:___________班级:___________考号:___________一、单选题1.空间直角坐标系中,点()2,3,5-关于y 轴对称的点的坐标是( ) A .()2,3,5--- B .()2,3,5 C .()2,3,5-- D .()2,3,5-【答案】A 【解析】 【分析】关于y 轴对称,纵坐标不变,横坐标、竖坐标变为相反数. 【详解】关于y 轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数. 所以点()2,3,5-关于y 轴对称的点的坐标是()2,3,5---. 故选:A . 【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.2.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置2223333DA B C D A B C -中放一个单位正方体礼盒1111DABC D A B C -,现以点D 为坐标原点,2DA 、2DC 、3DD 分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则正确的是( )A .1D 的坐标为(1,0,0)B .1D 的坐标为(0,1,0)C .13B B 293D .13B B 14【答案】D【分析】根据坐标系写出各点的坐标分析即可. 【详解】由所建坐标系可得:1(0,0,1)D ,1(1,1,1)B ,3(2,3,4)B ,13B B ==.故选:D. 【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.3.空间直角坐标系中,已知点()()1,2,3345A B 、,,,则线段AB 的中点坐标为( ) A .()234,, B .()134,, C .()235,, D .()245,, 【答案】A 【解析】点()()1,2,3345A B 、,,, 由中点坐标公式得中得为:132435,,222+++⎛⎫⎪⎝⎭,即()234,,. 故选A.4.已知空间中三点(0,1,0)A ,(2,2,0)B ,(1,3,1)C -,则( ) A .AB 与AC 是共线向量B .AB 的单位向量是⎫⎪⎪⎝⎭C .AB 与BCD .平面ABC 的一个法向量是(1,2,5)- 【答案】D 【分析】根据向量的相关性质判断. 【详解】对于A 项,(2,1,0)AB =,(1,2,1)AC =-,所以AB AC λ≠,则AB 与AC 不是共线向量,所以A 项错误;对于B 项,因为(2,1,0)AB =,所以AB的单位向量为55⎛⎫⎪ ⎪⎝⎭,所以B 项错误; 对于C 项,向量(2,1,0)AB =,(3,1,1)BC =-,所以cos ,11AB BC AB BC AB BC⋅==-⋅,所以C 项错误;对于D 项,设平面ABC 的法向量是(,,)n x y z =,因为(2,1,0)AB =,(1,2,1)AC =-,所以00n AB n AC ⎧⋅=⎨⋅=⎩,则2020x y x y z +=⎧⎨-++=⎩,令1x =,则平面ABC 的一个法向量为(1,2,5)n =-,所以D 项正确. 故选:D. 【点睛】本题考查共线向量的判断,单位向量的求法,夹角的求法,平面法向量的求法,属于空间向量综合题.5.两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,且两平面的一个法向量()1,0,1n =-,则两平面间的距离是()A .32BC D .【答案】B 【解析】两平行平面 α,β 分别经过坐标原点 O 和点 ()2,1,1A ,()2,1,1OA =,且两平面的一个法向量()1,0,1,n =-∴两平面间的距离22n OA n⋅-+===,故选B. 6.下图是棱长为2的正方体1111ABCD A B C D -木块的直观图,其中,,P Q F 分别是11D C ,BC ,AB 的中点,平面α过点D 且平行于平面PQF ,则该木块在平面α内的正投影面积是( )A .43B .33C .23D 3【答案】A 【分析】先根据题意平面α可以平移至平面11A BC ,即木块在平面α内的正投影即可看成是在平面11A BC 的正投影,根据投影的性质可得投影为正六边形'''111A A BC C D ,最后根据正六边形面积公式可求出投影的面积. 【详解】解:根据题意可知平面α过点D 且平行于平面PQF , 则平面α可以平移至平面11A BC ,木块在平面α内的正投影即可看成是在平面11A BC 的正投影, 根据投影的性质可得投影为正六边形'''111A A BC C D 如图所示, 因为正方体1111ABCD A B C D -棱长为2, 所以221222A B =+=则投影面内正六边形的边长为:'1226cos303A A ==根据正六边形面积公式可得投影的面积为:'''111233264323A A BC C D S ⎛=⨯= ⎝⎭故投影面积为:43故选:A【点睛】本题主要考查空间几何体和正投影得概念,考查面积公式是计算,考查空间想象力和推导能力,属于难题.7.如图,已知正方体1111ABCD A B C D -棱长为3,点H 在棱1AA 上,且11HA =,在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长,则当点P 运动时,2||HP 的最小值是( )A .21B .22C .23D .13【答案】D 【分析】建立空间直角坐标系,根据P 在11BCC B 内可设出P 点坐标,作1HM BB ⊥,连接PM ,可得222HP HM MP =+,作1PN CC ⊥,根据空间中两点间距离公式,再根据二次函数的性质,即可求得2HP 的范围. 【详解】根据题意,以D 为原点建立空间直角坐标系如图所示:作1HM BB ⊥交1BB 于M,连接PM ,则HM PM ⊥作1PN CC ⊥交1CC 于N ,则PN 即为点P 到平面11CDD C 距离. 设(),3,P x z ,则()()()1,3,2,3,3,2,0,3,F M N z ()03,03x z ≤≤≤≤ ∵点P 到平面11CDD C 距离等于线段PF 的长 ∴PN PF =由两点间距离公式可得()()2212x x z =-+-化简得()2212x z -=-,则210x -≥解不等式可得12x ≥综上可得132x ≤≤ 则在Rt HMP ∆中222HP HM MP =+()()222332x z =+-+-()223321x x =+-+-()2213x =-+132x ⎛⎫≤≤ ⎪⎝⎭所以213HP ≥(当时2x = 取等) 故选:D 【点睛】本题考查了空间直角坐标系的综合应用,利用空间两点间距离公式及二次函数求最值,属于难题. 8.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i =⋅⋅⋅是上底面上其余的八个点,则集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数( )A .1B .2C .4D .8【答案】A 【分析】本题首先可根据图像得出i i AP AB BP =+,然后将i AB AP ⋅转化为2iAB A P B B +⋅,最后根据棱长为1以及i ABBP 即可得出结果.【详解】由图像可知,i i AP AB BP =+,则()2i i i AB BP AB AP AB B AB A P B ⋅==+⋅+, 因为棱长为1,i ABBP ,所以0i AB BP ⋅=,2101i i AB AP AB AB BP ⋅=+=+=⋅, 故集合{},1238i y y AB AP i =⋅=⋅⋅⋅、、、、中的元素个数为1, 故选:A . 【点睛】本题考查向量数量积的求解问题,关键是能够利用平面向量线性运算将所求向量数量积转化为已知模长的向量和有垂直关系向量的数量积的运算问题,考查了转化与化归的思想,考查集合中元素的性质,是中档题.二、多选题9.给出下列命题,其中正确的有( ) A .空间任意三个向量都可以作为一组基底B .已知向量//a b ,则a 、b 与任何向量都不能构成空间的一组基底C .A ,B ,M ,N 是空间四点,若BA ,BM ,BN 不能构成空间的一组基底,则A ,B ,M ,N 共面D .已知{,,}a b c 是空间向量的一组基底,若m a c =+,则{,,}a b m 也是空间一组基底 【答案】BCD 【分析】选项A 、B 中,根据空间基底的概念,可判断;选项C 中,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,由此可判断;选项D 中:基向量,a b 与向量m a c =+一定不共面,由此可判断. 【详解】选项A 中,根据空间基底的概念,可得任意三个不共面的向量都可以作为一个空间基底,所以A 不正确;选项B 中,根据空间基底的概念,可得B 正确;选项C 中,由,,BA BM BN 不能构成空间的一个基底,可得,,BA BM BN 共面,又由,,BA BM BN 过相同点B ,可得,,,A B M N 四点共面,所以C 正确;选项D 中:由{},,a b c 是空间的一个基底,则基向量,a b 与向量m a c =+一定不共面,所以可以构成空间另一个基底,所以D 正确. 故选:BCD.10.已知v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合),那么下列选项中,正确的是( ) A .1n ∥2n ⇔α∥β B .1n ⊥2n ⇔α⊥β C .v ∥1n ⇔l ∥α D .v ⊥1n ⇔l ∥α【答案】AB 【分析】根据线面直线的位置关系逐一判断即可. 【详解】解:v 为直线l 的方向向量,1n ,2n 分别为平面α,β的法向量(α,β不重合), 则1n ∥2n ⇔α∥β,1n ⊥2n ⇔α⊥β,v ∥1n ⇔l ⊥α,v ⊥1n ⇔l ∥α或l ⊂α. 因此AB 正确.故选:AB.11.在长方体ABCD A B C D ''''-中,2AB =,3AD =,1AA '=,以D 为原点,以,,DA DC DD '分别为x 轴,y 轴,z 轴正方向建立空间直角坐标系,则下列说法正确的是( ) A .(3,2,1)BD '=--B .异面直线A D '与BD '所成角的余弦值为35C .平面A CD ''的一个法向量为(2,3,6)-- D .二面角C A D D '''--的余弦值为37【答案】ACD 【分析】由向量法对每一选项进行逐一计算验证,可得答案. 【详解】由题意可得()()()3,0,0,3,2,0,0,2,0A B C ,()()()()0,0,1,3,0,1,0,2,1,3,2,1D A C B '''' 选项A: 所以(3,2,1)BD '=--,则A 正确.选项B:()3,0,1DA '=,(3,2,1)BD '=--,所以,cos ,10DA BDDA BD DA BD ''''==''⋅=所以异面直线A D '与BD '所成角的余弦值为35,则B 不正确. 选项C :设平面A C D ''的一个法向量为(),,n x y z =由()3,0,1DA '=,()0,2,1DC '=,则00n DA n DC ⎧⋅=⎨⋅=⎩'' 所以3020x z y z +=⎧⎨+=⎩ ,取6z =,得()2,3,6n =--,则C 正确.选项D :由上可得平面A C D ''的一个法向量为(2,3,6)n =-- 又平面A DD ''的法向量为()0,1,0m = 则3cos ,17n m n m n m⋅-==⨯⋅ 所以二面角C A D D '''--的余弦值为37,则D 正确. 故选:ACD12.若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD 【分析】以1{,,}AB AD AA 为正交基底建立空间直角坐标系,写出各点坐标,计算11B E A B ⋅值即可判断A ;分别求出平面1B CE ,平面1A BD 的法向量,判断它们的法向量是否共线,即可判断B ;利用等体积法,求出三棱锥11-B CC E 的体积即可判断C ;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故求出长方体1111ABCD A B C D -的外接球的表面积即可判断D.【详解】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-,因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD. 【点睛】本题主要考查用向量法判断线线垂直、面面平行,等体积法的应用及几何体外接球的表面积.三、填空题13.若直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,且l α⊥,则m =______. 【答案】2- 【分析】由已知可知,直线l 的方向向量与平面α的法向量平行,根据空间向量平行的充要条件可得到一个关于λ和m 的方程组,解方程组即可得到答案. 【详解】 解:l α⊥,直线l 的方向向量为()4,2,m ,平面α的法向量为()2,1,1-,∴直线l 的方向向量与平面α的法向量平行.则存在实数λ使()4,2,m λ=()2,1,1-,即422m λλλ=⎧⎪=⎨⎪=-⎩,∴2m =-. 故答案为:2-.【点睛】本题考查向量语言表述线面垂直,直线的方向向量与平面的法向量平行是解本题的关键,属于基础题.14.若(1,1,0),(1,0,2),a b a b ==-+则与同方向的单位向量是________________【答案】【解析】 试题分析:,与同方向的单位向量是考点:空间向量的坐标运算;15.如图,在正四面体P ABC -中,,M N 分别为,PA BC 的中点,D 是线段MN 上一点,且2ND DM =,若PD xPA yPB zPC =++,则x y z ++的值为_______.【答案】23【分析】利用基向量表示PD ,结合空间向量基本定理可得. 【详解】1111111()2323366PD PM MD PA MN PA PN PM PA PB PC =+=+=+-=++ 所以11,36x y z ===,所以23x y z ++=.【点睛】本题主要考查空间向量的基本定理,把目标向量向基底向量靠拢是求解的主要思路.16.如图所示的正方体是一个三阶魔方(由27个全等的棱长为1的小正方体构成),正方形ABCD 是上底面正中间一个正方形,正方形1111D C B A 是下底面最大的正方形,已知点P 是线段AC 上的动点,点Q 是线段1B D 上的动点,则线段PQ 长度的最小值为_______.334【分析】建立空间直角坐标系,写出点的坐标,求出目标PQ 的表达式,从而可得最小值. 【详解】以1B 为坐标原点,1111,B C B A 所在直线分别为x 轴,y 轴建立空间直角坐标系,则()()()()10,0,0,1,2,3,2,1,3,2,2,3B A C D , 设11B Q B D λ=,AP AC μ=,[],0,1λμ∈.()12,2,3B Q λλλ=,()1111,2,3B P B A AP B A AC μμμ=+=+=+-. ()1112,22,33QP B P B Q μλμλλ=-=+----, ()()()2222122233QP μλμλλ=+-+--+-222215191730221417217234λλμμλμ⎛⎫⎛⎫=-+-+=-+-+ ⎪ ⎪⎝⎭⎝⎭当1517λ=且12μ=时,2QP 取到最小值934,所以线段PQ 长度的最小值为33434. 【点睛】本题主要考查空间向量的应用,利用空间向量求解距离的最值问题时,一般是把目标式表示出来,结合目标式的特征,选择合适的方法求解最值.四、解答题17.如图,已知1111ABCD A B C D -是四棱柱,底面ABCD 是正方形,132AA AB ==,,且1160C CB C CD ︒∠=∠=,设1,,CD C a b B CC c ===.(1)试用,,a b c 表示1AC ; (2)已知O 为对角线1A C 的中点,求CO 的长.【答案】(1)1AC a b c =---;(2)292. 【分析】(1)由11AC A A AD DC =++可表示出来; (2)由21||()4CO a b c =++可计算出. 【详解】(1)11AC A A AD DC =++1AA BC CD =-+- 1CC CB CD c b a a b c =---=---=---;(2)由题意知||2,||2,||3a b c ===,110,233,23322a b a c a b ⋅=⋅=⨯⨯=⋅=⨯⨯=,111()22CO CA a b c ==++,∴21||()4CO a b c =++ ()22212224a b c a b a c b c =+++⋅+⋅+⋅, ()2221292922302323442=⨯++++⨯+⨯==. 【点睛】本题考查空间向量的线性运算,考查利用向量计算长度,属于基础题.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 中点,O 为AC 中点,222AD AB AP ===.(1)证明:OE //平面PAB ;(2)异面直线PC 与OE 所成角的余弦值.【答案】(1)见详解; (2)33【分析】(1)连接BD ,得到O 为BD 中点,然后利用中位线定理,可得//OE PB ,根据线面平行的判定定理,可得结果.(2)通过建系,可得,PC OE ,然后利用向量的夹角公式,可得结果. 【详解】(1)证明:连接BD ,则O 为BD 中点, 又E 为PD 中点,∴OE //PB .∵PB ⊂平面PAB ,OE ⊄平面PAB , ∴OE //平面PAB(2)以A 为原点建立空间直角坐标系, 如图,则(0,0,1),(1,2,0),(0,2,0)P C D ,110,1,,,1,022E O ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭∴11(1,2,1),,0,22PC OE ⎛⎫=-=-⎪⎝⎭, ∴3cos ,162PC OE ==⋅即异面直线PC 与OE 3【点睛】本题考查线面平行的判定定理以及建系通过利用向量的方法解决线线角,将几何问题用代数方法来解决,化繁为简,属基础题.19.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,2DE =,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M CDE -的体积; (2)求证:DM ⊥平面ACE .【答案】(1)M 到平面DEC 的距离为3,233M CDE V -=;(2)证明见解析. 【分析】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,利用空间向量法可求得点M 到平面DEC 的距离,计算出CDE △的面积,利用锥体的体积公式可计算出三棱锥M CDE -的体积;(2)利用向量法证明出0AC DM ⋅=,0AE DM ⋅=,可得出DM AC ⊥,DM AE ⊥,再利用线面垂直的判定定理可证得DM ⊥平面ACE . 【详解】 (1)设ACBD O =,以O 为原点,OB 所在直线为x 轴,OC 所在直线为y 轴,过O 且与平面ABCD 垂直的直线为z 轴,建立空间直角坐标系,如图所示.易知z 轴在平面BDEF 内,且////BF DE z 轴,则()0,3,0C 、()1,0,0D -、()1,0,2E -、()1,0,1M ,()0,0,2DE ∴=,()1,3,0DC =,()2,0,1DM =,设平面DEC 的一个法向量(),,n x y z =,则2030n DE z n DC x y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3x =,得()3,1,0n =-,M ∴到平面DEC 的距离23331DM n h n⋅===+, 又1122222DECSDE DC =⨯⨯=⨯⨯=, 因此,三棱锥M CDE -的体积112323333M CDE DEC V S h -=⨯⨯=⨯⨯=△; (2)证明:由(1)易知()0,3,0A -,则()0,23,0AC =,()1,3,2AE =-,02230010AC DM ⋅=⨯+⨯+⨯=,1230210AE DM ⋅=-⨯+⨯+⨯=,DM AC ∴⊥,DM AE ⊥,ACAE A =,DM ∴⊥平面ACE .【点睛】本题考查利用空间向量法计算点到平面的距离、三棱锥体积的计算,同时也考查了利用空间向量法证明线面垂直,考查推理能力与计算能力,属于中等题.20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是正方形,侧面PDC 是边长为a 的正三角形,且平面PDC ⊥底面ABCD ,E 为PC 的中点.(1)求异面直线PA 与DE 所成角的余弦值; (2)求直线AP 与平面ABCD 所成角的正弦值. 【答案】(16(26【分析】取CD 的中点O ,连接PO ,证明出PO ⊥平面ABCD ,然后以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立空间直角坐标系.(1)写出PA 、DE 的坐标,利用空间向量法可求得异面直线PA 与DE 所成角的余弦值; (2)求得平面ABCD 的一个法向量,并写出PA ,利用空间向量法可求得直线AP 与平面ABCD 所成角的正弦值. 【详解】取DC 的中点O ,连接PO ,PDC △为正三角形,O 为DC 的中点,则PO DC ⊥.又平面PDC ⊥平面ABCD ,平面PDC平面ABCD DC =,PO ⊂平面PDC ,PO ∴⊥平面ABCD .以点O 为坐标原点,OC 、OP 所在的直线分别为y 、z 轴建立如下图所示的空间直角坐标系O xyz -,则30,0,2P a ⎛⎫ ⎪ ⎪⎝⎭、,,02a A a ⎛⎫- ⎪⎝⎭、0,,02a C ⎛⎫ ⎪⎝⎭、0,,02a D ⎛⎫- ⎪⎝⎭.(1)设异面直线PA 与DE 所成的角为θ,E 为PC 的中点,30,4a E ⎛⎫∴ ⎪ ⎪⎝⎭,330,4DE a ⎛⎫∴= ⎪ ⎪⎝⎭,3,,2a PA a ⎛⎫=- ⎪ ⎪⎝⎭, 233330244a a PA DE a a ∴⋅=⨯-⨯=-,2PA a =,32DE =,2364cos cos ,4322a PA DE PA DE PA DEa a θ⋅=<>===⋅⨯, 因此,异面直线PA 与DE 6 (2)设直线AP 与平面ABCD 所成的角为α,易知平面ABCD 的一个法向量为()0,0,1n =,362cos ,421aPA n PA n a PA n-⋅<>===-⨯⋅. 因此,直线AP 与平面ABCD 所成角的正弦值为64. 【点睛】本题考查利用空间向量法计算异面直线所成角的余弦值以及线面角的正弦值,考查计算能力,属于中等题.21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23D AE C --的余弦值. 【答案】(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证; (2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案. 【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n = 所以12121231cos ,43936n n n n n n ⋅<>===++,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.22.如图,在四棱锥M ABCD -中,//AB CD ,90ADC BM C ∠=∠=,M B M C =,122AD DC AB ===,平面BCM ⊥平面ABCD .(1)求证://CD 平面ABM ; (2)求证:AC ⊥平面BCM ;(3)在棱AM 上是否存在一点E ,使得二面角E BC M --的大小为4π?若存在,求出AEAM 的值;若不存在,请说明理由.【答案】(1)证明见解析(2)证明见解析(3)存在;23AE AM=【分析】(1)由线面平行判定定理证明即可;(2)由勾股定理得出2BC =,进而得AC BC ⊥,再由面面垂直的性质定理即可证明AC ⊥平面BCM ;(3)建立空间直角坐标系,利用向量法求解即可. 【详解】证明:(1)因为AB CD ∥,AB 平面ABM ,CD ⊄平面ABM ,所以CD ∥平面ABM .(2)取AB 的中点N ,连接CN . 在直角梯形ABCD 中, 易知2AN BN CD ===CN AB ⊥.在Rt CNB △中,由勾股定理得2BC =. 在ACB △中,由勾股定理逆定理可知AC BC ⊥. 又因为平面BCM ⊥平面ABCD , 且平面BCM平面ABCD BC =,所以AC ⊥平面BCM .(3)取BC 的中点O ,连接OM ,ON . 所以ON AC ∥, 因为AC ⊥平面BCM , 所以ON ⊥平面BCM . 因为BM MC =, 所以OM BC ⊥.如图建立空间直角坐标系O xyz -,则()0,0,1M ,()0,1,0B ,()0,1,0C -,()2,1,0A -,()2,1,1AM =-,()0,2,0BC =-,()2,2,0BA =-.易知平面BCM 的一个法向量为()1,0,0m =.假设在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π.不妨设AE AM λ=(01λ≤≤), 所以()22,2,BE BA AE λλλ=+=--, 设(),,n x y z =为平面BCE 的一个法向量,则0,0,n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩ 即()20,220,y x z λλ-=⎧⎨-+=⎩令x λ=,22z λ=-,所以(),0,22n λλ=-.从而2cos ,2m n m nm n ⋅==⋅.解得23λ=或2λ=. 因为01λ≤≤,所以23λ=. 由题知二面角E BC M --为锐二面角.所以在棱AM 上存在一点E ,使得二面角E BC M --的大小为4π, 此时23AE AM=.【点睛】本题主要考查了证明线面平行,线面垂直以及由面面角求其他量,属于中档题.高考数学:试卷答题攻略一、“六先六后”,因人因卷制宜。
高中数学立体几何测试题(10套)
∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
必修第8章 立体几何初步单元测试(考试版)
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前第八单元 立体几何初步单元测试卷高一数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教必修二2019第八单元 立体几何初步。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2022·辽宁朝阳·高二开学考试)若m ,n ,l 为空间三条不同的直线,,,αβγ为空间三个不同的平面,则下列为真命题的是( ) A .若,m l n l ⊥⊥,则m n ∥ B .若,m m αβ∥∥,则αβ∥C .若,αγβγ⊥⊥,则αβ∥D .若,,m n m n αβ⊥⊥∥,则αβ∥2.(2022·河北张家口·一模)下图是战国时期的一个铜镞,其由两部分组成,前段是高为2cm 、底面边长为1cm 的正三棱锥,后段是高为0.6cm 的圆柱,圆柱底面圆与正三棱锥底面的正三角形内切,则此铜镞的体积约为( )A .30.25cmB .30.65cmC .30.15cmD .30.45cm3.(2021·陕西·西安市远东一中高一期末)如图,在正四棱柱1111ABCD A B C D -中,122AA AD ==,点E 为棱1BB 的中点,过A ,E ,1C 三点的平面截正四棱柱1111ABCD A B C D -所得的截面面积为( )A .2B .22C .23D 34.(2022·北京市第一六一中学高三阶段练习)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则该球的半径为( )A .5cmB .6cmC .7cmD .8cm5.(2021·江苏苏州·高三阶段练习)用一平面截圆柱,得到如图所示的几何体,截面椭圆的长轴两端点到底面的距离分别为3和5,圆柱的底面直径为4,则该几何体的体积为( )A .16πB .32πC .8πD .64π6.(2022·云南昭通·高三阶段练习(文))如图所示,在正方体1111-ABCD A B C D 中,点F 是棱1AA 上的一个…○………………内………………○………………装………………○………………订………………○………………线………………○……………○………………外………………○………………装………………○………………订………………○………………线………………○…………… 学校:______________姓名:_____________班级:_______________考号:______________________动点,平面1BFD 交棱1CC 于点E ,则下列命题中假命题是( )A .存在点F ,使得11A C ∥平面1BED FB .存在点F ,使得1B D ∥平面1BED FC .对于任意的点F ,四边形1BED F 均为平行四边形 D .对于任意的点F ,三棱锥11F BB D -的体积均不变7.(2022·云南师大附中高三阶段练习(理))如图,在矩形ABCD 中,2,2AB BC ==,E 为BC 中点,把ABE △和CDE △分别沿,AE DE 折起,使点B 与点C 重合于点P ,若三棱锥P ADE -的四个顶点都在球O的球面上,则球O 的表面积为( )A .3πB .4πC .5πD .9π8.(2022·河南·模拟预测(理))已知球面被平面所截得的部分叫做球冠,垂直于截面的直径被截得的一段叫做球冠的高,若球的半径是R ,球冠的高是h ,则球冠的面积为2πRh .某机械零件的结构是在一个圆台的底部嵌入一颗小球,其正视图和侧视图均如图所示,已知圆台的任意母线均与小球的表面相切,则小球突出圆台部分的球冠面积为( )A .25πB .253πC 253D .1003π 二、多项选择题:(本题共4小题,每小题5分,共20分。
高一数学立体几何单元测试及答案
立体几何综合测评(满分:150分时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列命题,其中是真命题的为()(1)若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;(2)若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;(3)若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;(4)若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.A.(1)(2)B.(1)(3)C.(2)(4) D.(3)(4)A[(1)因为两个平面平行,所以两个平面没有公共点,即其中一个平面内的直线与另一个平面也没有公共点,所以(1)正确.(2)因为该直线与其中一个平面垂直,那么该直线必与其中两条相交直线垂直,又两个平面平行,故另一个平面也必定存在两条相交直线与该直线垂直,所以该直线与另一个平面也垂直,故(2)正确.(3)错,反例:该直线可以在另一个平面内.(4)错,反例:其中一个平面内也存在直线与另一个平面平行.综上:(1)(2)为真命题.]2.给出以下四个命题:①不共面的四点中,其中任意三点不共线;②若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面;③若直线a,b共面,直线a,c共面,则直线b,c共面;④依次首尾相接的四条线段必共面.其中正确命题的个数是()A.0 B.1C.2 D.3B[①假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以①正确;②如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;③显然不正确;④不正确.因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.]3.在正方体ABCD-A1B1C1D1中,棱所在直线与直线BA1是异面直线的条数为()A.4 B.5C.6 D.7C[如图,在正方体ABCD-A1B1C1D1中,与直线BA1异面的直线有CD,C1D1,C1C,D1D,B1C1,AD,共6条,故选C.]4.设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥βB[对于A,若l∥α,l∥β,则α和β可能平行也可能相交,故错误;对于B,若l⊥α,l⊥β,则α∥β,故正确;对于C,若l⊥α,l∥β,则α⊥β,故错误;对于D,若α⊥β,l∥α,则l与β的位置关系有三种可能:l⊥β,l∥β,lβ,故错误.故选B.] 5.如图,已知P A⊥矩形ABCD所在的平面,则图中互相垂直的平面有()A.1对B.2对C.3对D.5对D[∵DA⊥AB,DA⊥P A,∴DA⊥平面P AB.同理BC⊥平面P AB,又AB⊥平面P AD,∴DC⊥平面P AD,∴平面P AD⊥平面AC,平面P AB⊥平面AC,平面PBC⊥平面P AB,平面P AB⊥平面P AD,平面PDC⊥平面P AD,共5对.]6.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定C[∵BA⊥α,α∩β=l,lα,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC.∵AC平面ABC,∴l⊥AC.]7.下列命题中正确的是()A.将正方形旋转不可能形成圆柱B.以直角梯形的一腰为轴旋转所得的旋转体是圆台C.圆柱、圆锥、圆台的底面都是圆面D.通过圆台侧面上一点,有无数条母线C[将正方形绕其一边所在直线旋转可以形成圆柱,所以A错误;B中必须以垂直于底边的腰为轴旋转才能得到圆台,所以B错误;通过圆台侧面上一点,只有一条母线,所以D错误,故选C.] 8.如图所示的组合体,其构成形式是()A.左边是三棱台,右边是圆柱B.左边是三棱柱,右边是圆柱C.左边是三棱台,右边是长方体D.左边是三棱柱,右边是长方体D[根据三棱柱和长方体的结构特征,可知此组合体左边是三棱柱,右边是长方体.]9.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为() A.3πa2B.6πa2C.12πa2D.24πa2B[由题可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所求球的表面积S=4πR2=6πa2.]10.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2 B.73πa2C.113πa2D.5πa2B[由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P为三棱柱上底面的中心,O为球心,易知AP=23×32a=33a,OP=12a,所以球的半径R=OA满足R2=⎝⎛⎭⎪⎫33a2+⎝⎛⎭⎪⎫12a2=7 12a 2,故S球=4πR2=73πa2.]11.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.310C[如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径为R =OA =62+⎝ ⎛⎭⎪⎫522=132.]12.已知l ,m 表示两条不同的直线,α表示平面,则下列说法正确的是( ) A .若l ⊥α,m α,则l ⊥mB .若l ⊥m ,m α,则l ⊥αC .若l ∥m ,m α,则l ∥αD .若l ∥α,m α,则l ∥m A [对于A ,若l ⊥α,m α,则根据直线与平面垂直的性质,知l ⊥m ,故A 正确;对于B ,若l ⊥m ,m α,则l 可能在α内,故B 不正确;对于C ,若l ∥m ,m α,则l ∥α或l α,故C 不正确;对于D ,若l ∥α,m α,则l 与m 可能平行,也可能异面,故D 不正确.故选A.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知正六棱柱的侧面积为72 cm 2,高为6 cm ,那么它的体积为__________cm 3. 363 [设正六棱柱的底面边长为x cm ,由题意得6x ·6=72,所以x =2 cm , 于是其体积V =34×22×6×6=36 3 cm 3.]14.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________. 180° [S 底+S 侧=3S 底,2S 底=S 侧,即2πr 2=πrl ,得2r =l . 设侧面展开图的圆心角为θ,则θπl 180°=2πr ,∴θ=180°.]15.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C1MN等于________.90°[∵B1C1⊥平面A1ABB1,MN平面A1ABB1,∴B1C1⊥MN.又∠B1MN为直角,∴B1M⊥MN.而B1M∩B1C1=B1,∴MN⊥平面MB1C1.又MC1平面MB1C1,∴MN⊥MC1,∴∠C1MN=90°.]16.棱长为1的正四面体内有一点P,由点P向各个面引垂线,垂线段分别为d1,d2,d3,d4,则d 1+d 2+d 3+d 4的值为________.63 [设四面体的高为h ,则h =12-⎝ ⎛⎭⎪⎫23×32×12=63,13Sh =13S (d 1+d 2+d 3+d 4),∴d 1+d 2+d 3+d 4=h =63.]B三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连结A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′BC ′D 的体积.[解] (1)∵ABCD -A ′B ′C ′D ′是正方体, ∴六个面是互相全等的正方形,∴A ′C ′=A ′B =A ′D =BC ′=BD =C ′D =2a ,∴S 三棱锥=4×34×(2a )2=23a 2,S 正方体=6a 2, ∴S 三棱锥S 正方体=33. (2)显然,三棱锥A ′ABD ,C ′BCD ,D A ′D ′C ′, B A ′B ′C ′是完全一样的, ∴V 三棱锥A ′BC ′D =V 正方体-4V 三棱锥A ′ABD =a 3-4×13×12a 2×a =13a 3.18.(本小题满分12分)如图,在三棱锥A -BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .[证明] (1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .又因为EF 平面ABC ,AB 平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD , BC 平面BCD ,BC ⊥BD , 所以BC ⊥平面ABD .因为AD 平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB 平面ABC ,BC 平面ABC , 所以AD ⊥平面ABC . 又因为AC 平面ABC , 所以AD ⊥AC .19.(本小题满分12分)如图,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.(1)若QB的中点为C,求证:平面SOC⊥平面SBQ;(2)若∠AOQ=120°,QB=3,求圆锥的表面积.[解](1)证明:∵SQ=SB,OQ=OB,C为QB的中点,∴QB⊥SC,QB⊥OC.∵SC∩OC=C,∴QB⊥平面SOC.又∵QB平面SBQ,∴平面SOC⊥平面SBQ.(2)∵∠AOQ=120°,QB=3,∴∠BOQ=60°,即△OBQ为等边三角形,∴OB= 3.∵△SAB为等腰直角三角形,∴SB=6,∴S侧=3·6π=32π,∴S表=S侧+S底=32π+3π=(3+32)π.20.(本小题满分12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥平面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.[解](1)证明:连结OE,如图所示.∵O,E分别为AC,PC的中点,∴OE∥P A.∵OE平面BDE,P A平面BDE,∴P A∥平面BDE. (2)证明:∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC.又∵PO∩AC=O,∴BD⊥平面P AC.又∵BD平面BDE,∴平面P AC⊥平面BDE.(3)取OC 中点F ,连结EF .∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO ⊥平面ABCD ,∴EF ⊥平面ABCD ,∴EF ⊥BD .∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥平面EFO ,∴OE ⊥BD ,∴∠EOF 为二面角E -BD -C 的平面角,∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a ,∴EF =OF ·tan 30°=612a ,∴OP =2EF =66a .∴V P ABCD =13×a 2×66a =618a 3.21.(本小题满分12分)如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PM MC 的值.[解] (1)由题设AB =1,AC =2,∠BAC =60°,可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高.又P A =1,所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明:在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN .又BM 平面MBN ,所以AC ⊥BM . 在直角△BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32.由MN ∥P A ,得PM MC =AN NC =13.22.(本小题满分12分)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1) (2)(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ.说明理由.这样的设问该怎么回答?[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE平面A1CB,BC平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC,∴DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC,而A1F平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,连接PQ,QE,则PQ∥BC.又∵DE∥BC,∴DE∥PQ,∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP.又DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(A1B的中点),使得A1C⊥平面DEQ.。
第八章 立体几何初步 单元测试-2022-2023学年高一下学期数学人教A版(2019)必修第二册
2022-2023学年高一第二学期第八章《立体几何初步》单元测试(新人教A 版必修第二册)一、单项选择题(每小题5分,共40分)1、下列说法中正确的是 A .若一个平面内有3个不共线的点到另一个平面的距离相等,则这两个平面平行B .以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .有两个面平行,其余各面都是四边形的几何体是棱柱D .过直线外一点有且仅有一条直线与该直线平行2、已知正三角形的边长为2,那么的直观图△的面积为 ABCD3、已知S 为圆锥的顶点,O为底面圆心,圆锥的体积为 ABCD4、如图:已知正四面体中E 在棱上,,G 为的重心,则异面直线与所成角为( )A. B. C. D. 5.已知直线,与平面,,,则能使成立的充分条件是 A .,B .,C .,D .,,6、如图,正方体的棱长为1,则下列四个命题错误的是 ()ABC ABC ∆A B C '''()SO =()ABCD CD 2EC DE =ABC V EG BD 30°45︒60︒90︒m n αβγαβ⊥()αγ⊥βγ⊥//m α//m β//m αm β⊥m n ⊥m αβ= n β⊂1111ABCD A B C D -()A .直线与平面所成的角等于B .点到面C .两条异面直线和所成的角为D .三棱柱7、端午佳节,人们有包粽子和吃粽子的习俗. 粽子主要分为南北两大派系,地方细分特色鲜明, 且形状各异. 裹蒸粽是广东肇庆地区最为出名的粽子, 是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子. 现将裹蒸粽看作一个正四面体, 其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为时,该裹蒸粽的高的最小值为A. B. C. D. 8、已知三棱锥中,,,三点在以为球心的球面上,若,,且三棱锥的半径为 A .2B.5C .13D 二、多项选择题(每小题5分,共20分,有多项符合要求,全部选对得5分,部分选对得2分,有选错得0分)9、高空走钢丝是杂技的一种,渊源于古代百戏的走索,演员手拿一根平衡杆,在一根两头拴住的钢丝上来回走动,并表演各种动作.在表演时,假定演员手中的平衡杆是笔直的,水平地面内一定存在直线与演员手中的平衡杆所在直线 A .垂直B .相交C .异面D .平行10、设,,表示不同的点,,表示不同的直线,,表示不同的平面,下列说法错误的是 A .若,,,则B .若,,,,则C .若,,,,,,则D .若,,,则11、如图,在菱形中,,,将沿折起,使到,点不落在底面内,若为线段的中点,则在翻折过程中,以下命题中正确的是 BC 11ABC D 4πC 11ABCD 1D C 1BC 4π1111AA D BB C -43π46810O ABC -A B C O 2AB BC ==120ABC ∠=︒O ABC -O ()()A B C n l αβ()l αβ= //n α//n β//n l A B l ∈A B α∉//l αA B α∈A B C β∈l αβ= C l ∈//αβl α⊂n β⊂//l n ABCD 2AB =3BAD π∠=ABD ∆BD A A 'A 'BCD M A C 'ABD ∆()A .四面体的体积的最大值为1B .存在某一位置,使得C .异面直线,所成的角为定值D .当二面角的余弦值为时,四面体12、四面体的四个顶点都在球的球面上,,,点,,分别为棱,,的中点,则下列说法正确的是 A .过点,,做四面体的截面,则该截面的面积为2B .四面体C .与的公垂线段的长为D .过作球的截面,则截面面积的最大值与最小值的比为二、填空题(每小题5分,共20分)13、将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为 .14、在正方体中,为的中点,则直线与所成的角为 .15、某校高一级学生进行创客活动,利用3D 打印技术制作模型.如图,该模型为长方体挖去正四棱台后所得的几何体,其中,为增强其观赏性和耐用性,现对该模型表面镀上一层金属膜,每平方厘米需要金属,不考虑损耗,所需金属膜的质量为____________.A BCD '-BM CD ⊥BM A D 'A BD C '--13A BCD '-ABCD O 4AB BC CD DA ====AC BD ==EFG BC CD AD ()E F G ABCD ABCD AC BD E O 5:41111ABCD A B C D -P 11B D PB 1AD 1111ABCD A B C D -ABCD EFGH -122,6cm,4cm AB EF BF AB BC AA =====2mg mg16、如图,在长方体中,四边形是边长为4的正方形,,为棱的中点,为棱(包括端点)上的动点,则三棱锥外接球表面积的最小值是 .三 解答题(共6小题,共计70分)17、(10分)如图,在三棱锥中,平面,是直角三角形,,.,分别是棱,的中点.(1)证明:平面平面.(2)求三棱锥的体积.18.(12分)如图,在三棱锥中,,底面.1111ABCD A B C D -ABCD 13AA =E CD F 11C D A DEF -P ABC -PA ⊥ABC ABC ∆AC BC =6PA AB ==D E PB PC PAC ⊥ADE P ADE -P ABC -90ACB ∠=︒PA ⊥ABC(1)求证:平面平面;(2)若,,求与平面所成角的正弦值.19.(12分)如图,在直四棱柱中,四边形是平行四边形,是的中点,点是线段上,且.(1)证明:直线平面.(2)若,,,求点到平面的距离.20、(12分)如图,在四棱锥中,,,,分别为,的中点底面四边形是边长为2的菱形,且,交于点.(1)求证:平面;(2)二面角的平面角为,若.①求与底面所成角的大小;②求点到平面的距离.21、(12分)如图在直三棱柱中,,,,是上的一点,且,、、分别是、、的中点,与相交于.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;PAC ⊥PBC 2AC PA ==3BC =AB PBC 1111ABCD A B C D -ABCD F 1BD E 1CD 12D E CE =//AF BDE 13AA AB ==2AD =60BAD ∠=︒F BDE P ABCD -PB PD =PA PC ⊥M N PA BC ABCD 60DAB ∠=︒AC BD O //MN PCD B PC D --θ1cos 7θ=-PA ABCD N CDP 111ABC A B C -90ABC ∠=︒2BC =14CC =E 1BB 11EB =D F G 1CC 11B C 11A C EF 1B D H 1B D ⊥ABD //EFG ABD(Ⅲ)求平面与平面的距离.22、(12分)如图,在四棱锥,底面为梯形,且,,等边三角形所在的平面垂直于底面,.(1)求证:平面;(2)若直线与平面,求二面角的余弦值.参考答案1、D2、D3、B4、A5、C6、C7、A8、D 8、【解析】设的外接圆的圆心为,半径为,在中,,,由余弦定理可得,由正弦定理可得,解得,所以又三棱锥所以EGF ABD P ABCD -ABCD 12BC AD =//BC AD PCD ABCD BC PD ⊥BC ⊥PCD PB ABCD P AB D --ABC ∆1O r ABC ∆2AB BC ==120ABC ∠=︒222cos AC AB BC AB BC ABC =+-⋅⋅∠=24sin AC r ABC ===∠2r =11sin 2222ABC S AB BC ABC ∆=⋅⋅⋅∠=⨯⨯=O ABC -111133O ABC ABC V S OO OO -∆=⋅⋅==故三棱锥的高,所以球.9、AC10、BCD 11、ABD 12、ACD9、【解析】根据题意可得:对直线与平面的任何位置关系,平面内均存在直线与直线垂直,A 正确;平衡杆所在直线与水平地面的位置关系:平行或相交,根据线面关系可知:若直线与平面平行,则该直线与平面内的直线的位置关系:平行或异面,若直线与平面相交,则该直线与平面内的直线的位置关系:相交或异面,C 正确,B 、D 错误;【答案】AC11、【解析】连接交于,连接,取的中点,连接,,对于A ,当平面平面时,四面体的体积最大,点到平面的距离最大,此时在菱形中,,则,都是等边三角形,则,此时四面体的体积为,所以四面体的体积的最大值为1,故A 正确;对于B ,因为,分别为,的中点,所以,且,由题意,则,当时,,因为,O ABC -13OO =O =l l AC BD O OA 'CD N MN BN A BD '⊥BCD A BCD '-A 'BCD ABCD 2AB =3BAD π∠=ABD ∆BCD ∆OA OA OC '===A BCD '-112132⨯⨯=A BCD '-M N C 'CD BN CD ⊥//MN A D '112MN A D ='=2(0,)3A DC π∠'∈2(0,3MNC π∠∈2MNC π∠=MN CD ⊥MN BN N =所以当时,平面,又平面,所以,所以存在某一位置,使得,故B正确;对于C,因为,所以异面直线,所成的角即为或其补角,,因为不为定值,所以不为定值,即异面直线,,所成的角不为定值,故C错误;对于D,因为,,所以即为二面角的平面角,则,所以,所以四面体为正四面体,如图,补全正四面体,即四面体的D正确.【答案】ABD12、【解析】如图所示:取中点,连结、,则有:,且,同理可得,且所以,且为平行四边形,2MNCπ∠=CD⊥BMNBM⊂BMN CD BM⊥BM CD⊥//MN A D'BM A D'BMN∠2131cos22BM BMBMNBM BM+-∠==-BM cos BMN∠BM A D'OC BD⊥OA BD'⊥A OC∠'A BD C'--26163A CA OC-'∠'==2A C'=A BCD'-A BCD'-=A BCD'-AB H EH HG//HG BD12GH BD==//EF BD12EF BD== //HG EF HG EF==EFGH同理可得,且,所以平行四边形的菱形;取中点,连结、,因为,所以,同理,所以平面,所以,又因为,,所以,所以菱形的正方形,所以,故A 正确;因为,,,所以,同理可得,在中,,所以边上的高,又因为平面,为中点,所以,故B 错;因为平面,平面,所以,又因为,所以是与的公垂线,由选项可知,故C 正确;取中点,则为球心,理由如下:因为平面,,所以,同理,,所以,所以即为球心,所以,又因为,所以过所作的面积最小的截面是以为圆心,为半径的圆;面积最大的截面是过,的大圆,//HE GF HE GF ==EFGH BD Q AQ CQ AB AD =AQ BD ⊥CQ BD ⊥BD ⊥ACQ BD AC ⊥//HG BD //HE AC HG HE ⊥EFGH 2EFGH S =4AB AD ==BD =AQ BD ⊥BQ DQ ==AQ =CQ =ACQ ∆AQ CQ ==AC =AC QM ==12ACQ S AC QM ∆=⋅⋅=BD ⊥ACQ Q BD 1122233A BCD B ACQ ACQ V V S BQ --∆==⨯⨯=⨯⨯=BD ⊥ACQ QM ⊆ACQ BD QM ⊥QM AC ⊥QM AC BD B QM =QM S S O BD ⊥ACQ BQ DQ =12QS QM ==225SB SD ==12MS QM ==225SA SC ==SA SB SC SD ====S O R =OE BC ⊥E E 2BE =O E所以,故D 正确.13、 14、15、16、15、【详解】由题意,该几何体侧面4个面的面积和为,底面积,正方形面积.考虑梯形,高为,故正四棱台的侧面积为,故该模型表面积为,故所需金属膜的质量为16、【解析】如图,取的中点,过作平面的垂线,与平面交于点,过作的垂线,垂足为,则三棱锥外接球的球心在上,设,,则,设球的半径为,则,即,所以.因为,所以,则.()()22::5:4S S R BE ππ==大小2π6π282+2449π244696cm ⨯⨯=26636cm ⨯=EFGH 2339cm ⨯=ABFE =()214362⨯+=(296369141cm +++=+((2141282mg⨯+=+AE 1O 1O ABCD 1111A B C D M M 11C D N E ADF -O 1MO 1OO m =NF n =03n ……O R 222R OE OF ==22222225(3)4R m OM MN NF m n =+=++=-++286n m +=03n ......41736m (2261)59R m =+…故三棱锥外接球的表面积.17、(1)证明:因为是直角三角形,且,所以.因为平面,且平面,所以.因为平面,平面,且,所以平面.因为,分别是棱,的中点,所以,,因为平面,所以平面.因为平面,所以平面平面.(2)解:因为,所以因为平面,且,所以三棱锥的体积.连接,因为是棱的中点,所以三棱锥的体积.因为是棱的中点,所以三棱锥的体积.因为三棱锥与三棱锥是同一个三棱锥,所以的体积为.18.(1)证明:底面.,又,,又,平面,又平面,平面平面;(2)解:取的中点,连接、,,,又平面平面且交线为,平面,A DEF -224449S R ππ=…ABC ∆AC BC =AC BC ⊥PA ⊥ABC BC ⊂ABC PA BC ⊥PA ⊂PAC AC ⊂PAC PA AC A = BC ⊥PAC D E PB PC 12DE BC =//DE BC BC ⊥PAC DE ⊥PAC DE ⊂ADE PAC ⊥ADE 6AB =AC BC ==PA ⊥ABC 6PA =P ABC -1161832V =⨯⨯=CD D PB D PAC -11118922V ==⨯=E PC D PAE -211199222V V ==⨯=P ADE -D PAE -P ADE -92PA ⊥ ABC PA BC ∴⊥90ACB ∠=︒ AC BC ∴⊥PA AC A = BC ∴⊥PAC BC ⊂PBC ∴PBC ⊥PAC PC O AO BO PA AC = AO PC ∴⊥ PBC ⊥PAC PC AO ∴⊥PBC直线在平面中的射影为,为与平面所成的角,在直角中,,,.19.(1)证明:连接,记,连接.取线段的中点,连接,.因为四边形是平行四边形,所以是的中点.因为是的中点,且,所以是的中点,因为,分别是,的中点,所以.因为平面,平面,所以平面.因为,分别是,的中点,所以.因为平面,平面,所以平面.因为平面,平面,且,所以平面平面.因为平面,所以平面.(2)解:由(1)可知平面,则点到平面的距离等于点到平面的距离.因为,,,所以的面积为作,垂足为,连接,则平面.因为,所以,,则.因为,,,所以AB PBC OB ABO ∴∠AB PBC AOB ∆AB =AO =∴sin ABO ∠=AC AC BD O = OE 1D E H AH HF ABCD O AC H 1D E 12D E CE =E HC O E AC HC //OE AH OE ⊂BDE AH ⊂/BDE //AH BDE H F 1D E 1BD //HF BE BE ⊂BDE HF ⊂/BDE //HF BDE AH ⊂AHF HF ⊂AHF AH HF H = //AHF BDE AF ⊂AHF //AF BDE //AF BDE F BDE A BDE 2AD =3AB =60BAD ∠=︒ABD ∆1sin 2AD AB BAD ⋅∠=EG CD ⊥G BG EG ⊥ABCD 12D E CE =1113EG DD ==22DG GC ==DE =3AB =2AD =60BAD ∠=︒BD因为,,,所以,则.在中,由余弦定理可得.故的面积为.设点到平面的距离为,因为三棱锥的体积等于三棱锥的体积,所以,解得到平面20、(1)证明:取得中点,连接,,如图,为的中点,,为的中点且四边形为菱形,,,,四边形为平行四边形,,又平面,平面,平面;(2)解:①连接,过作于,连接,,由,是的中点,,由菱形知,又,平面,平面,平面平面,且交线为,直线在平面上的射影为,即与底面所成角为,平面,,且在平面上的射影为,,又,,是的中点,是的中点,,由知,,,为二面角的平面角,,1CG =2BC =60BCG ∠=︒BG =2BE =BDE ∆cos BED ∠==sin BED ∠=BDE ∆11sin 222BE DE BED ⋅∠=⨯=F BDE h E ABD -A BDE -11133=h =F BDE PD E ME CE M PA ∴1,//2ME AD ME AD =N BC ABCD ∴1//,2NC AD NC AD =//NC ME ∴NC ME =∴MNCE //MN EC ∴MN ⊂/PCD CE ⊂PCD //MN ∴PCD PO B BF PC ⊥F DF OF PB PD =O BD PO BD ∴⊥ABCD AC BD ⊥PO AC O = BD ∴⊥PAC BD ⊂ ABCD ∴PAC ⊥ABCD AC ∴PA ABCD AC PA ABCD PAC ∠BD ⊥ PAC BF PC ⊥BF PAC OF OF PC ∴⊥PA PC ⊥//OF PA ∴O BD F ∴PC 2PB BC ∴==BPC DPC ∆≅∆DF PC ⊥BF DF =BFD ∴∠B PC D --∴2222222162cos 277BD BF DF BF DF BFD BF BF BF =+-⋅∠=+=即,解得,,,,,即与底面所成角的大小为;②连接,过作于,由,平面,平面,平面,点到平面的距离即点到平面的距离,,,,平面,平面平面,且是交线,,平面,在中,,由等积法可得,即,即点到平面.21、(12分)(Ⅰ)证明:由直三棱柱的性质,得平面平面,又,平面,又平面,,,在和△中,,,即,又,平面.(Ⅱ)证明:由题意知,在△中,,又,,平面,不包含于平面,平面,、分别为、的中点,,又,,,不包含平面,平面,平面,平面,,平面平面.(Ⅲ)解:平面,平面平面,平面,为平行平面与之间的距离,21647BF =274BF =∴23PC FC ===∴sin 2PC PC PAC AC AO ∠====090PAC ︒∠︒ ……60PAC ∴∠=︒PA ABCD 60︒ON O OG FD ⊥G //ON CD ON ⊂/PCD CD ⊂PCD //ON ∴PCD ∴N CDP O CDP BF PC ⊥ DF PC ⊥BF DF F = PC ∴⊥BFD ∴PCD ⊥BDF DF OG FD ⊥ OG ∴⊥PCD Rt OFD ∆1,OF OD DF ===OF OD FD OG ⋅=⋅OG =N CDP ABC ⊥11BB C C AB BC ⊥AB ∴⊥11BB C C 1B D ⊂11BB C C 1AB B D ∴⊥1112BC CD DC B C ==== ∴Rt BCD ∆Rt 11DC B 1145BDC B DC ∠=∠=︒190BDB ∴∠=︒1B D BD ⊥AB BD B = 1B D ∴⊥ABD 111EB B F ==∴Rt 1EB F 145FEB ∠=︒145DBB ∠=︒//EF BD ∴BD ⊂ ABD EF ABD //EF ∴ABD G F 11A C 11B C 11//GF A B ∴11//A B AB //GF AB ∴\AB ABD ⊂ 平面GF ABD //GF ∴ABD EF ⊂ EFG GF ⊂EFG EF GF F = ∴//EFG ABD 1B D ⊥ ABD //EGF ABD 1B D ∴⊥EGF HD ∴EFG ABD.22、证明:(1)如图所示,取中点,连接,是正三角形,又平面平面,且平面平面,平面,平面,,,且,平面;如图所示,连接,,过点,作,,分别与交于点,,过点作,交于点,连接,设,,,则,由(1)得平面,即为直线与平面所成角的平面角,平面,,则,解得:,故,,解得又,所以平面,,,,解得所以点为线段的中点,故点也为线段中点,11HD B D B H ∴=-==CD O PO PCD ∆ PO CD∴⊥PCD ⊥ABCD PCD ⋂ABCD CD =PO ∴⊥ABCD BC ⊂ABCD PO BC ∴⊥BC PD ⊥ PO PD P = BC ∴⊥PCD OB BD D P DM AB ⊥PN AB ⊥AB M N M //MQ NP AP Q DQ 22AD BC ==2CD a =0a >OP =OP ⊥ABCD OBP ∴∠PB ABCD BC ⊥PCD BC CP ∴⊥OP PB OBP BP =∠===1a =BD AB ====BM AM =DM //BC AD AD ⊥PCD AD PD ⊥PA ===BN AN PN ===M AN Q AP所以,所以即为二面角的平面角,.12QM PN DQ ===DMQ ∠P AB D --222cos 2DM QM DQ DMQ DM QM +-∠===⋅。
人教A版数学必修第2册单元测试第八章 立体几何初步(原卷版)
第八章 立体几何初步 综合测试(原卷版)考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知三棱柱有a 个顶点,b 条棱,则a -b =( ) A .-3 B .3 C .4D .-42.在正方体ABCD -A 1B 1C 1D 1的所有面对角线中,所在直线与直线A 1B 互为异面直线且所成角为60°的面对角线的条数为( )A .2B .4C .6D .83.已知某圆柱的内切球半径为92,则该圆柱的侧面积为( )A .49π2B .49πC .81π2D .81π4.空间四点A ,B ,C ,D 共面而不共线,那么这四点中( ) A .必有三点共线 B .必有三点不共线 C .至少有三点共线D .不可能有三点共线5.设α,β为两个不同的平面,则α∥β的一个充分条件可以是( ) A .α内有无数条直线与β平行 B .α,β垂直于同一条直线 C .α,β平行于同一条直线D .α,β垂直于同一个平面6.E ,F ,G 分别是空间四边形ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是( )A .0B .1C .2D .37.如图,P为平行四边形ABCD所在平面外一点,过BC的平面与平面P AD交于EF,E在线段PD上且异于P、D,则四边形EFBC是()A.空间四边形B.矩形C.梯形D.平行四边形8.(2022·新高考Ⅰ卷)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5 m时,相应水面的面积为140.0 km2;水位为海拔157.5 m时,相应水面的面积为180.0 km2,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5 m上升到157.5 m时,增加的水量约为(7≈2.65)() A.1.0×109 m3B.1.2×109 m3C.1.4×109 m3D.1.6×109 m3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)9.以下关于空间几何体特征性质的描述,错误的是()A.以直角三角形一边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体是圆锥B.有两个面互相平行,其余各面都是四边形的几何体是棱柱C.有一个面是多边形,其余各面都是三角形的几何体是棱锥D.两底面互相平行,其余各面都是梯形,侧棱延长线交于一点的几何体是棱台10.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,一定正确的为()A.AC⊥BD B.AC∥截面PQMNC.AC=BD D.异面直线PM与BD所成的角为45°11.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC 的中点,若平行六面体的各棱长均相等,则下列说法正确的是()A.A1M∥D1P B.A1M∥B1QC.A1M∥平面DCC1D1D.A1M∥平面D1PQB112.如图,在棱长均相等的正四棱锥P-ABCD中,M、N分别为侧棱P A、PB的中点,O是底面四边形ABCD对角线的交点,下列结论正确的有()A.PC∥平面OMN B.平面PCD∥平面OMNC.OM⊥P A D.PD⊥平面OMN三、填空题(本大题共4小题,每小题5分,共20分)13.一个圆柱的侧面展开图是一个边长为1的正方形,则该圆柱的体积是____.14.将长为3,宽为2的长方形,绕其一边旋转成的几何体的表面积为____.15.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为___厘米.16.我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为2,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积为____.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图,圆锥底面半径为1,高为3.(1)求圆锥内接圆柱(一底面在圆锥底面上,另一底面切于圆锥侧面)侧面积的最大值;(2)圆锥内接圆柱的表面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.18.(本小题满分12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.19.(本小题满分12分)如图所示,在四棱锥P-ABCD中,侧面P AD⊥底面ABCD,侧棱P A⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面P AB⊥平面PCD.20.(本小题满分12分)(2020·江苏卷)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.21.(本小题满分12分)(2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC的中点,且PB⊥AM.(1)求BC;(2)求二面角A-PM-B的正弦值.22.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,AB=2A1A=4,以AB,BC为邻边作平行四边形ABCD,连接A1D,DC1.(1)求证:DC1∥平面A1ABB1;(2)若二面角A1-DC-A为45°.①求证:平面A1C1D⊥平面A1AD;②求直线AB1与平面A1AD所成角的正切值.。
高中数学单元测试卷集精选---立体几何07
立几面测试007一、选择题 (12×4=48)1、若a ⊂α, b ⊂β,α∩β=c ,a∩b =M ,,则( ) A 、M ∈cB 、M ∉ cC 、M ⊂cD 、M ⊂β2、点A 在直线l 上,l 在平面α外,用符号表示正确的是 ( ) (A )A∈l ,l ∉α(B )A∈l ,l ⊄α (C )A ⊂l ,l ⊄α (D )A ⊂l ,l ∈α3、EF 是异面直线a 、b 的公垂线,直线l ∥EF,则l 与a 、b 交点的个数为 ( ) A 、0 B 、1 C 、0或1 D 、0,1或24、以下四个结论:① 若a ⊂α, b ⊂β,则a, b 为异面直线;② 若a ⊂α, b ⊄α,则a, b 为异面直线;③ 没有公共点的两条直线是平行直线;④ 两条不平行的直线就一定相交。
其中正确答案的个数是 ( ) (A )0个 (B )1个 (C )2个 (D )3个5、教室内有根棍子,无论怎样放置,地面上总有这样的直线与棍子所在直线( ) A 、平行B 、垂直 C 、相交但不垂直 D 、异面6、正方体ABCD -A 1B 1C 1D 1中,AC 与B 1D 所成的 角为( )A 、6πB 、4πC 、3πD 、2π 7、直线a 与平面α所成的角为30o,直线b 在平面α内,若直线a 与b 所成的角为ϕ,则( ) A 、0º<ϕ≤30º B 、0º<ϕ≤90º C 、30º≤ϕ≤90º D 、30º≤ϕ≤180º8、b a ,是空间两条不相交的直线,那么过直线b 且平行于直线a 的平面( ) A 、有且仅有一个 B 、至少有一个 C 、至多有一个 D 、有无数个 9、正方体ABCD -A 1B 1C 1D 1中,E 为A 1C 1的中点, 则直线CE 垂直于 ( ) A 、直线AC B 、直线B 1D 1 C 、直线A 1D 1D 、直线A 1A10、已知P 为△ABC 所在平面α外一点,PA=PB=PC ,则P点在平面α内的射影一定是△ABC 的 ( ) A 、内心 B 、外心 C 、垂心 D 、重心 11、右图是一个无盖正方体盒子的表面展开图,A 、B 、C为其上三个点,则在正方体盒子中,∠ABC 等于 ( )A CBA 1C BAB 1C 1D 1 DA 1CBAB 1C 1D 1 D EF EP C BA A 、45° B、60°C、90° D、120° 12、在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1A 、 AB 上的点,若∠NMC 1=90°,则∠NMB 1 ( )A 、小于90°B 、等于90°C 、大于90°D 、不能确定二、填空题(4×4=16分)13、平面α同侧的两点A 、B 到α的距离分别为4和6,则线段AB 的中点M 到α平面的距离为______________14、已知E 、F 分别为棱长为a 的正方体ABCD -A 1B 1C 1D 1的棱BB 1、B 1C 1的中点,则A 1到EF 的距离为15、P 是△ABC 所在平面外一点;PB=PC=AB=AC ,M 是线段PA上一点,N 是线段BC 的中点,则∠MNB=________ 16、在长方体ABCD -A 1B 1C 1D 1中,AB =BC =3,AA 1=4,则异面直线AB 1与 A 1D 所成的角的余弦值为 三、解答题(56分)17、(10分)已知直线a 和b 是异面直线,直线c ∥a ,b 与c 不相交,用反证法证明:b 、c 是异面直线。
人教版高中数学必修第二册第三单元《立体几何初步》测试(含答案解析)
一、选择题1.已知空间中不同直线m 、n 和不同平面α、β,下面四个结论:①若m 、n 互为异面直线,//m α,//n α,//m β,βn//,则//αβ;②若m n ⊥,m α⊥,βn//,则αβ⊥;③若n α⊥,//m α,则n m ⊥;④若αβ⊥,m α⊥,//n m ,则βn//.其中正确的是( )A .①②B .②③C .③④D .①③ 2.球面上有,,,A B C D 四个点,若,,AB AC AD 两两垂直,且4AB AC AD ===,则该球的表面积为( )A .803πB .32πC .42πD .48π3.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角PAB C 的平面角为45°. 其中正确命题的个数有( ) A .2个 B .3个 C .4个 D .5个4.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //ABB .MN 与BC 所成的角为45° C .OC ⊥平面VACD .平面VAC ⊥平面VBC5.如图,在长方体1111ABCD A B C D -中,13,2,4AA AB AD ===,点M 是棱AD 的中点,点N 在棱1AA 上,且满足12AN NA =,P 是侧面四边形11ADD A 内的一动点(含边界),若1//C P 平面CMN ,则线段1C P 长度的取值范围是( )A .[3,17]B .[2,3]C .[6,22]D .[17,5] 6.已知某正三棱锥侧棱与底面所成角的余弦值为219,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( )A .49B .19C .925D .1257.如图所示,在棱长为a 的正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 面1A BE ,则F 在侧面11CDD C 上的轨迹的长度是( )A .aB .2aC 2aD .22a 8.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π9.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm 10.α,β是两个平面,m ,n 是两条直线,有下列四个命题;①如果m n ⊥,m α⊥,//n β,那么αβ⊥.②如果m α⊥,//n α,那么m n ⊥.③如果//αβ,m α⊂,那么//m β.④如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题的个数为( )A .1B .2C .3D .411.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .1212.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2AB CB ==,求三棱柱111ABC A B C -的体积S . 16.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 17.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为棱1DD 的中点.(1)证明:1//BD 平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.18.如图,在斜三棱柱111ABC A B C -中,点O .E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,AO ⊥平111A B C .已知90BCA ∠=︒,12AA AC BC ===.(1)求证://EF 平面11BB C C ;(2)求11A C 与平面11AA B 所成角的正弦值.19.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ∠=︒,PAD ∆为正三角形,平面PAD ⊥平面ABCD ,且E ,F 分别为AD ,PC 的中点.(1)求证://DF 平面PEB ;(2)求直线EF 与平面PDC 所成角的正弦值.20.如图,在空间几何体A -BCDE 中,底面BCDE 是梯形,且CD //BE ,CD =2BE =4,∠CDE =60°,△ADE 是边长为2的等边三角形.(1)若F 为AC 的中点,求证:BF //平面ADE ;(2)若AC =4,求证:平面ADE ⊥平面BCDE .21.如图,在平行四边形ABCD 中,4AB =,60DAB ∠=︒.点G ,H 分别在边CD ,CB 上,点G 与点C ,D 不重合,GH AC ⊥,GH 与AC 相交于点O ,沿GH 将CGH 翻折到EGH 的位置,使二面角E GH B --为90°,F 是AE 的中点.(1)请在下面两个条件:①AB AD =,②AB BD ⊥中选择一个填在横线处,使命题P :若________,则BD ⊥平面EOA 成立,并证明.(2)在(1)的前提下,当EB 取最小值时,求直线BF 与平面EBD 所成角的正弦值. 22.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.23.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ;(2)求三棱锥B CDM -的体积.25.如图,在棱长为1的正方体1111ABCD A B C D -中,点O 是BD 中点.(1)求证:平面11BDD B ⊥平面1C OC ;(2)求二面角1C BD C --的正切值.26.如图,四棱锥P ABCD -中,底面ABCD 是菱形,,60,PA PD BAD E =∠=是AD 的中点,点Q 在侧棱PC 上.(1)求证:AD ⊥平面PBE ;(2)若Q 是PC 的中点,求证://PA 平面BDQ ;(3)若2P BCDE Q ABCD V V --=,试求CP CQ的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由线面和面面平行和垂直的判定定理和性质定理即可得解.【详解】解:对于①,由面面平行的判定定理可得,若m 、n 互为异面直线,//m α,//n β,则//αβ或相交,又因为//m β,//n α,则//αβ,故①正确;对于②,若m n ⊥,m α⊥,//n β,则//αβ或α,β相交,故②错误, 对于③,若n α⊥,//m α,则n m ⊥;故③正确,对于④,若αβ⊥,m α⊥,//n m ,则//n β或n β⊂,故④错误,综上可得:正确的是①③,故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】分析:首先求得外接球半径,然后求解其表面积即可.详解:由题意可知,该球是一个棱长为4的正方体的外接球,设球的半径为R ,由题意可得:()22222444R =++,据此可得:212R =,外接球的表面积为:2441248S R πππ==⨯=.本题选择D 选项.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 3.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 4.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ; 故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.5.C解析:C【分析】首先找出过点1C 且与平面CMN 平行的平面,然后可知点P 的轨迹即为该平面与侧面四边形11ADD A 的交线段,进而可以利用解三角形的知识求出线段1C P 长度的取值范围.【详解】 如图所示:,取11A D 的中点G ,取MD 的中点E ,1A G 的中点F ,1D D 的三等分点H 靠近D ,并连接起来.由题意可知1//C G CM ,//GH MN ,所以平面1//C GH 平面CMN .即当点P 在线段GH 上时,1//C P 平面CMN .在1H C G 中,2212222C G =+=2212222C H =+=22GH =, 所以1H C G 为等边三角形,取GH 的中点O ,1226C O ==故线段1C P 长度的取值范围是6,22].故选:C .【点睛】本题主要考查线面平行,面面平行的判定定理和性质定理的应用,以及解三角形,意在考查学生的逻辑推理能力和数学运算能力,属于中档题.6.C解析:C【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35rR=,最后求出球2O与球1O的表面积之比即可.【详解】如图,取ABC的外心O,连接PO,AO,则PO必过1O,2O,且PO⊥平面ABC,可知PAO∠为侧棱与底面所成的角,即219cos19PAO=∠.取AB的中点M,连接PM,MC.设圆1O,2O的半径分别为R,r,令2OA=,则19PA=,23AB=,3AM=,1OM=,所以214r OMPO PM==,即24PO r=,从而145PO r r R r R=++=+,所以1154R RPO r R==+,则35rR=,所以球2O与球1O的表面积之比为925.故选:C.【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题.7.D解析:D【分析】解:设G,H,I分别为CD、1CC、11C D边上的中点,证明平面1//A BGE平面1B HI,得到1//B F面1A BE,则F落在线段HI上,求出1122HI CD==【详解】解:设G,H,I分别为CD、1CC、11C D边上的中点,1//A B EG,则1A BEG四点共面,11//,//EG HI B H A E , 平面1//A BGE 平面1B HI ,又1//B F 面1A BE ,F ∴落在线段HI 上,正方体1111ABCD A B C D -中的棱长为a ,11222HI CD a ∴==, 即F 在侧面11CDD C 上的轨迹的长度是22a . 故选:D .【点睛】本题考查利用线面平行求线段长度,找到动点的运动轨迹是解题的关键,属于基础题. 8.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心.因为2233332⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO ,1213===O E O E OO . 所以外接圆半径为()223153=22⎛⎫+⎪ ⎪⎝⎭,表面积为15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.9.B解析:B【分析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:()210020220202100204010210202840m 0m S =⨯⨯+⨯⨯+⨯-⨯⨯+⨯⨯=.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.10.C解析:C【分析】对①,运用长方体模型,找出符合条件的直线和平面,即可判断;对②,运用线面平行的性质定理和线面垂直的性质定理,即可判断;对③,运用面面平行的性质定理,即可判断;对④,由平行的传递性及线面角的定义,即可判断④.【详解】对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA '为直线m ,CD 为直线n ,ABCD 所在的平面为α,ABC D ''所在的平面为β,显然这些直线和平面满足题目条件,但αβ⊥不成立;命题②正确,证明如下:设过直线n 的某平面与平面α相交于直线l ,则//l n ,由m α⊥知m l ⊥,从而m n ⊥,结论正确;由平面与平面平行的定义知命题如果//αβ,m α⊂,那么//m β.③正确;由平行的传递性及线面角的定义知命题:如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等,④正确.故选:C .【点睛】本题考查命题的真假判断,考查空间线面、面面平行和垂直的位置关系,注意运用判定定理和性质定理,考查推理能力,属于中档题.11.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ;(2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,CE ∴11222S AB CE ⨯⨯⨯=底面积==1CEA 中,CE 1EA 1AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.16.(1)详见解析;(2【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥, AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则1111262213232C DBE E CBD V V h --==⨯⨯⨯⨯=⨯⨯⨯⨯, 解得:233h = 【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.17.(1)证明见解析;(2)30.【分析】(1)AC 和BD 交于点O ,则O 为BD 的中点.推导出1//PO BD .由此能证明直线1//BD 平面PAC ;(2)由1//PO BD ,得APO ∠即为异面直线1BD 与AP 所成的角或其补角.由此能求出异面直线1BD 与AP 所成角的大小.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点.连结PO ,又因为P 是1DD 的中点,所以1//PO BD .又因为PO ⊂平面PAC ,1BD ⊄平面PAC所以直线1//BD 平面PAC.(2)解:由(1)知,1//PO BD ,所以APO ∠即为异面直线1BD 与AP 所成的角或其补角.因为2PA PC ==212AO AC ==且PO AO ⊥, 所以212sin 22AO APO AP ∠===. 又(0,90APO ︒︒⎤∠∈⎦,所以30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30.【点睛】方法点睛:异面直线所成的角的求法方法一:(几何法)找→作(平移法、补形法)→证(定义)→指→求(解三角形) 方法二:(向量法)cos m n m n α=,其中α是异面直线,m n 所成的角,,m n 分别是直线,m n 的方向向量.18.(1)证明见解析;(2)217. 【分析】(1)由题意可得11//OE B C ,1//OF C C ,利用面面平行的判定定理可得平面//OEF 平面11BB C C ,由面面平行的性质定理即可证明. (2)利用等体法111112A A B C C AA B V V --=,求出点1C 到平面11AA B 的距离2217d =,由11sin d A C θ=即可求解. 【详解】证明:(1)∵O ,E 分别是11A C 、11A B 的中点,1A C 与1AC 交于点F ,∴11//OE B C ,1//OF C C ,1111B C C C C ⋂=,//OE ∴平面11B C C ,//OF ∴平面11B C C ,又OE OF O ⋂=,∴平面//OEF 平面11BB C C ,∵EF ⊂平面OEF ,∴//EF 平面11BB C C .(2)解:设点1C 到平面11AA B 的距离为d ,∵111112A A B C C AA B V V --=, ∴111111111323AA B AC B C AO S d ⨯⨯⨯⨯=⨯⨯,AO ==1OB ==1AB ==,∵11AA B中,111A B AB ==,12AA =,∴11AA B S =∴11122323d ⨯⨯⨯=,解得7d =, 设11A C 与平面11AA B 所成角为θ,∴11A C 与平面11AA B所成角的正弦值为:11sin 7d AC θ==. 【点睛】方法点睛:证明线面平行的常用方法:(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理.(3)利用面面平行的性质.19.(1)证明见解析;(2. 【分析】(1)取PB 中点G ,推出//FG BC ,证明四边形DEGF 是平行四边形,得到//DF EG ,然后证明//DF 平面PEB .(2)以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系,求出平面PDC 的法向量,求出EF ,利用空间向量的数量积求解EF 与平面PDC 所成角的正弦值.【详解】(1)证明:取PB 中点G ,因为F 是PC 中点,//FG BC ∴,且12FG BC =, E 是AD 的中点,则//DE BC ,且12DE BC =, //FG DE ∴,且FG DE =,∴四边形DEGF 是平行四边形,//DF EG ∴,又DF ⊂/平面PEB ,EG ⊂平面PEB ,//DF ∴平面PEB .(2)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,PE ⊂平面PAD ,PE ∴⊥平面ABCD ,四边形ABCD 为菱形,60BAD ∠=︒,∴正三角形BAD 中,BE AD ⊥,以E 为原点,EA ,EB ,EP 分别为x ,y ,z 轴建立空间直角坐标系, 不妨设菱形ABCD 的边长为2,则1AE ED ==,2PA =,3PE =,223BE AB AE =-=则点33(0,0,0),(1,0,0),(3,0),3),(E D C P F ---, ∴(1DC =-30),(1DP =,03),设平面PDC 的法向量为(n x =,y ,)z ,则·0·0n DC n DP ⎧=⎨=⎩,即3030x z x ⎧=⎪⎨-+=⎪⎩,解得33x x z⎧=⎪⎨=⎪⎩,不妨令1z =,得(3n =-,1-,1); 又33(1,2EF =-, 设EF 与平面PDC 所成角为θ,∴36sin |cos |555?2EF n θ=<>=⋅=,.所以EF 与平面PDC 6. 【点睛】对于线面角可以转化为直线的方向向量与平面的法向量的夹角运算,对于证明线线关系,线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明.20.(1)证明见解析;(2)证明见解析. 【分析】(1)取DA 的中点G ,连接FG ,GE ,推导出四边形BFGE 为平行四边形,从而BF //EG ,由此能证明BF //平面ADE.(2)取DE 的中点H ,连AH ,CH ,推导出AH ⊥DE ,AH ⊥HC ,从而AH ⊥平面BCDE ,由此能证明平面ADE ⊥BCDE . 【详解】(1)如图所示,取DA 的中点G ,连接FG ,GE.∵F 为AC 的中点, ∴GF //DC ,且GF =12DC .又DC //BE ,CD =2BE =4, ∴EB //GF ,且EB =GF ∴四边形BFGE 是平行四边形, ∴BF //EG .∵EG ⊂平面ADE ,BF ⊄平面ADE , ∴BF //平面ADE .(2)取DE 的中点H ,连接AH ,CH . ∵△ADE 是边长为2的等边三角形, ∴AH ⊥DE ,且AH 3.在△DHC 中,DH =1,DC =4,∠HDC =60°根据余弦定理可得HC 2=DH 2+DC 2-2DH ·DCcos 60°=12+42-2×1×4×12=13,即HC 13 在△AHC 中,AH 3HC 13AC =4. 所以AC 2=AH 2+HC 2,即AH ⊥HC .因为AH DE ⊥,AH HC ⊥,DE HC H ⋂=AH ∴⊥平面BCDE ∵AH ⊂平面ADE ,∴平面ADE ⊥平面BCDE . 【点睛】方法点睛:要证线面平行,一般需要证明(1)线线平行(2)面面平行两种方法,在平行的证明中,线线平行一般需要考虑中位线、平行四边形,平行线分线段成比例的逆定理.21.(1)答案见解析;(2)11. 【分析】(1)选择①,结合直二面角的定义,证明BD ⊥平面EOA 内的两条相交直线,EO AO ;(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =CO x =,可得EB 关于x 的函数,求出EB 取得最小值时x 的值,连结EM ,作QF EM ⊥于F ,连结BF ,求出sin QBF ∠的值,即可得答案; 【详解】解:(1)命题P :若AB AD =,则BD ⊥平面EOA . ∵AC GH ⊥,∴AO GH ⊥,EO GH ⊥, 又二面角E GH B --的大小为90°, ∴90AOE ∠=︒,即EO AO ⊥, ∴EO ⊥平面ABCD , ∴EO BD ⊥,又AB BC =,∴AO BD ⊥,AO EO O =,∴BD ⊥平面EOA .(2)设AC 与BD 交于点M ,4AB =,60DAB ∠=︒,则AC =设CO x =,OM x =,222216OB OM MB x =+=-+,2222216EB EO OB x =+=-+,当x =min EB =连结EM ,作QF EM ⊥于F ,连结BF , 由(1)知BD ⊥平面EOA , ∴BD QF ⊥,∴QF ⊥平面EBD , ∴QBF ∠即为QB 与平面EBD 所成角,在Rt EMB 中,EB =2BM =,EM =AE =,由()2222(2)2QB AE AB BE QB +=+⇒=,2QF =∴sin QF QBF QB ∠==,即QB 与平面EBD .【点睛】求线面角首先要根据一作、二证、三求找出线面角,然后利用三角函数的知识,求出角的三角函数值即可. 22.(I)证明见解析;(II)3 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EF AP =,∵//FE AP =,∴四边形FAPE 是平行四边形, ∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥, 由AB AD ⊥,可得PC AD ⊥, 设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 , ∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE . (Ⅱ)解:取Q CD 为的中点,连结,PQ EQ , ∵CE DE =,∴.EQ CD ⊥ ∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, EP PQ EQ a PQ ==⊥,,.于是在Rt EPQ △中,cos 3PQ EQP EQ ∠==.∴二面角A CD E --. 【点睛】方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值). 23.(1)证明见解析;(2)14【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----=== ,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD ∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -, 与三棱锥D QBC -的体积相等,即11111232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=.【点睛】本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用 24.(1)证明见解析;(2)2. 【分析】(1)取PD 中点N ,证明BMNC 为平行四边形,得到//BM NC ,从而得到//BM 平面PCD .(2)对三棱锥B CDM -进行等体积转化,转化为求P BCD -的体积的一半.取AB 中点O ,连PO ,可证PO 为三棱锥P BCD -的高并求出其长度,求出BCD △的面积,得到三棱锥P BCD -的体积,即可求出三棱锥B CDM -的体积. 【详解】证明:(1)取PD 中点N ,连接MN ,NC , MN 为PAD △的中位线,//MN AD ∴,且12MN AD =, 又//BC AD ,且12BC AD =,//MN BC ∴,且MN BC =, 则BMNC 为平行四边形,//BM NC ∴,又NC ⊂平面PCD ,MB ⊂/平面PCD , //BM ∴平面PCD .(2)取AB 中点O ,连PO ,,PB PA PO AB =∴⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,PO ∴⊥平面ABCD . PO ∴为三棱锥P BCD -的高, PA PB =,4AB =,PB PA ⊥, PAB ∴为等腰直角三角形,2PO =, 90DAB ABC ,//AD BC ,1134622BCDSBC AB =⨯⨯=⨯⨯=, M 是PA 的中点,∴三棱锥B CDM -的体积为:11162223126P B CDM M BCD BCD BCDV V V SPO ---==⨯=⨯=⨯⨯=.【点睛】本题考查通过线线平行证明线面平行,通过面面垂直证明线面垂直,变换顶点和底面进行等体积转化,求三棱锥的体积,属于中档题. 25.(1)证明见解析;(22. 【分析】(1)在正方体1111ABCD A B C D -中,易证1,C O BD CO BD ⊥⊥,由线面垂直的判定定理得到BD ⊥平面1C OC ,然后再利用面面垂直的判定定理证明.(2)由(1)知BD ⊥平面1C OC ,且平面1C BD ⋂平面CBD BD =,得到1C OC ∠是二面角1C BD C --的平面角 ,然后在1Rt C OC ∆中求解. 【详解】(1)∵在正方体1111ABCD A B C D -中, 点O 是BD 中点 , 又11BC DC = , BC DC = ,∴ 1,C O BD CO BD ⊥⊥11,C O CO O C O =⊂平面1,C OC CO ⊂平面1C OC ,BD ∴⊥平面1C OC ,又∵BD ⊂平面11BDD B , ∴平面11BDD B ⊥平面1C OC .… (2)由(1)知:平面1C BD ⋂平面CBD BD =,11,C O BD C O ⊥⊂半平面1;,C BD CO BD CO ⊥⊂ 半平面;CBD所以1C OC ∠是二面角1C BD C --的平面角 则在正方体1111ABCD A B C D -中121,C C OC == ∴在1Rt C OC ∆中,11tan 2C CC OC OC∠== 故二面角1C BD C --2 . 【点睛】本题主要考查线面垂直,面面垂直的判定定理以及二面角的求法,还考查了逻辑推理和运算求解的能力,属于中档题.26.(1)证明见解析;(2)证明见解析;(3)8 3 .【分析】(1)由线面垂直判定定理,要证线面垂直,需证AD垂直平面PBE内两条相交直线,由,E是AD的中点,易得AD垂直于,再由底面是菱形,得三角形为正三角形,所以AD垂直于PA,(2)由线面平行判定定理,要证线面平行,需证PC平行于平面内一条直线,根据1h是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.【详解】(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE.(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA.因为PA 平面BDQ,OQ平面BDQ.所以PA//平面BDQ.(3)设四棱锥P-BCDE,Q-ABCD的高分别为2h,1h,所以V P-BCDE=13S BCDE2h,V Q-ABCD=13S ABCD1h.因为V P-BCDE=2V Q-ABCD,且底面积S BCDE=S ABCD.所以,因为,所以.。
高一数学必修2立体几何初步单元测试题(修改)
高一数学必修2立体几何初步单元测试题(修改)高一数学必修2立体几何初步单元测试题班级:姓名:学号:一、选择题:1、线段AB 在平面α内,则直线AB 与平面α的位置关系是()A 、AB α? B 、AB α?C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定()A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A BC D -中,下列几种说法正确的是()A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1BC成60角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是()A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行。
其中正确的个数有()A 、1B 、2C 、3D 、47、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b íM ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有()A 、0个B 、1个C 、2个D 、3个8、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为()A 、2VB 、3VC 、4VD 、5V二、填空题:9、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”).10、正方体1111ABCD A BC D -中,平面11AB D 和平面1BCD 的位置关系为QC'B'A'CBAB1C 1A 1D 1BAC D11、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,则平行四边形ABCD 一定是 .12、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)三、解答题:13、已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.14、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG.求证:EH ∥BD .15、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .H G FE D B A CSDBA16、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点.,求证:(1) C 1O ∥面11AB D ;(2)面1BDC //面11AB D .17、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且ADAFAC AE = 求证:平面BEF ⊥平面ABC .D 1ODB AC 1B 1A 1CFEDBAC高一数学必修2立体几何测试题参考答案一、选择题 ACDDD BBB 二、填空题11、小于 12、平行 13、菱形 14、对角线A 1C 1与B 1D 1互相垂直三、解答题15、解:设圆台的母线长为l ,则圆台的上底面面积为224S ππ=?=上圆台的上底面面积为2525S ππ=?=下,所以圆台的底面面积为29S S S π=+=下上又圆台的侧面积(25)7S l l ππ=+=侧于是725l ππ= 即297l =为所求. 16、证明:,EH FG EH ? 面BCD ,FG ?面BCD∴EH ∥面BCD又EH ? 面BCD ,面BCD 面ABD BD =,∴EH ∥BD17、证明:90ACB ∠=BC AC ∴⊥又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥=AD ∴⊥面SBC19、证明:(1)连结11AC ,设11111ACB D O = 连结1AO , 1111ABCD A BCD -是正方体11A ACC ∴是平行四边形∴A 1C 1∥AC 11AC AC = 又1,O O 分别是11,AC AC 的中点,∴O 1C 1∥AO 且11OC AO = 11AOC O ∴是平行四边形111,C O AO AO ∴? 面11ABD ,1C O ?面11AB D∴C 1O ∥面11AB D(2)1CC ⊥ 面1111A B C D 11!CC B D ∴⊥又1111AC B D ⊥ ,1111B D AC C ∴⊥面 111AC B D ⊥即同理可证11AC AB ⊥,又1111D B AB B =∴1AC ⊥面11AB D 20、证明:(Ⅰ)∵AB ⊥平面BCD ,∴AB ⊥CD ,∵CD ⊥BC 且AB ∩BC=B ,∴CD ⊥平面ABC.又ADAFAC AE = ∴EF ∥CD ,∴EF ⊥平面ABC ,EF ?平面BEF,∴平面BEF ⊥平面ABC.。
全国100所名校单元测试示范卷高二(空间向量与立体几何)第一次综合测试(数学)+答案解析(附后)
全国100所名校单元测试示范卷高二(空间向量与立体几何)第一次综合测试(数学)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线l :的倾斜角为A.B.C.D.2.若不重合的直线,的方向向量分别为,,则与的位置关系是( )A. B. C.,相交不垂直D. 不能确定3.若直线与圆O :交于A ,B 两点,则A.B. 2C.D. 44.在正四棱锥中,已知,,,则A.B.C.D.5.与直线l :关于y 轴对称的直线的方程为A.B.C.D.6.如图所示,在三棱柱中,底面ABC ,,,点E ,F分别是棱AB ,的中点,则EF 与所成角的大小为A. B. C. D. 7.已知四边形ABCD 为正方形,P 为平面ABCD 外一点,,,二面角的大小为,则点A 到平面PBD 的距离是A. B.C.D. 18.已知点是直线l :上的动点,过点P 作圆C :的切线PA ,A为切点,的最小值为2,圆M :与圆C 外切,且与直线l 相切,则m 的值为A. B. C. 4 D.二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知直线:,直线:,则A. 直线可以与x轴平行B. 直线可以与y轴平行C. 当时,D. 当时,10.以下命题正确的是A. 两个不同平面,的法向量分别为,,则B. 若直线l的方向向量,平面的一个法向量,则C. 已知,,若与垂直,则实数D. 已知A,B,C三点不共线,对于空间任意一点O,若,则P,A,B,C四点共面11.如图,平面ABCD,,,,,,,则A. B. 平面ADEC. 平面BDE与平面BDF的夹角的余弦值为D. 直线CE与平面BDE所成角的正弦值为12.已知圆:,圆:,则.( )A. 若圆与圆无公共点,则B. 当时,两圆公共弦所在直线方程为C. 当时,P、Q分别是圆与圆上的点,则的取值范围为D. 当时,过直线上任意一点分别作圆、圆切线,则切线长相等三、填空题:本题共4小题,每小题5分,共20分。
空间向量与立体几何 单元测试-2022-2023学年高二上学期数学
空间向量与立体几何测试一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1—→-D 1C 1—→等于( )A.AD 1—→B.AC 1—→C.AD →D.AB →2.若直线l 的方向向量为a ,平面α的法向量为μ,则能使l ∥α的是( )A .a =(1,0,0),μ=(-2,0,0)B .a =(1,3,5),μ=(1,0,1)C .a =(0,2,1),μ=(-1,0,1)D .a =(1,-1,3),μ=(0,3,1)3.(2022·江苏如东·高三期末)已知三棱锥P -ABC 的外接球半径为4,底面ABC 中,AC =6,∠ABC =60°,则三棱锥P -ABC 体积的最大值是( )A .183B .543C .24πD 16324+ 4.(2022·江苏无锡·高三期末)正方体1111ABCD A B C D -中,M 是正方形ABCD 的中心,则直线1B M 与平面11A C B 所成角的正弦值为( )A .13B 3C 6D 22 5.(2022·江苏苏州·6的母线长为( )A .22B .3C .26D .426.(2022·广东罗湖·高三期末)在正方体1111ABCD A B C D -中,O 为正方形ABCD 的中点,P 为1AA 的中点,则直线PO 与1AD 所成的角为( )A .2πB .3πC .4πD .6π7.(2022·广东揭阳·高三期末)已知圆柱的轴截面为正方形,其外接球为球O ,则圆柱的表面积与球O 的表面积之比为( )A .3:4B .1:2C .32D .不能确定7.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A 3λB 2C 2λD 5 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫ ⎪⎝⎭B .133,,224⎛⎫ ⎪⎝⎭C .448,,333⎛⎫ ⎪⎝⎭D .447,,333⎛⎫ ⎪⎝⎭二、选择题:本题共4小题,每小题5分,共20分。
人教版高中数学必修第二册第三单元《立体几何初步》测试题(有答案解析)
一、选择题1.设m ,n 是两条异面直线,下列命题中正确的是( ) A .过m 且与n 平行的平面有且只有一个 B .过m 且与n 垂直的平面有且只有一个C .m 与n 所成的角的范围是()0,πD .过空间一点P 与m 、n 均平行的平面有且只有一个2.平面α⊥平面 β,A ∈α,B ∈β,AB 与两平面α,β所成的角分别为4π和6π,过 A 、B 分别作两平面交线的垂线,垂足为 ,A B '',则:AB A B ''等于( ).A .3∶2B .3∶1C .2∶1D .4∶33.已知直三棱柱ABC -A 1B 1C 1的底面ABC 为等边三角形,若该棱柱存在外接球与内切球,则其外接球与内切球表面积之比为( ) A .25︰1B .1︰25C .1︰5D .5︰14.已知四边形ABCD 为矩形,24AB AD ==,E 为AB 的中点,将ADE 沿DE 折起,连接1A B ,1A C ,得到四棱锥1A DEBC -,M 为1A C 的中点,在翻折过程中,下列四个命题正确的序号是( )①//BM 平面1A DE ;②三棱锥M DEC -22; ③5BM =④一定存在某个位置,使1DE A C ⊥; A .①②B .①②③C .①③D .①②③④5.已知某正三棱锥侧棱与底面所成角的余弦值为21919,球1O 为该三棱锥的内切球.若球2O 与球1O 相切,且与该三棱锥的三个侧面也相切,则球2O 与球1O 的表面积之比为( ) A .49B .19C .925D .1256.如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163PABCDV ,则求O 的表面积为( )A .4πB .8πC .12πD .16π7.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm ),则此构件的表面积为( )A .27600mmB .28400mmC .29200mmD .210000mm8.在长方体1111ABCD A B C D -中,P 为BD 上任意一点,则一定有( ) A .1PC 与1AA 异面 B .1PC 与1A C 垂直 C .1PC 与平面11AB D 相交 D .1PC 与平面11AB D 平行9.一个圆柱和一个圆锥的轴截面分别是边长为a 的正方形和正三角形,则他们的表面积之比为( )A .1:1B .2:1C .1:2D .3:110.如图,已知正方体1111ABCD A B C D ,Q 为棱1AA 的中点,P 为棱1CC 的动点,设直线m 为平面BDP 与平面11B D P 的交线,直线n 为平面ABCD 与平面11B D Q 的交线,下列结论中错误的是( )A .//m 平面11B D QB .平面PBD 与平面11B D P 不垂直C .平面PBD 与平面11B D Q 可能平行 D .直线m 与直线n 可能不平行11.边长为2的正方形ABCD 沿对角线AC 折叠使得ACD 垂直于底面ABC ,则点C到平面ABD 的距离为( )A .263B .23C .22D .6 12.如图是正方体的展开图,则在这个正方体中:①AF 与CN 是异面直线; ②BM 与AN 平行; ③AF 与BM 成60角; ④BN 与DE 平行. 以上四个命题中,正确命题的序号是( )A .①②③B .②④C .③④D .②③④13.用一根长为18cm 的铁丝围成正三角形框架,其顶点为,,A B C ,将半径为2cm 的球放置在这个框架上(如图).若M 是球上任意一点,则四面体MABC 体积的最大值为( )A .3334cm B .33cm C .333cm D .393cm14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图,已知三棱锥A BCD -中,点M 在BD 上,2BAD BDC π∠=∠=,BM MD DC ==,且ACD 为正三角形.(1)证明:CM AD ⊥;(2)求直线CM 与平面ACD 所成角的正弦值.16.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.17.如图,在正三棱柱111ABC A B C -中,233AB =,12A A =,D ,E ,F 分别为线段AC ,1A A ,1CB 的中点.(1)证明://EF 平面ABC ;(2)求直线1C B 与平面BDE 所成角的正弦值.18.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 19.如图,四棱锥P ABCD -的底面ABCD 是矩形,PA ⊥平面ABCD ,2PA AD ==,22BD =(1)求证:BD ⊥平面PAC ;(2)求平面PCD 与平面CDB 所成夹角余弦值的大小; (3)求点C 到平面PBD 的距离20.如图,在等腰三角形ABC 中,,120AB AC A =∠=︒,M 为线段BC 的中点,D 为线段BC 上的一点,且BD BA =,沿直线AD 将ADC 翻折至1ADC △,使点1AC BD ⊥.(1)证明:平面1AMC ⊥平面ABD ; (2)求二面角1C AD B --的平面角的余弦值.21.如图,已知PA ⊥平面ABCD ,ABCD 为矩形,M 、N 分别为AB 、PC 的中点,,2,2PA AD AB AD ===.(1)求证:平面MPC ⊥平面PCD ; (2)求三棱锥B MNC -的高.22.如图,在梯形ABCD 中,//BC AD ,E 在AD 上,且2BC BE ED ===.沿BE 将ABE △折起,使得ABCE .(1)证明:AD CE ⊥;(2)若在梯形ABCD 中,π3ADC ∠=,折起后π3ABD ∠=,点A 在平面BCDE 内的射影H 为线段BD 的一个四等分点(靠近点B ),求三棱锥D ABC -的体积.23.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ; (II )求二面角A ﹣CD ﹣E 的余弦值.24.如图,在四棱锥P ABCD -中,平面PAB ⊥平面ABCD ,PB PA ⊥,PB PA =,90DAB ABC ∠=∠=,435AB BC CD ===,,,M 是PA 的中点.(1)求证:BM //平面PCD ; (2)求三棱锥B CDM -的体积.25.如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(1)证明:1B C AB ⊥; (2)若1ACAB ⊥,160CBB ∠=︒,1BC =,求三棱柱111ABC A B C -的高.26.如图,在四棱锥P ABCD -中,//AB CD ,2CD AB =,CD ⊥AD ,平面PAD ⊥平面ABCD ,,E F 分别是CD 和PC 的中点.求证:(1)BF //平面PAD (2)平面BEF ⊥平面PCD参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】在A 中,过m 上一点作n 的平行线,只能作一条l ,l 与m 是相交关系,故确定一平面与n在B 中,只有当m 与n 垂直时才能; 在C 中,两异面直线所成的角的范围是0,2π⎛⎫⎪⎝⎭; 在D 中,当点P 与m ,n 中一条确定的平面与另一条直线平行时,满足条件的平面就不存在. 【详解】在A 中,过m 上一点P 作n 的平行直线l ,m l P ⋂=,由公理三的推论可得m 与l 确定唯一的平面α,l ⊂α,n ⊄α,故//n α.故A 正确.在B 中,设过m 的平面为β,若n ⊥β,则n ⊥m ,故若m 与n 不垂直,则不存在过m 的平面β与n 垂直,故B 不正确.在C 中,根据异面直线所成角的定义可知,两异面直线所成的角的范围是0,2π⎛⎫⎪⎝⎭,故C 不正确.在D 中,当点P 与m ,n 中一条确定的平面与另一条直线平行时,满足条件的平面就不存在,故D 不正确. 故选:A . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题.2.C解析:C 【分析】结合题意分别在直角三角形中求出各边之间的数量关系,从而计算出结果 【详解】在Rt ABB '∆中,cos 42AB AB AB π'=⋅=在Rt ABA '∆中,1sin 62AA AB AB π'=⋅=,在Rt AA B ''∆中,12A B AB ''==, 所以:2:1AB A B ''= 故选C 【点睛】本题运用线面角来解三角形的边长关系,较为基础3.D解析:D根据题意得到三棱柱的高是内切球的直径,也是底面三角形内切圆的直径,根据等边三角形的性质得到内切球和外接球的半径,计算表面积的比值. 【详解】设点O 是三棱柱外接球和内切球的球心,点M 是底面等边三角形的中心,点N 是底边AB 的中点,连结OM ,MN ,AM ,OA ,设底面三角形的边长为a ,则3MN a =,23MA a =, 因为三棱锥内切球与各面都相切,所以三棱柱的高是内切球的直径,底面三角形内切圆的直径也是三棱柱内切球的直径,所以3OM MN a ==,即三棱柱内切球的半径3r a =, 23AM a =,所以2215OA OM AM a =+=,即三棱柱外接球的半径153R a =, 所以内切球的表面积为22443r a ππ=,外接球的表面积222043S R a ππ==, 所以三棱柱外接球和内切球表面积的比值为22204:5:133a a ππ=故选:D 【点睛】本题考查空间几何体的内切球和外接球的表面积,重点考查空间想象,计算能力,属于中档题型.4.B解析:B 【分析】①通过线面平行的判定定理判断正确性;②求得三棱锥M DEC -的体积最大值来判断正确性;③结合①判断正确性;④利用反证法判断正确性. 【详解】①,设F 是AD 的中点,折叠过程中1F 是1A D 的中点,连接11,F M EF , 由于M 是1A C 的中点,所以1F M 是三角形1A CD 的中位线, 所以111//,2F M CD F M CD =.由于E 是AB 的中点,所以1//,2BE CD BE CD =. 所以11//,F M BE F M BE =,所以四边形1BEF M 是平行四边形, 所以1//BM EF ,由于BM ⊄平面1A DE ,1EF ⊂平面1A DE , 所以//BM 平面1A DE ,所以①正确. ②,由于M 是1A C 的中点,所以112M DEC A DEC V V --=. 在折叠过程中,三角形DEC 的面积为定值14242⨯⨯=, 当平面1A DC ⊥平面ABCD 时,1A 距离平面ABCD 的距离最大.过A 作AO DE ⊥,交DE 于O ,连接1A O ,则1AO DE ⊥. 当平面1A DC ⊥平面ABCD 时,由于平面1A DC 平面ABCD DE =,所以1A O ⊥平面ABCD .DE ==则1122AE AD AE AD DE AO AO DE ⋅⋅=⋅⇒===则1AO .所以三棱锥1A DEC -体积的最大值为1433⨯=,所以三棱锥M DEC -体积的最大值为1233⨯=.所以②正确.③,由①知1BM EF EF =====③正确.④,由于2224,DE CE CD DE CE CD ===+=,所以DE CE ⊥.若1DE A C ⊥,1CE AC C ⋂=, 则DE ⊥平面1A CE ,则1DE A E ⊥,根据折叠前后图象的对应关系可知14DEA DEA π∠=∠=,与1DE A E ⊥矛盾,所以④错误. 综上所述,正确的为①②③. 故选:B【点睛】本小题主要考查线面平行、几何体体积、线线垂直等知识.5.C解析:C 【分析】先证明PO ⊥平面ABC ,接着求出19cos 19PAO =∠,再得到214r PO =和114R PO =,从而得到35r R =,最后求出球2O 与球1O 的表面积之比即可. 【详解】如图,取ABC 的外心O ,连接PO ,AO , 则PO 必过1O ,2O ,且PO ⊥平面ABC , 可知PAO ∠为侧棱与底面所成的角,即219cos 19PAO =∠. 取AB 的中点M ,连接PM ,MC .设圆1O ,2O 的半径分别为R ,r , 令2OA =,则19PA =23AB =3AM =,1OM =,所以214r OM PO PM ==,即24PO r =,从而145PO r r R r R =++=+, 所以1154R R PO r R ==+,则35r R =, 所以球2O 与球1O 的表面积之比为925.故选:C. 【点睛】本题考查三棱锥内切球的应用,考查空间想象能力,逻辑推理能力,是中档题.6.D解析:D 【分析】根据正四棱锥P ABCD -的体积公式,列出方程,求得2R =,再利用球的表面积公式,即可求解. 【详解】由题意,设外接球O 的半径为R ,则,2OP OA R AB R ===,则正四棱锥P ABCD -的体积为21116(2)333V Sh R R ==⨯⨯=,解得2R =, 所以球O 的表面积为2244216S R πππ==⨯=. 【点睛】本题主要考查了组合体的结构特征,以及锥体的体积、球的表面积的计算,其中解答中根据组合体的结构特征,结合锥体的体积公式和球的表面积公式,准确计算是解答的关键,着重考查推理与运算能力。
人教版高中数学必修第二册第三单元《立体几何初步》检测卷(有答案解析)
一、选择题1.设m ,n 是不同的直线,α,β,γ是三个不同的平面,有以下四个命题: ①若m α⊥,n β⊥,//αβ,则//m n ;②若m αγ=,n βγ=,//m n ,则//αβ;③若γα⊥,γβ⊥,则//αβ.④若//αβ,//βγ,m α⊥,则m γ⊥;其中正确命题的序号是( )A .①③B .②③C .③④D .①④ 2.点A ,B ,C 在球O 表面上,2AB =,4BC =,60ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为( ) A .323π B .86π C .36π D .323π 3.已知四棱锥S ABCD -的底面为矩形,SA ⊥底面ABCD ,点E 在线段BC 上,以AD 为直径的圆过点E .若33SA AB ==,则SED ∆的面积的最小值为( )A .9B .7C .92D .724.正三棱柱有一个半径为3cm 的内切球,则此棱柱的体积是( ).A .393cmB .354cmC .327cmD .3183cm 5.如图,在长方体1111ABCD A B C D -中,若,,,EFGH 分别是棱111111,,,A B BB CC C D 的中点,则必有( )A .1//BD GHB .//BD EFC .平面//EFGH 平面ABCDD .平面//EFGH 平面11A BCD6.已知平面α,β,γ和直线l ,下列命题中错误的是( )A .若αβ⊥,//βγ,则αγ⊥B .若αβ⊥,则存在l α⊂,使得//l βC .若a γ⊥,βγ⊥,l αβ=,则l γ⊥D .若αβ⊥,//l α,则l β⊥7.菱形ABCD 的边长为3,60B ∠=,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .12πC .8πD .6π8.三棱锥A -BCD 的所有棱长都相等,M ,N 分别是棱AD ,BC 的中点,则异面直线BM 与AN 所成角的余弦值为( )A .13B .2C .3D .239.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥βB .若α⊥β,n ∥α,则n ⊥βC .若m ∥α,m ∥β,则α∥βD .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β10.如图,在四面体ABCD 中,截面PQMN 是正方形,现有下列结论:①AC BD ⊥②AC ∥截面PQMN③AC BD =④异面直线PM 与BD 所成的角为45其中所有正确结论的编号是( )A .①③B .①②④C .③④D .②③④ 11.边长为2的正方形ABCD 沿对角线AC 折叠使得ACD 垂直于底面ABC ,则点C到平面ABD 的距离为( )A .263B .233C .223D .6312.已知,a b 是两条直线,,αβ是两个平面,则a b ⊥的一个充分条件是( ) A .a α⊥,b β//,αβ⊥B .a α⊥,b β⊥,//αβC .a α⊂,b β⊥,//αβD .a α⊂,b β//,αβ⊥13.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .261cmC .61cmD .234cm14.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( )A .1个B .2个C .3个D .4个二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.(1)求证:1//AD 平面EMN ;(2)求异面直线1AD 与BE 所成角的余弦值.16.如图,直三棱柱ABC -A 1B 1C 1中,AA 1=2,A 1C =25,AB =2,∠BAC =60°.(1)求三棱锥A 1-ABC 的表面积;(2)证明:在线段A 1C 上存在点M ,使得AC ⊥BM ,并求1A M MC的值. 17.如图所示,在四棱锥P ABCD -中,90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,PA ⊥平面ABCD ,E 为PD 中点,2AC =.(1)求证://AE 平面PBC .(2)若四面体PABC 的体积为33,求PCD 的面积. 18.如图三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ∠︒===,(1)证明1AB A C ⊥;(2)若16AC =,2ABCB ==,求三棱柱111ABC A B C -的体积S . 19.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AC BC ⊥,1AC BC CC ==,E ,F 分别为11A B ,BC 的中点.(Ⅰ)求证:1AC C F ⊥;(Ⅱ)求证:BE ∥平面11AC F ;(Ⅲ)在棱1CC 上是否存在一点G ,使得平面1B EG ⊥平面11AC F ?说明理由. 20.如图在Rt ABC △中,点M ,N 分别在线段AB ,AC 上,且//MN BC ,AB BC =,2AM MB =.若将AMN 沿MN 折起到PMN 的位置,使得60PMB ∠=︒.(1)求证:平面PBN ⊥平面BCNM ;(2)在棱PC 上是否存在点G ,使得//GN 平面PBM ?说明理由.21.如图,在四棱锥P ABCD -中,四边形ABCD 为菱形,60BAD ︒∠=,PAD △为正三角形,且E ,F 分别为AD ,PC 的中点.(Ⅰ)求证://DF 平面PEB ;(Ⅱ)求证:BC ⊥平面PEB .22.已知三棱柱ABC -A 1B 1C 1中BC =1,CC 1=BB 1=2,AB 2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C(1)求证:C 1B ⊥平面ABC ;(2)求三棱柱ABC -A 1B 1C 1的体积,(3)试在棱CC 1(不包含端点C ,C 1)上确定一点E ,使得EA ⊥EB 1;23.如图,在直三棱柱111ABC A B C -中,E ,F 分别为11A C 和BC 的中点.(1)求证://EF 平面11AA B B ;(2)若13AA =,23AB =,求EF 与平面ABC 所成的角.24.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AB =,1AD =,60DAB ∠=︒,PD BD =,且PD ⊥平面ABCD .(1)证明:平面PBC ⊥平面PBD ;(2)若Q 为PC 的中点,求三棱锥D PBQ -的体积.25.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线45DBP ∠=,求四棱锥P ABCD -的体积.26.如图甲,边长为2的正方形ABCD 中,E 是AB 边的中点,F 是BC 边上的一点,对角线AC 分别交DE 、DF 于M 、N 两点,将DAE ∆及DCF ∆折起,使A 、C 重合于G 点,构成如图乙所示的几何体.(1)求证:GD EF ⊥;(2)若EF ∥平面GMN ,求三棱锥G EFD -的体积G EFD V -.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据空间线面位置关系的性质和判定定理判断或举出反例说明.【详解】对①,根据垂直于两个平行平面中一个平面的直线与另一个平面也垂直,以及垂直于同一个平面的两条直线平行,故①正确;对②,设三棱柱的三个侧面分别为,,αβγ,其中两条侧棱为,m n ,显然//m n ,但α与β不平行,故②错误.对③,当三个平面,,αβγ两两垂直时,显然结论不成立,故③错误.对④,∵////αβγ,当m α⊥时,m γ⊥,故④正确.故选:D.【点睛】该题考查空间线面位置关系的判断,属于中档题目. 2.D解析:D【分析】先判断出底面三角形的形状,然后从球心作截面的垂足,确定垂足的位置后,再利用勾股定理得到半径,再求体积即可.【详解】由2AB =,4BC =,60ABC ∠=︒及余弦定理得,2222cos 416224cos6012AC AB BC AB BC ABC =+-⋅∠=+-⨯⨯︒=,所以222BC AB AC =+,即A 是直角,BC 是底面圆的直径,过球心O 作OD ⊥平面ABC ,D 即为BC 的中点,所以22OD =,122BD BC == 连接OB ,OB 即为半径,由勾股定理得2223OB OD BD =+=,所以球的体积为34(23)3233V ππ==, 故选:D.【点睛】本题考查了球的外接问题,确定球心在截面上的射影的位置是关键,属于基础题. 3.C解析:C【分析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到,BE EC 之间的等量关系,再用,BE EC 表示出SED 的面积,利用均值不等式即可容易求得.【详解】设BE x =,EC y =,则BC AD x y ==+.因为SA ⊥平面ABCD ,ED ⊂平面ABCD ,所以SA ED ⊥.又AE ED ⊥,SA AE A ⋂=,所以ED ⊥平面SAE ,则ED SE ⊥.易知AE =ED =在Rt AED ∆中,222AE ED AD +=,即22233()x y x y +++=+,化简得3xy =.在Rt SED ∆中,SE =ED ==.所以12SED S SE ED ∆=⋅=.因为22108336x x +≥=,当且仅当x =2y =时等号成立,所以92SED S ∆≥=. 故选:C.【点睛】 本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.4.B解析:B【分析】由题意知正三棱柱的高为,可得底面正三角形的边长为6cm ,即得到底面三角形的面积,代入棱柱的体积公式求解即可.【详解】∵的内切球,则正三棱柱的高为,,设底面正三角形的边长为a cm,则123a ⨯=6a =cm ,∴正三棱柱的底面面积为16622⨯⨯⨯=2,故此正三棱柱的体积V =54=cm 3.故选:B .【点睛】本题考查棱柱的体积的求法,考查几何体的内切球的性质,属于基础题.5.D解析:D【分析】根据“过直线外一点有且只有一条直线与已知直线平行”来判断AB 选项的正确性,根据平行直线的性质判断C 选项的正确性,根据面面平行的判定定理判断D 选项的正确性.【详解】选项A:由中位线定理可知:1//GH D C ,因为过直线外一点有且只有一条直线与已知直线平行,所以1,BD GH 不可能互相平行,故A 选项是错误的;选项B: 由中位线定理可知:1//EF A B ,因为过直线外一点有且只有一条直线与已知直线平行,所以,BD EF 不可能互相平行,故B 选项是错误的;选项C: 由中位线定理可知:1//EF A B ,而直线1A B 与平面ABCD 相交,故直线EF 与平面ABCD 也相交,故平面EFGH 与平面ABCD 相交,故C 选项是错误的;选项D:由三角形中位线定理可知:111//,//EF A B EH A D ,EF ⊄平面11A BCD ,1A B ⊂平面11A BCD ,EH ⊄平面11A BCD ,11A D ⊂平面11A BCD ,所以有//EF 平面11A BCD ,//EH 平面11A BCD ,而EF EH E =,因此平面//EFGH 平面11A BCD .所以D 选项正确.故本选:D【点睛】本小题主要考查面面平行的判定定理,考查线线平行的性质,属于中档题. 6.D解析:D【分析】根据面面垂直的判定定理即可判断A 正确;根据线面平行的判定定理可知B 正确; 根据面面垂直的性质定理可知C 正确;根据线面垂直的判定定理可知D 错误.【详解】对于A ,因为αβ⊥,所以存在直线a ⊂α,使a ⊥β,又β∥γ,所以a ⊥γ,有α⊥γ,正确;对于B ,α⊥β,设α∩β=m ,则在平面α内存在不同于直线m 的直线l ,满足l ∥m ,根据线面平行的判定定理可知,l ∥β,正确;对于C ,过直线l 上任意一点作直线m ⊥γ,根据面面垂直的性质定理可知,m 既在平面α又在平面β内,所以直线l 与直线m 重合,即有l ⊥γ,正确;对于D ,若α⊥β,l ∥α,则l ⊥β不一定成立,D 错误.故选:D .【点睛】本题主要考查线面位置关系的判断,考查学生的逻辑推理能力,属于中档题.7.A解析:A【分析】首先根据已知条件找到四面体外接球的球心,再求出半径,即可得到球体的表面积.【详解】如图所示,1O ,2O 分别为ABC 和DAC △的外接圆圆心,因为菱形ABCD ,60B ∠=,所以ABC 和DAC △为等边三角形.设E 为AC 的中点,连接DE ,BE ,则DE AC ⊥,BE AC ⊥,又因为平面ACD ⊥平面ABC AC =,所以DE ⊥平面ABC .分别过1O ,2O 作垂直平面ABC 和平面ACD 的直线,则交点O 为四面体ABCD 外接球的球心. 因为22333322⎛⎫==-= ⎪⎝⎭EB DE ,四边形12OO EO 为矩形, 所以123==O B DO 12132===O E O E OO . ()223153=2⎛⎫+⎪ ⎪⎝⎭15π. 故选:A【点睛】 本题主要考查四面体外接球的表面积,根据题意确定外接球的球心为解题关键,属于中档题.8.D解析:D【分析】连接DN ,取DN 的中点O ,连接MO ,BO ,得出BMO ∠(或其补角)是异面直线BM 与AN 所成的角,根据长度关系求出BMO ∠(或其补角)的余弦值即可.【详解】连接DN ,取DN 的中点O ,连接MO ,BO ,∵M 是AD 的中点,∴MO ∥AN ,∴BMO ∠(或其补角)是异面直线BM 与AN 所成的角.设三棱锥A -BCD 的所有棱长为2, 则2213AN BM DN ===- 则13122MO AN NO DN ====, 则223714BO BN NO =+=+= 在BMO ∠中,由余弦定理得222373244cos 233232BM MO BO BMO BM MO +-+-∠===⋅⨯⨯, ∴异面直线BM 与AN 所成角的余弦值为23. 【点睛】 本题主要考查异面直线的夹角,解题的关键是正确找出异面直线所对应的夹角,属于中档题.9.D解析:D【分析】根据直线、平面平行垂直的关系进行判断.【详解】由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误;在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误;在D 中,若m ⊥α,m ⊥β,则α∥β,∴若n ⊥α,则n ⊥β,故D 正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.10.B解析:B【分析】由线线平行和垂直的性质可判断①,由线面平行的判定定理和性质定理可判断②,由平行线分线段成比例可判断③,由异面直线所成角的定义可判断④.【详解】截面PQMN 是正方形,PQ MN ∴//,又MN ⊂平面ADC ,PQ ⊄平面ADC ,PQ ∴//平面ADC ,PQ ⊂平面ABC ,平面ABC 平面ADC AC = PQ AC ∴//,同理可得PN BD //由正方形PQMN 知PQ PN ⊥,则AC BD ⊥,即①正确;由PQ AC //,PQ ⊂平面PQMN ,AC ⊄平面PQMN ,得AC //平面PQMN ,则②正确;由PQ AC //,PQ MN //,得AC MN //, 所以AC AD MN DN=, 同理可证BD AD PN AN=, 由正方形PQMN 知PN MN =,但AN 不一定与DN 相等, 则AC 与BD 不一定相等,即③不正确;由PN BD //知MPN ∠为异面直线PM 与BD 所成的角,由正方形PQMN 知45MPN ∠=︒,则④正确.故选:B.【点睛】本题考查命题的真假判断,主要是空间线线、线面的位置关系,考查推理能力,属于中档题.11.A解析:A取AC 的中点O ,连接DO 和BO ,由等腰三角形的性质得出DO AC ⊥,可求出DO 和BO 的长,再由平面ACD ⊥平面ABC ,根据面面垂直的性质可得DO ⊥平面ABC ,进而得到DO OB ⊥,利用勾股定理即可求出BD ,最后利用等体积法得出C ABD D ABC V V --=,进而求出点C 到平面ABD 的距离.【详解】解:取AC 的中点O ,连接DO 和BO ,则DO AC ⊥,BO AC ⊥,由于四边形ABCD 是边长为2的正方形,2AD CD AB BC ∴====, 则222222AC =+=,()22222DO BO ==-=,由题知,平面ACD ⊥平面ABC ,且交线为AC ,而DO ⊂平面ACD ,则DO ⊥平面ABC ,又BO ⊂平面ABC ,所以DO BO ⊥,∴在Rt BOD 中,()()22222BD =+=,∴ABD △是等边三角形,则122sin 6032ABD S =⨯⨯⨯=△, 则在Rt ABC 中,12222ABC S =⨯⨯=, 设点C 到平面ABD 的距离为d , 则C ABD D ABC V V --=,即1133ABD ABC S d S DO ⋅=⋅△△, 即:1132233d ⨯=⨯⨯,解得:263d =, 即点C 到平面ABD 的距离为26. 故选:A.本题考查利用等体积法求点到面的距离,还涉及面面垂直的性质和棱锥的体积公式,考查推理证明和运算能力.12.C解析:C【分析】在A 中,a 与b 可以成任意角;在B 中a 与b 是平行的;在C 中,可得b α⊥,从而得到a b ⊥;在D 中,可得a 与b 可以成任意角,从而得到正确结果.【详解】由a ,b 是两条不同的直线,,αβ是两个不同的平面,在A 中,a α⊥,b β//,αβ⊥,因为b 的方向不确定,则a 与b 可以成任意角,故A 错误;在B 中,a α⊥,b β⊥,//αβ,根据对应的性质可知,可知a 与b 是平行的,故B 错误;在C 中,由a α⊂,b β⊥,//αβ,可知b α⊥,由线面垂直的性质可知a b ⊥,故C 正确;在D 中,a α⊂,b β//,αβ⊥,可得a 与b 可以成任意角,故D 错误.故选:C.【点睛】该题考查线线垂直的充分条件的判断,考查空间中线线、线面、面面间的位置关系等基础知识,在解题的过程中,注意结合图形去判断,属于中档题目.13.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 14.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.二、解答题15.(1)证明见解析(2885 【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果.【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =,所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN ,所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅175********+-⨯⨯885=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)6+23+26;(2)证明见解析;13. 【分析】 (1)可先证明1A B ⊂平面1A AB 得出1BC A B ⊥,即可求出三棱锥A 1-ABC 各个面的面积,得出表面积;(2)在平面ABC 内,过点B 作BN AC ⊥,垂足为N ,过N 作1//MN A A 交1A A 于M ,连接BM ,即可得出.【详解】(1)2,4,=60=23AB AC BAC BC BC AB ==∠∴∴⊥,,,1A A ⊥平面ABC ,BC ⊆平面ABC ,1BC AA ∴⊥,1A A AB A =,BC ∴⊥平面1A AB ,1A B ⊂平面1A AB ,1BC A B ∴⊥,112223262A BC S∴=⨯⨯=, 1=232ABC S AB BC ∴⋅⋅=,111==22A AB S A A AB ⋅,111=42A AC S A A AC =⋅, 则表面积=6+23+26S ;(2)证明:在平面ABC 内,过点B 作BN AC ⊥,垂足为N ,过N 作1//MN A A 交1A A 于M ,连接BM ,1A A ⊥AC ,1//MN A A ,AC MN ∴⊥,MN BN N =,∴AC ⊥平面MBN .又BM ⊂平面MBN ,∴AC BM ⊥.在直角BAN 中,cos 1, 3.=∠==-=AN AB BAC NC AC AN111//.3,∴==A M AN MN A A MC NC 【点睛】 本题考查三棱柱表面积的求解,解题的关键是得出1BC A B ⊥以便求出各个面的面积,考查点的存在性问题,解题关键是正确利用线面垂直关系作出辅助线.17.(1)证明见解析;(2)27. 【分析】 (1)取CD 中点F ,连接EF ,AF ,利用面面平行的判定定理证明平面//AEF 平面PBC ,再用面面平行的性质可得//AE 平面PBC ;(2)根据体积求出PA ,过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,求出PQ 和CD 后,根据三角形面积公式可求得结果.【详解】(1)取CD 中点F ,连接EF ,AF ,则//EF PC ,又120BCD AFD ∠=∠=︒,∴//BC AF ,∴平面//AEF 平面PBC ,∴//AE 平面PBC .(2)因为90CAD ABC ∠=∠=,30BAC ADC ∠=∠=,2AC =,所以1,3BC AB ==由已知得:113323P ABC V AB BC PA -=⋅⋅⋅=,即11331323PA ⨯⨯⨯⨯=, 可得2PA =.过A 作AQ CD ⊥于Q ,连接PQ ,AQ ,∵PA ⊥平面ABCD ,∴PA AQ ⊥,PA CD ⊥,∴CD PQ ⊥,ACD △中,2AC =,90CAD ∠=,30ADC ∠=,∴4CD =,23AD =,22334AC AD AQ CD ⋅⨯===, 222237PQ PA AQ =+=+=,∴11742722PCD S PQ CD =⋅=⨯⨯=△. 【点睛】 关键点点睛:掌握面面平行的判定定理和面面平行的性质是解题关键. 18.(1)证明见解析;(2)3.【分析】(1)取AB 中点E ,连接11,,CE A B A E ,根据已知条件,利用等腰三角形的性质得到1A E AB ⊥,,CE AB ⊥利用线面垂直的判定定理证得AB ⊥面1,CEA 即可得到1AB A C ⊥ ; (2) 在1CEA 中可以证明1A E CE ⊥,结合1A E AB ⊥,利用线面垂直判定定理得到1A E ⊥平面ABC ,作为三棱柱的高,进而计算体积.【详解】(1)取AB 中点E ,连接11,,CE A B A E ,11,60AB AA BAA ∠︒==,1BAA ∴是等边三角形,1A E AB ∴⊥,CA CB =,,CE AB ∴⊥1,CE A E E ⋂=AB ∴⊥面1,CEA1AB A C ∴⊥.(2)由于CAB ∆为等边三角形,3CE ∴=1123322S AB CE ⨯⨯⨯=底面积==1CEA 中,3CE =13EA =16AC =1A E CE ∴⊥,结合1A E AB ⊥,又,,AB CE E AB CE ⋂=⊂平面ABC ,1A E ∴⊥平面ABC ,1h A E ∴=3V Sh ==.【点睛】本题考查线面垂直的判定与证明,考查棱柱的体积计算,属基础题,为证明线线垂直,常常先证线面垂直,为证明线面垂直,又常常需要先证明线线垂直,这是线面垂直关系常用的证明与判定方式,要熟练掌握.19.(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)在棱1CC 上存在点G ,且G 为1CC 的中点.理由见解析.【分析】(Ⅰ)在三棱柱111ABC A B C -中,由侧棱垂直于底面,可得1CC ⊥平面ABC ,则1CC AC ⊥,再由AC BC ⊥,结合线面垂直的判定可得AC ⊥平面11BCC B .从而得到1AC C F ⊥;(Ⅱ)取11A C 的中点H ,连结EH ,FH .可得//EH BF ,且EH BF =.则四边形BEHF 为平行四边形,则//BE FH .再由线面平行的判定可得//BE 平面11AC F ; (Ⅲ)在棱1CC 上存在点G ,且G 为1CC 的中点.连接EG ,1GB .首先证明△11B C G ≅△1C CF .可得11190C CF B GC ∠+∠=︒,则11B G C F ⊥.由(Ⅰ)可得AC ⊥平面11BB C C ,得到11A C ⊥平面11BB C C .即111AC B G ⊥.由线面垂直的判定可得1B G ⊥平面11AC F .进一步得到平面1B EG ⊥平面11AC F .【详解】解:(Ⅰ)在三棱柱111ABC A B C -中,因为侧棱垂直于底面,所以1CC ⊥平面ABC . 又AC ⊂平面ABC所以1CC AC ⊥.因为AC BC ⊥,1CC BC C ⋂=,1CC ⊥平面11BCC B ,BC ⊂平面11BCC B 所以AC ⊥平面11BCC B .因为1C F ⊂平面11BCC B ,所以1AC C F ⊥.(Ⅱ)取11A C 中点H ,连结EH ,FH .则EH //11B C ,且1112EH B C =, 又因为BF //11B C ,且1112BF B C =,所以EH //BF ,且EH BF =.所四边形BEHF 为平行四边形.所以BE //FH .又BE ⊄平面11AC F ,FH⊂平面11AC F ,所以BE //平面11AC F(Ⅲ)在棱1CC 上存在点G ,且G 为1CC 的中点.连接1,EG GB .在正方形11BB C C 中,因为F 为BC 中点,所以△11B C G ≌△1C CF .所以11190C CF B GC ∠+∠=︒.所以11B G C F ⊥.由(Ⅰ)可得AC ⊥平面11BB C C ,因为11AC//A C ,所以11A C ⊥平面11BB C C .因为1B G ⊂平面11BB C C ,所以111AC B G ⊥.因为1111AC C F C =,11A C ⊂平面11AC F ,1C F ⊂平面11AC F .所以1B G ⊥平面11AC F .因为1B G ⊂平面1B EG ,所以平面1B EG ⊥平面11AC F .【点睛】本题考查直线与平面、平面与平面垂直的判定,考查空间想象能力与思维能力,考查数学转化思想方法与数形结合的解题思想方法.20.(1)证明见解析;(2)存在,理由见解析.【分析】(1)证明PB BM ⊥,由线面垂直证明MN PB ⊥,然后由线面垂直的判定定理可得线面垂直,然后有面面垂直;(2)过点N 作//NH BM ,交BC 于点H ,再过点H 作GH //PB ,交PC 于点G ,可得两个线面平行,从而得面面平行,于是可得//GN 平面PMB ,同时得出13CG CP =. 【详解】解:(1)在Rt ABC △中,由AB BC =可知,BC AB ⊥.因为//MN BC ,所以MN AB ⊥.翻折后垂直关系没变,仍有MN PM ⊥,MN BM ⊥.又PM BM M ⋂=,所以MN ⊥平面PBM ,PB ⊂平面PBM ,则MN PB ⊥, 又60PMB ∠=︒,可令2PM =,则1BM=,由余弦定理得3PB =. 所以222PB BM PM +=,即PB BM ⊥. 又因为BM MN M =,所以PB ⊥平面BCNM .又因为PB ⊂平面PBM ,所以平面PBM ⊥平面BCNM .(2)在PC 上是存在一点G ,当13CG CP =时,使得//GN 平面PMB . 证明如下:过点N 作//NH BM ,交BC 于点H ,则四边形BMNH 是平行四边形, 且2MN BH ==,1CH =. 又由NH ⊄平面PBM ,BM ⊂平面PBM 知,//NH 平面PBM .再过点H 作GH //PB ,交PC 于点G ,则13CH CG CB CP ==. 又由GH ⊄平面GHN ,PB ⊂平面PBM 知,//GH 平面PBM .又NH ⊂面GHN ,GH ⊂面GHN ,GH HN H ⋂=,所以平面//GHN 平面PBM .又GN ⊂平面PBM ,所以//GN 平面PBM .【点睛】关键点点睛:本题考查证明面面垂直,线面平行,解题方法根据面面垂直的判定定理证明垂直,根据面面平行的性质定理证明线面平行.要注意立体几何中证明平行与垂直的方法很多,解题时注意线线、线面、面面平行(垂直)间的相互转化.21.(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)取PB 中点G ,可证得四边形DEGF 是平行四边形,进而可得//DF EG ,最后可证//DF 平面PEB ;(Ⅱ)由条件可得PE AD ⊥,BE AD ⊥,进而由线面垂直的判定定理得出结论.【详解】(Ⅰ)取PB 中点G ,因为F 是PC 中点,∴//FG BC ,且12FG BC =, ∵E 是AD 的中点,则//DE BC ,且12DE BC =,∴//FG DE ,且FG DE =, ∴四边形DEGF 是平行四边形,∴//DF EG ,又∵DF ⊄平面PEB ,EG ⊂平面PEB ,∴//DF 平面PEB ;(Ⅱ)因为E 是正三角形PAD 边为AD 的中点,则PE AD ⊥,∵四边形ABCD 为菱形,60BAD ︒∠=,∴正三角形BAD 中,BE AD ⊥,∵PE BE E ⋂=,∴AD ⊥平面PEB ,∵//AD BC ,∴BC ⊥平面PEB .【点睛】方法点睛:本题考查线面平行、线面垂直的判定,解题关键是熟记线面平行和线面垂直的判定定理,以及定理成立时的条件,考查空间想象能力,属于常考题.22.(1)证明见解析;(2)6;(3)E 为CC 1的中点时,EA ⊥EB 1. 【分析】(1)证明11,AB BC BC BC ⊥⊥然后证明1C B ⊥平面ABC ;(2)求出ABC S ,求出13C B =,然后求解三棱柱111ABC A B C -的体积;(3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE ,证明1EB ⊥平面ABE ,得到EA ⊥EB 1.【详解】(1)∵BC =1,CC 1=BB 1=2,AB =2,∠BCC 1=60°,AB ⊥侧面BB 1C 1C∴AB ⊥BC 1在△BCC 1中,由余弦定理得BC =3,则BC 2+BC 2=CC 2,∴BC ⊥BC 1又∵BC ∩AB =B ,且AB ,BC ⊂平面ABC,∴C 1B ⊥平面ABC .(2)由已知可得S △ABC =12AB ·BC =12×2×1=22由(1)知C 1B ⊥平面ABC ,C 1B =3,所以三棱柱ABC -A 1B 1C 1的体积V =S △ABC ·C 1B =2×3=6. (3)在棱CC 1(不包含端点C ,C 1)上取一点E ,连接BE .∵EA ⊥1EB ,AB ⊥1EB ,AB ∩AE=A ,AB ,AE ⊂平面ABE ,∴1EB ⊥平面ABE .又∵BE ⊂平面ABE ,∴BE ⊥1EB .不妨设CE =x (0<x <2),则C 1E =2x -,在△BCE 中,由余弦定理得BE =221x x +-在△B 1C 1E 中,∠B 1C 1E =120°,由余弦定理得B 1E 2=257x x -+在Rt △BEB 1中,由B 1E 2+BE 2=B 1B 2,得()()222225714x x x x -+++-=,解得x =1或x =2(舍去).故E 为CC 1的中点时,EA ⊥EB 1.【点睛】关键点点睛:在确定动点位置时,设CE =x (0<x <2),则C 1E =2x -,根据条件,建立关于x 的方程,求解确定动点位置,属于常用方法.23.(1)证明见解析;(2)60°.【分析】(1)取AB 中点D ,连结1A D 、DF ,推导出四边形1DFEA 是平行四边形,从而1//A D EF ,由此能证明//EF 平面AA 11B B . (2)取AC 中点H ,连结HF ,则EFH ∠为EF 与面ABC 所成角,由此能求出EF 与平面ABC 所成的角.【详解】(1)取AB 中点D ,连结1A D 、DF ,在ABC ∆中,D 、F 为中点,1//2DF AC =∴, 又11//A C AC ,且11112A E AC =,1//DF A E =∴,∴四边形1DFEA 是平行四边形,1//A D EF ∴,1A D ∴⊂平面11AA B B ,EF ⊂/平面11AA B B ,//EF ∴平面AA 11B B .(2)取AC 中点H ,连结HF ,1//EH AA ,1AA ⊥面ABC ,EH ∴⊥面ABC ,EFH ∴∠为EF 与面ABC 所成角,在Rt EHF ∆中,3FH =,13EH AA ==,tan 3tan 603HFE ∴∠===︒,60HFE ∴∠=︒,EF ∴与平面ABC 所成的角为60︒.【点睛】 本题考查线面平行的证明,考查线面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、空间想象能力、数形结合思想,是中档题. 24.(1)证明见解析;(2)14 【分析】(1)由余弦定理可得23BD =,证得AD BD ⊥,则BC BD ⊥由PD ⊥底面ABCD ,BC ⊂平面ABCD ,证得PD BC ⊥,得证.(2)Q 为PC 的中点,利用等积法12D PBQ D BCQ Q BCD P BCD V V V V ----===,即可求出结果. 【详解】(1) 在ABD △中,由余弦定理得2222cos 3BD BA AD BA AD DAB =+-⋅∠=, ∵222AD BD AB +=,∴AD BD ⊥,∵//AD BC ,∴BC BD ⊥.又∵PD ⊥底面ABCD ,BC ⊂平面ABCD∴PD BC ⊥.∵PD BD D ⋂=,∴BC ⊥平面PBD .(2)因为Q 为PC 的中点,所以三棱锥D PBQ -的体积A PBQ V -,与三棱锥D QBC -的体积相等,即1111313232412D PBQ D BCQ Q BCD P BCD V V V V ----=⨯⨯⨯⨯⨯====. 所以三棱锥A PBQ -的体积14D PBQ V -=. 【点睛】 本题主要考查了线面垂直的证明,在含有长度时需要解三角形来证垂直,并且不要忘记线面垂直的性质运用,在求三棱锥的体积时注意等体积法的使用25.(1)证明见解析;(2)43. 【分析】(1)证明AC BD ⊥,PD AC ⊥,结合线面垂直的判定定理得出AC ⊥平面PBD ; (2)求出菱形ABCD 的面积,结合PD ⊥平面ABCD ,利用棱锥的体积公式得出四棱锥P ABCD -的体积.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥.又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD AC ⊥.又PD BD D ⋂=,PD ⊂平面PBD ,BD ⊂平面PBD ,故AC ⊥平面PBD ;(2)因为45DBP ∠=,PD ⊥平面ABCD因此2BD PD ==.又2AB AD ==所以菱形ABCD 的面积为sin6023S AB AD =⋅⋅=故四棱锥P ABCD -的体积14333V S PD =⋅=. 【点睛】本题主要考查了证明线面垂直以及求棱锥的体积,属于中档题.26.(1)证明见解析;(2)13; 【分析】(1)想要证明线线垂直,就得先证明线面垂直,由于E ,F 两点都是中点,故想到取中点,构造两组线线垂直,由线面垂直的判定定理知,平面DGH ,由线面垂直的性质知,GD EF ⊥;(2)求解三棱锥的体积问题,我们通常采用等体积法,将已知的三棱锥转变成一个我们容易求解的三棱锥来求解,由于本题中,所以,平面GEF ,显然,三棱锥的高解决了,故有G EFD V -=D GEF V -=13【详解】证明:取EF 的中点为H,连接DH,GH ,在中,GE=GF ,H 是中点,, 在中,DE=DF ,H 是中点, 故,, 所以平面DGH ,即GD EF ⊥. (2)EF ∥平面GMN 知,F 是BC 边上的中点,故有GE GF ⊥, 在直角三角形GEF 中,GE=GF=1,故EF=, 又因为, 所以,平面GEF ,故此时三棱锥的高为DG ,值是2, G EFD V -=D GEF V -=13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学立体几何单元测试卷高一2011-2012学年度单元测试题数 学 立体几何部分本试卷分为第Ⅰ卷(选择题)与第Ⅱ卷(必考题和选考题两部分),考生作答时请将答案答在答题纸上,答在试卷或草纸上无效,考试时间120分钟,满分150分。
参考公式:柱体体积V Sh =,其中S 为柱体底面积,h 为柱体的高。
球体体积343V R π=,其中π为圆周率,R 为球体半径。
椎体体积13V Sh =,其中S 为锥体底面积,h 为锥体的高。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是 A.两两相交的三条直线共面B.两条异面直线在同一平面上的射影可以是一条直线C.一条直线上有两点到平面的距离相等,则这条直线和该平面平行D.不共面的四点中,任何三点不共线2.设平面α∥平面β,A ∈α,B ∈β,C 是AB 的中点,当A ,B 分别在α,β内运动时,那么所有的动点C A.不共面B.当且仅当A ,B 在两条相交直线上移动时才共面C.当且仅当A ,B 在两条给定的平行直线上移动时才共面D.不论A ,B 如何移动都共面3.若某空间几何体的三视图如图所示,则该几何体的体积是 A.2 B.1 C.23 D. 13第3题图 第4题图43π6π6π6π5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 A.若l ⊥m ,m ⊂α,则l ⊥α B.若l ⊥α,l ∥m ,则m ⊥αC.若l ∥α,m ⊂α,则l ∥mD.若l ∥α,m ∥α,则l ∥m 第6题图6.如图所示,在斜三棱柱ABC -A 1B 1C 1中,∠BAC=90°,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在A.直线AB 上B.直线BC 上C.直线AC 上D.△ABC 内部7.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F , 且EF=12,则下列结论中错误的是 A. AC ⊥BE B.EF ∥平面ABCDC.三棱锥A-BEF 的体积为定值D.△AEF 的面积与△BEF 的面积相等 第7题图 8.已知有三个命题:①长方体中,必存在到各点距离相等的点;②长方体中,必存在到各棱距离相等的点;③长方体中,必存在到各面距离相等的点。
以上三个命题中正确的有 A.0个 B.1个 C.2个 D.3个9.如果底面直径和高相等的圆柱的侧面积是S ,那么圆柱的体积等于 2S S 2S S π4SS 4S S π10.如图所示,若Ω是长方体ABCD -A 1B 1C 1D 1被平面EFGH 截去几何体B 1EF -C 1HG 后得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中 不正确的是A.EH ∥FGB.四边形EFGH 是矩形C.Ω是棱柱D.Ω是棱台 第10题图A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点第11题图第12题图12.如图所示,在单位正方体ABCD-A1B1C1D1的面对角线A1B上存在一点P,使得AP+D1P最短,则AP+D1P的最小值为22 +26+22+第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答。
第22题~第24题为平行选考题,考生根据要求作答。
二、填空题(本大题共4小题,每小题5分)13.如图所示,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是_________14.一个几何体的三视图如图所示,已知这个几何体的体积为103h=______ 第13题图第14题图第15题图15.如图所示,在正三角形ABC中,E、F分别是AB、AC的中点,AD⊥BC,EH⊥BC,FG⊥BC,D、H、G为垂足,若将正三角形ABC绕AD旋转一周所得的圆锥的体积为V,则其中有阴ABCA 1B 1C 1BDA 11B 1C 16.判断下列命题的正确性,并把所有正确命题的序号都填在横线上__________ ①若直线a ∥直线b ,b 平面α,则直线a ∥平面α②在正方体内任意画一条线段l ,则该正方体的一个面上总存在直线与线段l 垂直 ③若平面β⊥平面α,平面γ⊥α,则平面β∥平面γ④若直线a ⊥平面α,直线b ∥平面α,则直线b ⊥直线a 三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在直三棱柱ABC -A 1B 1C 1中,AB 1⊥BC 1,AB=CC 1=1,BC=2. (1)求证:A 1C 1⊥AB ; (2)求点B 1到平面ABC 1的距离.18.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD//BC ,∠ADC=90°, BC=12AD ,PA=PD ,Q 为AD 的中点. (1)求证:AD ⊥平面PBQ ;(2)若点M 在棱PC 上,设PM=tMC ,试确定t 的值,使得PA//平面BMQ .19.(本小题满分12分)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA=AB= 12PD . (1)证明:PQ ⊥平面DCQ ;(2)求棱锥Q -ABCD 的的体积与棱锥P —DCQ 的体积的比值.20.(本小题满分12分)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD=1,底边AB 上有且只有一点M 使得平面D 1DM ⊥平面D 1MC.(1)求异面直线CC 1与D 1M 的距离; (2)求二面角M -D 1C -D 的大小.DCABPFEAA 1CC 1B B 121.(本小题满分12分)已知正四棱锥P -ABCD 的底面边长和侧棱长均为13,E 、F 分别是PA 、BD 上的点, 且85==FD BF EA PE . (1)求证:直线EF ∥平面PBC ; (2)求直线EF 与平面ABCD 所成的角;在22、23、24题中任选一题作答,如果多做,则按所做的第一题所得的分计分。
22.(本小题满分12分)已知斜三棱柱ABC -A 1B 1C 1的侧面BB 1C 1C 是边长为2的菱形, ∠B 1BC=60°,侧面BB 1C 1C ⊥底面ABC ,∠ACB=90°,二面角A-B 1B-C 为30°. (1)求证:AC ⊥BB 1C 1C ;(2)求AB 1与平面BB 1C 1C 所成角的正切值;(3)在平面AA 1B 1B 内找一点P ,使三棱锥P-BB 1C 为正三棱锥,并求 该棱锥底面BB 1C 上的高.23.(本小题满分12分)如图,四边形ABCD 是正方形,PB ⊥平面ABCD ,MA//PB ,PB=AB=2MA , (1)证明:AC//平面PMD ;(2)求直线BD 与平面PCD 所成的角的大小;24.(本小题满分12分)如图,已知正三棱柱ABC —A 1B 1C 1的各棱长都为a ,P 为A 1B 上的点。
(1)试确定PBP A 1的值,使得PC ⊥AB ;(2)若321 PB P A ,求二面角P —AB —C 的大小; (3)在(2)条件下,求C 1到平面PAC 的距离高一2011-2012学年度单元测试卷数学试卷答题纸姓 名:__________班 级:__________ (正面朝上,切勿贴出虚线方框外)贴 条 形 码 区准考证号请在各题目的答题区域内作答,超出黑色矩19.(本小题满分12分)高一2011-2012单元检测题参考答案及评分标准一、选择题,每小题5分,选错或不选不得分二、填空题,每小题5分,第16题选错或少选都不得分13.a 14. 3 15. 5816.②④三、解答题,考生必须写出解题步骤或证明步骤,只写答案不得分,答题前不写“解”或“证明”字样的扣一分,写了不给分,答题纸上未标注选择哪一道题选做题的不得分,答案答错区域的不得分,超出答题区域的答案不予以审批。
17.(本小题满分10分)证明:(1)连结B A 1,则11AB B A ⊥又∵11BC B A ⊥∴⊥1B A 平面11BC A ∴ 111C A AB ⊥………4分又∵111BB C A ⊥ ∴⊥11C A 平面1ABB∴AB C A ⊥11 …………………4分(2)由(1)知AC AB ⊥ ∵1AC AB ⊥ ∵1=AB 2=BC∴3=AC 21=AC∴11=∆ABC S …………………6分设所求距离为d∵1111ABB C ABC B V V --=∴11113131C A S d S ABB ABC ⋅=⋅∆∆ ∴32131131⋅⋅=⋅⋅d ∴23=d …………10分18.(本小题满分12分)证明:(Ⅰ)AD // BC ,BC = 12AD ,Q 为AD 的中点,∴ 四边形BCDQ 为平行四边形, ∴CD // BQ . ∵ ∠ADC =90° ∴∠AQB =90° 即QB ⊥AD . ∵ PA =PD ,Q 为AD 的中点,题号 1 2 3 4 5 6 答案 D D B C B A 题号 7 8 9 10 11 12 答案DBDDBACA 1B 1C 1∴PQ ⊥AD . ∵ PQ ∩BQ =Q ,∴AD ⊥平面PBQ . ……………………6分 (Ⅱ)当t=1时,PA //平面BMQ . 连接AC ,交BQ 于N ,连接MN . ∵BC12DQ , ∴四边形 BCQA 为平行四边形,且N 为AC 中点, ∵点M 是线段PC 的中点, ∴ MN // PA . ∵ MN平面BMQ ,PA平面BMQ ,∴ PA // 平面BMQ . ……………………12分 19.(本小题满分12分)解:(I )由条件知PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.在直角梯形PDAQ 中可得DQ=PQ=PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积 由(I )知PQ 为棱锥P —DCQ 的高,而PQ=,△DCQ 的面积为,所以棱锥P —DCQ 的体积为故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分20.(本小题满分12分)证明:(1)过D 作M D DH 1⊥于H∵平面⊥DM D 1平面MC D 1且平面 DM D 1平面M D MC D 11= ∴⊥DH 平面MC D 1 ∴MC DH ⊥又∵1DD MC ⊥ ∴⊥MC 平面DM D 1 ∴DM MC ⊥…………………2分 又∵满足条件的M 只有一个 BDA 11B 1C EFH∴以CD 为直径的圆必与AB 相切, 切点为M ,M 为的AB 中点∴AD CD =21∴2=CD ………4分 ∵⊥MC 平面DM D 1,∴M D MC 1⊥又∵MC CC ⊥1,所以MC 为异面直线1CC 与M D 1的公垂线段 CM 的长度为所求距离 2=CM …………………6分 (2)取CD 中点E ,连结ME ,则⊥ME 平面CD D 1 过M 作C D MF 1⊥于F ,连结EF ,则1CD EF ⊥ ∴MFE ∠为二面角D C D M --1的平面角…………………9分 又∵1=ME ,530=MF 在MEF Rt ∆中630sin ==∠MF ME MFE∴630arcsin=∠MFE …………………12分 21.(本小题满分12分)证明:(1)连结AF 并延长与BC 交于G ∵ADF ∆∽GBF ∆∴85==FA GF FD BF ∴FA GFEA PE =∴EF ∥PG ………………5分 又∵⊄EF 平面PBC∴EF ∥平面PBC ……………6分(2)∵EF ∥PG∴EF 、PG 与平面ABCD 所成的角相等…………………8分 设AC 、BD 交于O ,连结PO 、OG∵ABCD PO 平面⊥,∴PGO ∠为所求的角……………9分 ∵85==AD BG FD BF ∴8513⨯=BG 在OBG ∆中C17813228513221328513221322=⨯⨯⨯⨯-⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛=OG …………10分又∵13=PA 2213=OA ∴2213=OP 在POG Rt ∆中 34174178132213tan ===∠OG PO PGO∴34174arctan =∠PGO …………………12分22.(本小题满分12分)证明:(1)∵平面⊥C C BB 11平面ABC平面 C C BB 11平面BC ABC = 又∵BC AC ⊥ ⊂AC 平面ABC ∴⊥AC 平面C C BB 11…………………4分(2)取1BB 的中点D ,则1BB CD ⊥ ∵⊥AC 平面C C BB 11 ∴1BB AD ⊥∴CDA ∠为二面角C BB A --1的平面角 ∴︒=∠30CDA ∵3=CD ∴1=AC …………………6分连结C B 1,则C AB 1∠为1AB 与平面C C BB 11所成的角 在1ACB Rt ∆中 21tan 11==∠C B AC C AB …………………8分 (3)在CD 上取一点O 使21=OC DO ,过O 作AC 的平行线与AD 交于P ,则点P 为所求 …………………10分 ∵AC ∥OP ∴⊥OP 平面C BB 1且O 是正C BB 1∆的中心 ∴C BB P 1-为正三棱锥 ∴所求高为3131==AC OP …………………12分 23.(本小题满分12分)(Ⅰ)证明:如图1,取PD 的中点E ,连EO ,EM 。