集合的概念及表示练习题及答案

合集下载

集合考试题及答案

集合考试题及答案

集合考试题及答案集合是数学中的一个基本概念,它在各个领域都有着广泛的应用。

以下是一些集合考试题及其答案,供参考:题目一:定义集合A={x | x是自然数,且1≤x≤10},集合B={y |y是偶数}。

求A∩B。

答案:集合A包含自然数1到10,即A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

集合B包含所有的偶数。

A与B的交集是同时属于A和B的元素,即A∩B={2, 4, 6, 8, 10}。

题目二:集合C={x | x是整数,且-5≤x≤5},集合D={y | y是正整数}。

求C∪D。

答案:集合C包含从-5到5的所有整数,即C={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

集合D包含所有的正整数,即D={1, 2, 3, ...}。

C与D的并集是包含C和D所有元素的集合,但去除重复元素。

因此,C∪D包含了从-5到无穷大的所有整数,由于题目限制,我们只列出到5,即C∪D={-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}。

题目三:集合E={x | x是奇数},集合F={y | y是3的倍数}。

求E∩F。

答案:集合E包含所有的奇数,集合F包含所有3的倍数。

E与F的交集是同时满足奇数和3的倍数的元素。

这些元素是3的奇数倍,即E∩F={3, 9, 15, ...},但题目中没有指定范围,我们只列出前三个元素。

题目四:集合G={x | x²=1},求G。

答案:集合G包含满足x²=1的所有x值。

解这个方程,我们得到x=1或x=-1。

因此,G={1, -1}。

题目五:集合H={x | x²-4=0},求H。

答案:集合H包含满足x²-4=0的所有x值。

解这个方程,我们得到x²=4,所以x=2或x=-2。

因此,H={2, -2}。

总结:集合论是数学的基础之一,它涉及到元素与集合之间的关系,包括交集、并集、补集等概念。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合是数学中的一个基本概念,它描述了一组对象的全体。

以下是一些集合的简单练习题及答案,适合初学者进行练习。

练习题1:确定以下集合的元素。

集合A = {x | x是小于10的正整数}答案: A = {1, 2, 3, 4, 5, 6, 7, 8, 9}练习题2:判断以下两个集合是否相等。

集合B = {x | x是偶数}集合C = {2, 4, 6, 8, 10, 12, ...}答案: B和C是相等的,因为集合B包含了所有偶数,而集合C也是所有偶数的集合。

练习题3:找出集合A和集合B的交集。

集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B没有交集,即A ∩ B = ∅。

练习题4:找出集合A和集合B的并集。

集合A = {1, 3, 5, 7, 9}集合B = {2, 4, 6, 8, 10}答案: A和B的并集是A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。

练习题5:确定集合A的补集,假设全集U包含所有小于等于10的整数。

集合A = {1, 3, 5, 7, 9}全集U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}答案: A的补集是A' = {0, 2, 4, 6, 8, 10}。

练习题6:如果集合D = {x | x是A和B的元素},求D。

集合A = {1, 2, 3}集合B = {2, 3, 4}答案: D = {2, 3}。

练习题7:如果集合E = {x | x不属于A且不属于B},求E。

集合A = {1, 2, 3}集合B = {2, 3, 4}答案: E = {1, 4}。

练习题8:确定集合A和集合B的差集。

集合A = {1, 2, 3, 4, 5}集合B = {3, 4, 5, 6}答案: A和B的差集是A - B = {1, 2}。

练习题9:假设集合F = {x | x是A的元素且不是B的元素},求F。

集合练习题带答案

集合练习题带答案

集合练习题带答案集合是数学中的基本概念,它描述了一组对象的全体。

以下是一些集合的练习题以及相应的答案,供学生练习和参考。

练习题1:判断下列集合是否正确,并给出理由。

- A = {1, 2, 3, 4}- B = {x | x是偶数}- C = {x | x是小于10的质数}答案1:- A集合正确,因为它包含了四个元素:1, 2, 3, 4。

- B集合正确,它表示所有偶数的集合,满足集合的定义。

- C集合正确,它包含了小于10的所有质数:2, 3, 5, 7。

练习题2:给定集合 A = {1, 2, 3, 4, 5},求以下集合运算的结果。

- A ∩ {2, 4, 6, 8} (A与{2, 4, 6, 8}的交集)- A ∪ {2, 4, 6, 8} (A与{2, 4, 6, 8}的并集)- A - {3, 5} (A与{3, 5}的差集)答案2:- A ∩ {2, 4, 6, 8} = {2, 4},交集包含了A和{2, 4, 6, 8}共有的元素。

- A ∪ {2, 4, 6, 8} = {1, 2, 3, 4, 5, 6, 8},并没有重复元素。

- A - {3, 5} = {1, 2, 4},差集包含了A中除去{3, 5}后剩余的元素。

练习题3:给定集合P = {x | x是大于10的整数},Q = {x | x是小于20的整数},求P ∩ Q。

答案3:P ∩ Q = {x | 10 < x < 20},交集包含了P和Q共有的元素,即大于10且小于20的所有整数。

练习题4:给定集合R = {x | x是偶数},S = {x | x是大于5的整数},求R ∩ S。

答案4:R ∩ S = {6, 8, 10, 12, ..., 18},交集包含了R和S共有的元素,即大于5的所有偶数。

练习题5:给定集合T = {x | x是小于100的质数},求T的元素个数。

答案5:T的元素个数是25,因为小于100的质数有:2, 3, 5, 7, 11,13, ..., 97。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合是数学中一个非常重要的概念,它描述了一组元素的总体。

下面是一些集合的简单练习题以及它们的答案。

练习题1:判断下列集合是否相等。

A = {1, 2, 3}B = {3, 2, 1}C = {1, 2, 1}答案1:集合A和集合B相等,因为集合中的元素是无序的,只考虑元素的种类和数量。

集合C和A不相等,因为集合中的元素不允许重复。

练习题2:求集合A和集合B的并集。

A = {1, 2, 3}B = {2, 3, 4}答案2: A和B的并集是A ∪ B = {1, 2, 3, 4}。

练习题3:求集合A和集合B的交集。

A = {1, 2, 3}B = {2, 3, 4}答案3: A和B的交集是A ∩ B = {2, 3}。

练习题4:求集合A和集合B的差集。

A = {1, 2, 3, 4}B = {2, 3}答案4: A和B的差集是A - B = {1, 4}。

练习题5:判断下列集合是否为子集。

A = {1, 2}B = {1, 2, 3, 4}答案5:集合A是集合B的子集,因为A中的所有元素都在B中。

练习题6:求集合A和集合B的补集。

A = {1, 2, 3}B = {2, 3, 4}假设全集U = {1, 2, 3, 4, 5}答案6: A的补集是A' = {4, 5},B的补集是B' = {1, 5}。

练习题7:判断下列集合是否为幂集。

A = {1}B = {1, 2}C = {1, 2, 3}答案7:集合A的幂集是{∅, {1}}。

集合B的幂集是{∅, {1}, {2}, {1, 2}}。

集合C的幂集包含更多的子集,包括空集和所有可能的元素组合。

练习题8:求集合A和集合B的笛卡尔积。

A = {1, 2}B = {3, 4}答案8: A和B的笛卡尔积是A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}。

练习题9:求集合A的对称差集与集合B。

1.1.1 集合的概念与表示(北师大版2019必修第一册)分册训练解析版

1.1.1 集合的概念与表示(北师大版2019必修第一册)分册训练解析版

1.1.1集合的概念与表示分层练习基础巩固一、单选题1.已知M 是由1,2,3三个元素构成的集合,则集合M 可表示为( ) A .{x |x =1} B .{x |x =2} C .{1,2} D .{1,2,3}【答案】D 【解析】 【分析】根据集合的知识确定正确选项. 【详解】由于集合M 是由1,2,3三个元素构成, 所以{}1,2,3M =. 故选:D2.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学 B .长寿的人 C .π的近似值D .倒数等于它本身的数【答案】D 【解析】 【分析】根据集合的定义分析判断即可. 【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合; 对于B ,长寿也不是一个明确的定义,故不能构成集合; 对于C ,π 的近似值没有明确近似到小数点后面几位, 不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合; 故选:D.3.已知集合{}0,1A =,则集合{},B x y x A y A =-∈∈中元素的个数是( ) A .1个 B .2个 C .3个 D .4个【答案】C 【解析】 【分析】根据,x A x B ∈∈,所以x y -可取1,0,1-,即可得解. 【详解】由集合{}0,1A =,{},B x y x A y A =-∈∈, 根据,x A y B ∈∈, 所以1,0,1x y -=-, 所以B 中元素的个数是3. 故选:C4.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1 B . {}1,0-C .{}0,1,2D .{}1,0,1-【答案】D 【解析】 【分析】通过解方程进行求解即可. 【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =, 所以{}1,0,1A =-, 故选:D5.给出下列四个关系:π∈R , 0∉Q ,0.7∈N , 0∈∅,其中正确的关系个数为( ) A .4 B .3C .2D .1【答案】D 【解析】 【分析】根据自然数集、有理数集、空集的含义判断数与集合的关系. 【详解】∵R 表示实数集,Q 表示有理数集,N 表示自然数集,∅表示空集, ∴π∈R ,0∈Q ,0.7∉N ,0∉∅, ∴正确的个数为1 . 故选:D .6.已知{1}A x x m =∈-<Z ∣,若集合A 中恰好有5个元素,则实数m 的取值范围为( )A .4<m ≤5B .4≤m<5C .3≤m<4D .3<m ≤4【答案】D 【解析】 【分析】由已知求出集合A ,进一步得到m 的范围. 【详解】由题意可知{}1,0,1,2,3A =-,可得3<m ≤4. 故选:D 二、多选题7.给出下列说法,其中正确的有( ) A .中国的所有直辖市可以构成一个集合;B .高一(1)班较胖的同学可以构成一个集合;C .正偶数的全体可以构成一个集合;D .大于2 011且小于2 016的所有整数不能构成集合. 【答案】AC 【解析】 【分析】根据集合的确定性依次判断每个选项得到答案. 【详解】中国的所有直辖市可以构成一个集合,A 正确;高一(1)班较胖的同学不具有确定性,不能构成集合,B 错误; 正偶数的全体可以构成一个集合,C 正确;大于2 011且小于2 016的所有整数能构成集合,D 错误. 故选:AC.8.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值可能是( )A .98B .1C .0D .23【答案】AC 【解析】 【分析】对a 进行分类讨论,结合A 有且只有一个元素求得a 的值. 【详解】当0a =时,{}2|3203A x x ⎧⎫=-+==⎨⎬⎩⎭,符合题意.当0a ≠时,9980,8a a ∆=-==,符合题意.故选:AC 三、填空题9.用符号∈或∉填空:3.1___N ,3.1___Z , 3.1____*N ,3.1____Q ,3.1___R . 【答案】 ∉ ∉ ∉ ∈ ∈ 【解析】 【分析】由元素与集合的关系求解即可 【详解】因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数, 所以有:3.1N ∉;3.1Z ∉;*3.1N ∉;3.1Q ∈;3.1R ∈. 故答案为:∉,∉,∉,∈,∈.10.设集合{}1A x xy xy =-,,,其中x ∈Z ,y Z ∈且0y ≠,若0A ∈,则A 中的元素之和为_____. 【答案】0 【解析】 【分析】根据元素与集合间的关系,列方程求解. 【详解】因为0A ∈,所以若0x =,则集合{}0,0,1A =-不成立.所以0x ≠. 若因为0y ≠,所以0xy ≠,所以必有0xy -1=,所以1xy =. 因为x ∈Z ,y Z ∈,所以1x y ==或1x y ==-. 若1x y ==,此时{}1,1,0A =不成立,舍去.若1x y ==-,则{}1,1,0A =-,成立.所以元素之和为1100-+=. 故答案为:0. 四、解答题11.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B . 【答案】B ={0,7,3,1}. 【解析】 【分析】解方程2427a a ++=即得解. 【详解】解:由题得2427a a ++=, 解得1a =或5a =-. 因为0a >,所以1a =. 当1a =时, B ={0,7,3,1}. 故集合B ={0,7,3,1}.12.判断下列各组对象能否构成集合.若能构成集合,指出是有限集还是无限集;若不能构成集合,试说明理由. (1)北京各区县的名称; (2)尾数是5的自然数;(3)我们班身高大于1.7m 的同学. 【答案】(1)能;有限集; (2)能;无限集; (3)能;有限集. 【解析】 【分析】根据集合的基本概念即得. (1)因为北京各区县的名称是确定的,故北京各区县的名称能构成集合;因为北京各区县是有限的,故该集合为有限集; (2)因为尾数是5的自然数是确定的,故尾数是5的自然数能构成集合;因为尾数是5的自然数是无限的,故该集合为无限集; (3)因为我们班身高大于1.7m 的同学是确定的,故我们班身高大于1.7m 的同学能构成集合;因为我们班身高大于1.7m 的同学是有限的,故该集合为有限集.培优提升一、单选题1.定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==-∈∈,若{}1,0A =-,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据集合的新定义确定集合中的元素. 【详解】因为2{|,,}A B x x a b a A b B ⊗==-∈∈,{}1,0A =-,{}1,2B =, 所以{0,1,2}A B ⊗=--, 故集合A B ⊗中的元素个数为3, 故选:C.2.若{}22,a a a ∈-,则a 的值为( )A .0B .2C .0或2D .2-【答案】A 【解析】 【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果. 【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =. 故选:A.3.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是( ) A .4∈M B .2M ∈ C .0M ∉ D .4M -∉【答案】A 【解析】【分析】分别对x ,y ,z 的符号进行讨论,计算出集合M 的所有元素,再进行判断. 【详解】根据题意,分4种情况讨论;①、x y 、、z 全部为负数时,则xyz 也为负数,则4||||||||x y z xyz x y z xyz +++=-; ②、x y 、、z 中有一个为负数时,则xyz 为负数,则0||||||||x y z xyz x y z xyz +++=; ③、x y 、、z 中有两个为负数时,则xyz 为正数,则0||||||||x y z xyz x y z xyz +++=; ④、x y 、、z 全部为正数时,则xyz 也正数,则4||||||||x y z xyz x y z xyz +++=; 则{4,0,4}M =-;分析选项可得A 符合. 故选:A. 二、填空题4.集合12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,的元素个数为_________. 【答案】12 【解析】 【分析】根据集合得表示可知:3x + 是12的因数,即可求解. 【详解】由12ZZ 3A x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭∣,可知,3x + 是12的因数,故31,2,3,4,6,12x +=±±±±±± ,进而可得x 可取0,1,3,9,1,2,4,5,6,7,9,15--------,故答案为:125.若集合{}2210A xax x =-+=∣有且只有一个元素,则a 的取值集合为__________. 【答案】{}0,1##{}1,0 【解析】 【分析】讨论集合A 中的条件2210ax x -+=属于一次方程还是二次方程即可求解. 【详解】①若0a =,则210x -+=,解得12x =,满足集合A 中只有一个元素,所以0a =符合题意;②若0a =/,则2210ax x -+=为二次方程,集合A 有且只有一个元素等价于2=(2)410a --⨯⨯=∆,解得1a =.故答案为:{}0,1. 三、解答题6.已知{}2|20,R M x ax x x =-+=∈.根据下列条件,求实数a 的值构成的集合.(1)当M =∅;(2)当M 是单元素集(只含有一个元素的集合); (3)当M 是两个元素的集合. 【答案】(1)1,8⎛⎫+∞ ⎪⎝⎭(2)1,08⎧⎫⎨⎬⎩⎭(3)1,08a a a ⎧⎫<≠⎨⎬⎩⎭【解析】 【分析】(1)由判别式小于0可得(方程为一元二次方程); (2)由二次项系数为0或一元二次方程的判别式为0柯得; (3)由方程为一元二次方程,且判别式大于0可得. (1)M =∅,180a ∆=-<,18a >,所以a 的范围是1(,)8+∞;(2)0a =时,{2}M =,满足题意,180a ∆=-=,18a =,此时{4}M =,满足题意,(3)由题意方程有两个不等实根,0a ≠且0∆>,解得18a <且0a ≠,所以a 的范围是1{|8a a <,0}a ≠.拓展创新1.已知集合2{,}A m m =,若1A ∈,则实数m 的值是__________ 【答案】1-【解析】 【分析】由1A ∈,分1m =,21m =两种情况讨论,结合集合中元素的互异性分析,即得解 【详解】 由题意,1A ∈(1)若1m =,则{1,1}A =,和集合中元素的互异性矛盾,不成立; (2)若21m =,则1m =±,由(1)1m ≠ 若1m =-,则{1,1}A =-,1A ∈,成立 故实数m 的值是1- 故答案为:1- 2.已知*k N ∈,记集合{1101100112222,1,,,,01}k k k k k k k A x x a a a a a a a a ---==⨯+⨯++⨯+⨯==或,例如{{}110102,1,01}2,3A x x a a a a ==+===或,….现有一款名称为“解数学题获取软件激活码”网络游戏,它的激活码为集合A 2的各元素之和,则该游戏的激活码为________. 【答案】22 【解析】 【分析】由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1,由此求得集合{}24,5,6,7A =,故而可得答案. 【详解】解:由已知得{22102104+2+,1,,0A x x a a a a a a ====或}1, 所以当100a a ==时,41+0+04x =⨯=; 当1010a a ==,时,41+21+06x =⨯⨯=; 当1001a a ==,时,41+20+115x =⨯⨯⨯=, 当1011a a ==,时,41+21+117x =⨯⨯⨯=,所以{}24,5,6,7A =,该游戏的激活码为4+5+6+722=, 故答案为:22.3.已知集合{}0,2A =,()()(){}21110B x ax x x ax =---+=,用符号A 表示非空集合A中元素的个数,定义,,A B A BA B B A A B ⎧-≥=⎨-<⎩※,若1A B =※,则实数a 的所有可能取值构成集合P ,则P =______.(请用列举法表示) 【答案】{}0,1,2- 【解析】 【分析】由集合的新定义结合题意求出a 的值,再用列举法表示即可 【详解】∵2A =,1A B =※, ∴1B =或3B =, 当1B =时,0a =或1a =.当3B =时,()()()21110ax x x ax ---+=有3个解,所以210x ax -+=只有一个解不为1和1a, 则240a ∆=-=,解得2a =±,当2a =时,2210x x -+=,则此时1x =,不符合题意; 当2a =-时,2210x x ++=,则此时1x =-,符合题意; 所以2a =-,11,,12B ⎧⎫=--⎨⎬⎩⎭,故{}0,1,2P =-. 故答案为:{}0,1,2-.4.用()C A 表示非空集合A 中元素的个数:定义()(),()()*()(),()()C A C B C A C B A B C B C A C B C A -≥⎧=⎨->⎩,若{1,2}A =,{}22()(2)0,B x x ax x ax x R =+++=∈,且*1A B =,设实数a 的所有可能取值构成集合S ,S =__________; 【答案】{0,22,2}- 【解析】 【分析】根据新定义得出集合B 中元素个数,再由方程根的个数分析求解. 【详解】由已知()2C A =,而*1A B =,则()1C B =或3,试卷第11页,共11页 11显然22()(2)0x ax x ax +++=的一个解是0x =, 若()1C B =,则0a =,满足题意;若()3C B =,则0a ≠,方程已有两个根0x =和x a =-,220x ax ++=有两个相等的实根且不为0和a -,280a ∆=-=,22a =±22a =220x ax ++=的解为342x x ==- 22a =-220x ax ++=的解为342x x ==.均满足题意. 综上{0,2,22}S =-. 故答案为:{0,2,2}-.12 试卷第12页,共1页。

高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)

高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)

第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。

记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

数学集合练习题答案

数学集合练习题答案

数学集合练习题答案一、选择题1. 答案:C解析:集合的定义是由若干个确定的元素组成,可以用大写字母表示。

2. 答案:B解析:空集是不包含任何元素的集合。

3. 答案:A解析:一个集合除了包含自身的元素外,也可以包含其他集合。

4. 答案:D解析:一个集合的子集是指该集合中的元素组成的一个集合。

5. 答案:B解析:并集是指两个集合中所有的元素的集合。

二、填空题1. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有的元素即可。

2. 答案:{1, 2, 3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。

3. 答案:{1, 2, 3}解析:按照集合的定义,列举出所有满足条件的元素即可。

4. 答案:{3, 4}解析:按照集合的定义,列举出所有满足条件的元素即可。

5. 答案:{1, 2, 3, 4, 5}解析:按照集合的定义,列举出所有满足条件的元素即可。

三、解答题1. 答案:集合A的元素个数为7个。

解析:集合A中的元素有1, 2, 3, 4, 5, 6, 7,共7个元素。

2. 答案:集合B的元素个数为8个。

解析:集合B中的元素有1, 2, 3, 4, 5, 6, 7, 8,共8个元素。

3. 答案:集合A与集合B的交集为{2, 4, 6}。

解析:集合A与集合B的交集为两个集合中共有的元素组成的集合。

4. 答案:集合A与集合B的并集为{1, 2, 3, 4, 5, 6, 7, 8}。

解析:集合A与集合B的并集是指两个集合中所有的元素的集合。

5. 答案:集合A与集合B的差集为{1, 3, 5, 7}。

解析:集合A与集合B的差集是指在集合A中但不在集合B中的元素组成的集合。

总结:通过本次数学集合练习题,我们复习了集合的基本概念和运算。

集合是由若干个确定的元素组成,可以用大写字母表示。

空集是不包含任何元素的集合。

一个集合的子集是指该集合中的元素组成的一个集合。

并集是指两个集合中所有的元素的集合。

1.1 集合的概念(答案版)

1.1 集合的概念(答案版)

1.集合与元素 一般地,把研究对象称为元素,通常用小写拉丁字母a,b,c,...表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,...表示。

2.集合的特征(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),a∈A ;不属于(),a∈A .(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:自然语言表示法、字母表示法、列举法、描述法、Venn 图图示法.3.集合的基本关系集合与集合:包含关系(子集),或B A ⊆(A 包含于A B ⊇B ,B 含于A ,A>B )(2)子集个数结论:∈含有n 个元素的集合有2n 个子集;∈含有n 个元素的集合有2n -1个真子集;∈含有n 个元素的集合有2n -2个非空真子集.例1:用适当的方法表示下列集合.(1)“BRICS”中所有字母组成的集合;(2)绝对值等于6的数组成的集合;(3)所有三角形组成的集合;(4)直线y =x 上去掉原点的点组成的集合;(5)大于2且小于5的有理数组成的集合;(6)24的所有正因数组成的集合;1.1集合的概念知识讲解典型例题(7)平面直角坐标系内与坐标轴距离相等的点的集合.解:(1)用列举法表示为{B ,R ,I ,C ,S}.(2)因为绝对值等于6的数是±6,所以用列举法表示为{-6,6}.(3)用描述法表示为{x |x 是三角形}或{三角形}.(4)用描述法表示为{(x ,y )|y =x ,x ≠0}.(5)用描述法表示为{x |2<x <5,且x ∈Q }.(6)用列举法表示为{1,2,3,4,6,8,12,24}.(7)在平面直角坐标系内,点(x ,y )到x 轴的距离为|y |到y 轴的距离为|x |所以该集合用描述法表示为{(x ,y )||y |=|x |}.例2:下列各组集合中表示同一集合的是( )A .,B .,C .,D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合;对于B ,,,根据集合的无序性,集合表示同一集合;对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,,集合的元素是点,集合不表示同一集合.一、选择题1.下列各组对象中能构成集合的是( C )AB .数学成绩比较好的同学C .小于20的所有自然数D .未来世界的高科技产品2. 下列命题中正确的是( C ){(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 同步练习∈0与{0}表示同一个集合;∈由1,2,3组成的集合可以表示为{1,2,3}或{3,2,1};∈方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};∈集合{x |4<x <5}可以用列举法表示.A .∈和∈B .∈和∈C .∈D .∈和∈解析:选C ∈中的0不是集合,故∈错;由集合中元素的无序性知∈正确;由集合中元素的互异性知∈错;因为集合{x |4<x <5}表示无限集,它不可以用列举法表示,故∈错.3.下列各组中的M 、P 表示同一集合的是( C )∈M ={3,-1},P ={(3,-1)} ∈M ={(3,1)},P ={(1,3)} ∈M ={y |y =x 2-1},P ={t |t =x 2-1}∈M ={y |y =x 2-1},P ={(x ,y )|y =x 2-1}A .∈B .∈C .∈D .∈解析:选C 在∈中,M ={3,-1}是数集,P ={(3,-1)}是点集,二者不是同一集合,故∈错误;在∈中,M ={(3,1)},P ={(1,3)}表示的不是同一个点,故∈错误;在∈中,M ={y |y =x 2-1}=[-1,+∞),P ={t |t =x 2-1}=[-1,+∞),二者表示同一集合,故∈正确;在∈中,M ={y |y =x 2-1}表示数集,P ={(x ,y )|y =x 2-1}表示一条抛物线上的点的集合,故∈错误,故选C.4.集合⎩⎨⎧⎭⎬⎫3,52,73,94,…用描述法可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +12n ,n ∈N * B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +3n ,n ∈N *C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n -1n ,n ∈N *D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N * 解析:选D 由3,52,73,94,即31,52,73,94,从中发现规律,x =2n +1n ,n ∈N *,故可用描述法表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪ x =2n +1n ,n ∈N *. 5.集合{x |x 2-6x +9=0}中的所有元素之和为( )A .0B .3C .6D .9解析:选B ∈{x |x 2-6x +9=0}={3},故元素之和为3.6.已知集合M ={1,m +2,m 2+4},且5∈M ,则m 的值为( B )A .1或-1B .1或3C .-1或3D .1,-1或37.已知M ={(x ,y )|2x +3y =10,x ,y ∈N },N ={(x ,y )|4x -3y =1,x ,y ∈R },则( B )A .M 是有限集,N 是有限集B .M 是有限集,N 是无限集C .M 是无限集,N 是无限集D .M 是无限集,N 是有限集解析:选B 因为M ={(x ,y )|2x +3y =10,x ,y ∈N }={(2,2),(5,0)},所以M 为有限集.N ={(x ,y )|4x -3y =1,x ,y ∈R }中有无限多个点满足4x -3y =1,故N 为无限集.8.下列集合中,是空集的是( B )A .B .C .D . {}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y y x x y =-∈R【答案】B 【解析】对于A 选项,,不是空集,对于B 选项,没有实数根,故为空集,对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集.9.集合中的不能取的值的个数是( )A .B .C .D . 【答案】B 【解析】由题意可知,且且,故集合中的不能取的值的个数是个.二、填空题1.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________.【答案】{4,9,16} [由A ={-2,2,3,4},B ={x |x =t 2,t ∈A },得B ={4,9,16}.]2. 以下五个写法中:∈{0}∈{0,1,2};∈∈∈{1,2};∈{0,1,2}={2,0,1};∈0∈∈;∈A∩∈=A ,正确的个数有 2 个。

集合练习题及答案

集合练习题及答案

集合练习题及答案在数学中,集合是由一组不同对象组成的。

集合有着重要的概念和性质,它们在各种数学领域和应用中都起着关键作用。

本文将提供一些集合练习题及其答案,以帮助读者巩固和加深对集合的理解。

练习题1:给定两个集合A={1, 2, 3}和B={3, 4, 5},求它们的并集和交集。

答案1:并集:A∪B = {1, 2, 3, 4, 5}交集:A∩B = {3}解析:并集是指包含两个或多个集合中的所有元素的集合。

交集是指两个或多个集合中共有的元素的集合。

根据给定的集合A和B,我们可以看到它们的并集是包含了所有出现在A和B中的元素,交集则是它们共有的元素。

练习题2:设全集为U={1, 2, 3, 4, 5, 6, 7, 8, 9, 10},集合A={1, 3, 5, 7, 9},集合B={2, 4, 6, 8, 10},求A的补集和B的补集。

答案2:A的补集:A' = {2, 4, 6, 8, 10}B的补集:B' = {1, 3, 5, 7, 9}解析:补集是指与给定集合中的所有元素互不相干的元素的集合。

对于集合A的补集,它包含了全集U中不属于集合A的所有元素;对于集合B的补集,它包含了全集U中不属于集合B的所有元素。

练习题3:给定集合C={a, b, c, d, e}和集合D={c, d, e, f, g},求它们的差集和对称差。

答案3:差集:C\D = {a, b}对称差:C△D = {a, b, f, g}解析:差集是指从一个集合中去除另一个集合中相同的元素,得到剩余元素的集合。

对称差是指两个集合的并集减去它们的交集。

根据给定的集合C和D,我们可以看到C\D是由C中不属于D的元素组成的集合,而C△D则是包含了C和D中互不相同的元素。

练习题4:已知集合E={1, 2, 3, 4, 5},集合F={2, 4, 6},集合G={4, 5, 6, 7},求三个集合的并集和交集。

答案4:并集:E∪F∪G = {1, 2, 3, 4, 5, 6, 7}交集:E∩F∩G = {4}解析:对于多个集合的并集,它包含了所有出现在这些集合中的元素;对于交集,它包含了同时出现在所有集合中的元素。

专题1 集合的含义与表示(解析版)

专题1 集合的含义与表示(解析版)

专题1 集合的含义与表示题组1 集合的概念1.对于以下说法:①接近于0的数的全体构成一个集合;②长方体的全体构成一个集合;③高科技产品构成一个集合;④不大于3的所有自然数构成一个集合;⑤0,0.5,,组成的集合含有四个元素.其中正确的是()A.①②④B.②③⑤C.③④⑤D.②④【答案】D【解析】①③中的元素不能确定,⑤中的集合含有3个元素,②④中的元素是确定的,所以②④能构成集合.故选D.2.下列各组对象可以组成集合的是()A.数学必修1课本中所有的难题B.小于8的所有素数C.直角坐标平面内第一象限的一些点D.所有小的正数【答案】B【解析】A中“难题”的标准不确定,不能构成集合;B能构成集合;C中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D中没有明确的标准,所以不能构成集合.3.下列说法中正确的是()A.班上爱好足球的同学,可以组成集合B.方程x(x-2)2=0的解集是{2,0,2}C.集合{1,2,3,4}是有限集D.集合{x|x2+5x+6=0}与集合{x2+5x+6=0}是含有相同元素的集合【答案】C【解析】班上爱好足球的同学是不确定的,所以构不成集合,选项A不正确;方程x(x-2)2=0的所有解的集合可表示为{0,2},由集合中元素的互异性知,选项B不正确;集合{1,2,3,4}中有4个元素,所以集合{1,2,3,4}是有限集,选项C正确;集合{x2+5x+6=0}不符合集合的表示形式,既不是列举法,也不是描述法,表示形式错误,选项D不正确.故选C.4.下列各组中集合P与Q,表示同一个集合的是()A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集【答案】A【解析】由于A中P、Q元素完全相同,所以P与Q表示同一个集合,而B、C、D中元素不相同,所以P与Q不能表示同一个集合.故选A.题组2 集合中元素的特征5.数集{x2+x,2x}中,x的取值范围是()A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,1)∪(1,+∞)D.(-∞,0)∪(0,1)∪(1,+∞)【答案】D【解析】根据题意,由集合中元素的互异性,可得集合{x2+x,2x}中,x2+x≠2x,即x≠0,x≠1,则x的取值范围是(-∞,0)∪(0,1)∪(1,+∞).故选D.6.数集{1,2,x2-3}中的x不能取的数值的集合是()A.{2,}B.{-2,-}C.{±2,±}D.{2,-}【答案】C【解析】由x2-3≠1解得x≠±2.由x2-3≠2解得x≠±.∴x不能取得值的集合为{±2,±}.故选C.7.若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a等于()A.4B.2C.0D.0或4【答案】A【解析】当a=0时,方程为1=0不成立,不满足条件;当a≠0时,Δ=a2-4a=0,解得a=4.故选A.8.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1B.0C.0或1D.以上答案都不对【答案】C【解析】k=0时,适合题意;k≠0,由Δ=0,可得k=1.9.由实数x,-x,|x|,,-所组成的集合,最多含()A.2个元素B.3个元素C.4个元素D.5个元素【答案】A【解析】由于|x|=±x,=|x|,-=-x,并且x,-x,|x|之中总有两个相等,所以最多含2个元素.10.设集合A={-1,1,2,-2},B={0,3,-3},M={x|x=ab,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6【答案】C【解析】由集合中元素的互异性,可知集合M={0,-3,3,6,-6},所以集合M中共有5个元素.题组3 元素与集合的关系11.由不超过5的实数组成集合A,a=+,则()A.a∈AB.a2∈AC.∉AD.a+1∉A【答案】A【解析】a=+<+=4<5,∴a∈A.a+1<++1=5,∴a+1∈A.a2=()2+2·+()2=5+2>5.∴a2∉A.===-<5.∴∈A.故选A.12.已知集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M,y0∈N,则x0y0与集合M,N的关系是()A.x0y0∈M但x0y0∉NB.x0y0∉M且x0y0∉NC.x0y0∈N但x0y0∉MD.x0y0∈M且x0y0∈N【答案】C【解析】设x0=3m+1,y0=3n+2,m,n∈Z,则x0y0=(3m+1)(3n+2)=9mn+6m+3n+2=3(3mn+2m+n)+2,∴x0y0∈N但x0y0∉M,故选C.13.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b ∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P、Q、R中的任意一个【答案】B【解析】由P={x|x=2k,k∈Z}可知P表示偶数集;由Q={x|x=2k+1,k∈Z}可知Q表示奇数集;由R={x|x=4k+1,k∈Z}可知R表示所有被4除余1的整数;当a∈P,b∈Q,则a为偶数,b为奇数,则a+b一定为奇数,故选B.14.若集合A={x|0<x<7,x∈N*},则B=中元素的个数为()A.3B.4C.1D.2【答案】B【解析】A={x|0<x<7,x∈N*}={1,2,3,4,5,6},B={1,2,3,6},∵A∩B=B,∴B=中元素的个数为4.15.定义集合A、B的一种运算:A*B={x|x=x1·x2,其中x1∈A,x2∈B},若A={1,2},B={1,2},则A*B中的所有元素数字之和为()A.7B.9C.5D.6【答案】A【解析】∵A*B={x|x=x1·x2,其中x1∈A,x2∈B},且A={1,2},B={1,2},∴A*B={1,2,4},则A*B中的所有元素数字之和为1+2+4=7,故选A.16.(1)设A表示集合{2,3,a2+2a-3),B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a 的值;(2)已知集合A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},若(2,3)∈A,且(2,3)∉B,试求m,n的取值范围.【答案】(1)∵5∈A,且5∉B,∴即解得a=-4.(2)∵(2,3)∈A,∴2×2-3+m>0,∴m>-1.∵(2,3)∉B,∴2+3-n>0,∴n<5.∴所求m,n的取值范围分别是{m|m>-1},{n|n<5}.17.已知集合S中的元素是正整数,且满足命题“如果x∈S,则(6-x)∈S”时回答下列问题:(1)试写出元素个数为2的全部集合S;(2)试写出满足条件的全部集合S.【答案】(1)∵S中有两个元素,且x∈S,6-x∈S,∴这两个元素的和为6,∴S可能为{1,5},{2,4}.(2)当6-x=x时,x=3,∴S可能为{3},{1,5},{2,4},{1,5,3},{2,4,3},{1,5,2,4},{1,5,2,4,3}.题组4 常用的数集及表示18.下列关系中正确的个数为()①∈R;②0∈N*;③{-5}⊆Z.A.0B.1C.2D.3【答案】C【解析】①③正确.19.下列四个说法中正确的个数是()①集合N中的最小数为1;②若a∈N,则-a∉N;③若a∈N,b∈N,则a+b的最小值为2;④所有小的正数组成一个集合;⑤π∈Q;⑥0∉N;⑦-3∈Z;⑧∈R.A.0B.1C.2D.3【答案】C【解析】①错,因为N中最小数是0;②错,因为0∈N,而-0∈N;③错,当a=1,b=0时,a+b=1;④错,小的正数是不确定的;⑤错,因为π不是有理数;⑥错,因为0是自然数;⑦正确,因为-3是整数;⑧正确,因为是实数.题组5 用列举法表示集合20.用列举法表示集合{x|x-2<3,x∈N*}为()A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}【答案】B【解析】∵x-2<3,∴x<5.又x∈N*,∴x=1,2,3,4,故选B.21.方程组的解构成的集合是()A.{(1,1)}B.{1,1}C.(1,1)D.{1}【答案】A【解析】由得即方程组的解构成的集合为{(1,1)},故选A.22.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}【答案】A题组6 用描述法表示集合23.下列集合不等于由所有奇数构成的集合的是()A.{x|x=4k-1,k∈Z}B.{x|x=2k-1,k∈Z}C.{x|x=2k+1,k∈Z}D.{x|x=2k+3,k∈Z}【答案】A24.用描述法表示一元二次方程的全体,应是()A.{x|ax2+bx+c=0,a,b,c∈R}B.{x|ax2+bx+c=0,a,b,c∈R,且a≠0}C.{ax2+bx+c=0|a,b,c∈R}D.{ax2+bx+c=0|a,b,c∈R,且a≠0}【答案】D【解析】∵一元二次方程的一般形式是ax2+bx+c=0,a,b,c∈R,且a≠0.则描述法表示一元二次方程的全体构成的集合为:{ax2+bx+c=0|a,b,c∈R,且a≠0}.故选D.25.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合【答案】D【解析】集合{(x,y)|y=2x-1}中的元素为有序实数对(x,y),表示点,所以集合{(x,y)|y=2x-1}表示函数y=2x-1图象上的所有点组成的集合.故选D.26.第一象限的点组成的集合可以表示为()A.{(x,y)|xy>0}B.{(x,y)|xy≥0}C.{(x,y)|x>0且y>0}D.{(x,y)|x>0或y>0}【答案】C27.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]=,k=0,1,2,3,4,给出如下四个结论:①2 016∈[1];②-3∈[3];③若整数a,b属于同一“类”,则a-b∈[0];④若a-b∈[0],则整数a,b属于同一“类”.其中,正确结论的个数是()A.1B.2C.3D.4【答案】C【解析】由于[k]=,对于①,2 016除以5等于403余1,∴2 016∈[1],∴①正确;对于②,-3=-5+2,被5除余2,∴②错误;对于③,∵a,b是同一“类”,可设a=5n1+k,b=5n2+k,则a-b=5(n1-n2)能被5整除,∴a-b∈[0],∴③正确;对于④,若a-b∈[0],则可设a-b=5n,n∈Z,即a=5n+b,n∈Z,不妨令b=5m+k,m ∈Z,k=0,1,2,3,4,则a=5n+5m+k=5(m+n)+k,m∈Z,n∈Z,∴a,b属于同一“类”,∴④正确,则正确的有①③④,共3个.28.已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},若x0∈M,则x0与N的关系是()A.x0∈NB.x0∉NC.x0∈N或x0∉ND.不能确定【答案】A【解析】M={x|x=,k∈Z},N={x|x=,k∈Z},∵2k+1(k∈Z)是一个奇数,k+2(k∈Z)是一个整数,∴x0∈M时,一定有x0∈N,故选A.题组7 集合的表示综合29.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n =m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M ={(a,b)|a※b=16}中的元素个数是()A.18B.17C.16D.15【答案】B【解析】因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.30.用另一种方法表示下列集合.(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x=|x|,x<5且x∈Z};(4){(x,y)|x+y=6,x,y均为正整数};(5){-3,-1,1,3,5}.【答案】(1){-2,-1,0,1,2};(2){3,6,9};(3){0,1,2,3,4};(4){(1,5),(2,4),(3,3),(4,2),(5,1)};(5){x|x=2k-1,-1≤k≤3,k∈Z}.11/ 11。

集合分类及答案

集合分类及答案

集合一.集合的概念1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合常用大写的拉丁字母来表示,如集合A、集合B……集合中的每一个对象称为该集合的元素,简称元。

集合的元素常用小写的拉丁字母来表示。

如a、b、c、p、q……2.集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a是集合A的元素,就说a属于A,记作a∈A(2)如果a不是集合A的元素,就说a不属于A,记作a∉A(“∈”的开口方向,不能把a∈A颠倒过来写)3.两个集合相等:构成两个集合的元素是一样的4.常用数集及其记法非负整数集(或自然数集),记作N;正整数集,记作N*或N+整数集,记作Z有理数集,记作Q实数集,记作R5.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

例1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210x+=的解;(5)某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点(9)全班成绩好的学生。

例2.下列对象能否组成集合: (1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点; (3)满足3x-2>x+3的全体实数; (4)所有直角三角形;(5)美国NBA 的著名篮球明星; (6)所有绝对值等于6的数; (7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员; (9)参加2008年奥运会的中国代表团成员.练习:1.已知A ={x|3-3x>0},则下列各式正确的是( )A .3∈AB .1∈AC .0∈AD .-1∉A2.下列四个集合中,不同于另外三个的是( )A .{y|y =2}B .{x =2}C .{2}D .{x|x 2-4x +4=0} 3.下列关系中,正确的个数为________.①12∈R ;②2∉Q ;③|-3|∉N *;④|-3|∈Q . 4.已知集合A ={1,x ,x 2-x},B ={1,2,x},若集合A 与集合B 相等,求x 的值.5.已知数集A=}{A a a ∈+16,7,3,2且,求实数a 的值。

数学集合试题及答案

数学集合试题及答案

数学集合试题及答案数学集合是数学中的基础概念之一,它涉及到元素和集合之间的关系,以及集合与集合之间的操作。

以下是一些常见的集合试题及答案,以供学习和练习。

试题一:判断题1. 空集是所有集合的子集。

()2. 集合{1, 2, 3}和集合{3, 2, 1}是同一个集合。

()3. 集合{1, 2, 3}是集合{1, 2, 3, 4}的真子集。

()4. 集合A和集合B的交集是A和B的公共元素组成的集合。

()5. 集合A和集合B的并集是包含A和B所有元素的集合。

()答案:1. 正确。

空集不含任何元素,因此它是所有集合的子集。

2. 正确。

集合的元素是无序的,所以{1, 2, 3}和{3, 2, 1}是同一个集合。

3. 正确。

集合{1, 2, 3}中的所有元素都在集合{1, 2, 3, 4}中,且后者包含一个额外的元素4,所以是真子集。

4. 正确。

交集操作的结果就是两个集合共有的元素集合。

5. 正确。

并集操作的结果包含了两个集合中的所有元素,没有重复。

试题二:选择题1. 设集合A={1, 2, 3},B={2, 3, 4},求A∪B。

A. {1, 2, 3}B. {2, 3, 4}C. {1, 2, 3, 4}D. {1, 4}答案:C. {1, 2, 3, 4}试题三:填空题1. 如果A={x | x是小于10的正整数},那么A的元素个数是____。

2. 集合{1, 2, 3}的补集(相对于全集U={1, 2, 3, 4, 5, 6})是____。

答案:1. 9(因为A的元素是1, 2, ..., 9)2. {4, 5, 6}试题四:简答题1. 解释什么是子集,并给出一个例子。

2. 解释什么是集合的差集,并给出一个例子。

答案:1. 子集是指一个集合中的所有元素都是另一个集合的元素。

例如,集合{1, 2}是集合{1, 2, 3}的子集。

2. 集合的差集是指从第一个集合中移除与第二个集合共有的元素后剩下的元素组成的集合。

集合简单练习题及答案

集合简单练习题及答案

集合简单练习题及答案集合简单练习题及答案在数学中,集合是一种基本的概念,它是由一组元素组成的。

集合的概念在日常生活中也有广泛的应用,比如我们可以用集合来表示一组人、一组物品或一组事件等等。

为了帮助大家更好地理解集合的概念和运算,下面我将为大家提供一些简单的练习题及答案。

练习题1:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求A ∪ B。

答案1:A ∪B = {1, 2, 3, 4, 5, 6}。

解析1:A ∪B 表示的是集合 A 和集合 B 的并集,即包含了 A 和 B 中的所有元素。

在这个例子中,集合 A 中的元素是 1、2、3、4,集合 B 中的元素是 3、4、5、6,所以A ∪ B 就是包含了这些元素的集合,即 {1, 2, 3, 4, 5, 6}。

练习题2:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求A ∩ B。

答案2:A ∩B = {3, 4}。

解析2:A ∩B 表示的是集合 A 和集合 B 的交集,即包含了 A 和 B 中共有的元素。

在这个例子中,集合 A 中的元素是 1、2、3、4,集合 B 中的元素是 3、4、5、6,所以A ∩ B 就是包含了 A 和 B 中共有的元素,即 {3, 4}。

练习题3:设集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},求 A - B。

答案3:A -B = {1, 2}。

解析3:A -B 表示的是集合 A 减去集合 B,即从集合 A 中去除与集合 B 中相同的元素。

在这个例子中,集合 A 中的元素是 1、2、3、4,集合 B 中的元素是 3、4、5、6,所以 A - B 就是从集合 A 中去除与集合 B 中相同的元素,即 {1, 2}。

通过以上的练习题及答案,希望大家能够对集合的概念和运算有更深入的理解。

集合是数学中非常重要的概念之一,它在解决实际问题中有着广泛的应用。

高中集合练习题及讲解及答案

高中集合练习题及讲解及答案

高中集合练习题及讲解及答案集合是数学中的基本概念之一,它涉及到元素和集合之间的关系。

以下是一些高中集合练习题,以及相应的讲解和答案。

练习题1:已知集合A = {x | x > 3},B = {x | x < 5},求A∪B。

讲解:A∪B表示集合A和集合B的并集,即包含在A或B中的所有元素的集合。

答案:A∪B = {x | x < 5 或 x > 3},由于x > 3已经包含了x < 5的所有情况,所以A∪B = R,即所有实数。

练习题2:设集合C = {y | y = x^2, x ∈ Z},求C中所有元素的和。

讲解:集合C由所有整数的平方组成。

我们需要找出所有整数的平方并将它们相加。

答案:C = {0, 1, 4, 9, 16, ...},即所有整数的平方。

由于整数是无限的,它们的平方之和也是无限的,所以这个问题没有具体的数值答案。

练习题3:给定集合D = {1, 2, 3, 4, 5},E = {x | x ∈ D 且 x > 2},求D∩E。

讲解:D∩E表示集合D和集合E的交集,即同时属于D和E的所有元素的集合。

答案:E = {3, 4, 5},因此D∩E = {3, 4, 5}。

练习题4:集合F = {x | x^2 - 5x + 6 = 0},求F的元素。

讲解:要找出集合F的元素,我们需要解这个二次方程。

答案:x^2 - 5x + 6 = 0,分解因式得 (x - 2)(x - 3) = 0,所以x = 2 或x = 3。

因此,F = {2, 3}。

练习题5:已知集合G = {x | x 是质数},求G中小于20的所有元素。

讲解:质数是指只能被1和它本身整除的大于1的自然数。

答案:G中小于20的质数有:2, 3, 5, 7, 11, 13, 17, 19。

这些练习题涵盖了集合的基本操作,如并集、交集、元素的求法等,是高中数学课程中常见的题目。

通过解决这些问题,学生可以加深对集合概念的理解。

高中集合的概念及其表述含答案

高中集合的概念及其表述含答案

集合的概念及其表述一.选择题(共40小题)1.下列集合中不同于另外三个集合的是()A.{x|x3=1}B.{x|x4=1}C.{1}D.{} 2.下列所给对象能构成集合的是()A.某校高一(5)班数学成绩非常突出的男生能组成一个集合B.《数学1(必修)》课本中所有的难题能组成一个集合C.性格开朗的女生可以组成一个集合D.圆心为定点,半径为1的圆内的点能组成一个集合3.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学.A.1个B.2个C.3个D.4个4.下列对象能确定一个集合的是()A.第一象限内的所有点B.某班所有成绩较好的学生C.高一数学课本中的所有难题D.所有接近1的数5.下列各组对象不能构成一个集合的是()A.不超过20的非负实数B.方程x2﹣9=0在实数范围内的解C.的近似值的全体D.临川十中2016年在校身高超过170厘米的同学的全体6.给出下列说法:①不等于2的所有偶数可以组成一个集合;②高一年级的所有高个子同学可以组成一个集合;③{1,2,3}与{2,3,1}是不同的集合;④2016年里约奥约会比赛项目.其中正确的个数是()A.0B.1C.2D.37.下列命题正确的是()A.接近0的实数可以构成集合B.R={实数集}C.集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合D.参加2016年金砖国家峰会的所有国家可以构成一个集合8.已知集合A={x|x2+2ax+2a≤0},若A中只有一个元素,则实数a的值为()A.0B.0或﹣2C.0或2D.29.设集合B={x|x2﹣4x+m=0},若1∈B,则B=()A.{1,3}B.{1,0}C.{1,﹣3}D.{1,5}10.设集合A={x|x2+2x﹣8=0},则下列关系正确的是()A.﹣2∈A B.2∈A C.2∉A D.﹣4∉A11.已知集合A={x|x2>1},a∈A,则a的值可以为()A.﹣2B.1C.0D.﹣112.已知集合A={1,2,3,4,5,6},T={x|x=,a,b∈A,a>b},则集合T中元素的个数为()A.9B.10C.11D.1213.设集合A={﹣1,0,1,2,3},B={x|x∈A且﹣x∈A},则集合B中元素的个数为()A.1B.2C.3D.414.若4∈{x+2,x2},则实数x的值为()A.﹣2B.2C.2或﹣2D.2或415.若1∈{0,x,x2},则x=()A.1B.﹣1C.0或1D.0或﹣116.下列4个关系中,正确的是()A.∈R B.|﹣3|∉Q C.0.5∈Z D.0∈N*17.下列关系中,正确的是()A.0∈N+B.Z C.π∉Q D.0∉N18.下列五个关系中,正确的个数为()①∈R;②Q;③π∈Q;④|﹣3|∉N;⑤﹣∈Z.A.1个B.2个C.3个D.4个19.若1∈{a,a2},则a的值为()A.0B.﹣1C.1D.±120.已知集合A={﹣3,﹣2,﹣1,0,1,2},B={y|y=x2﹣1,x∈A},则集合B中所有元素之和是()A.10B.13C.14D.1521.已知集合A={x|x﹣a≤0},若2∈A,则a的取值范围为()A.[2,+∞)B.[4,+∞)C.(﹣∞,2]D.(﹣∞,4] 22.下列表示正确的是()A.0∈N B.C.π∉R D.0.333∉Q23.下列关系中正确的是()A.B.0∈N*C.D.π∈Z24.已知集合A={x|ax2+2x+1=0,a∈R}只有一个元素,则a的值()A.0B.1C.0或1D.﹣125.在集合A={1,a2﹣a﹣1,a2﹣2a+2}中,a的值可以是()A.0B.1C.2D.1或226.已知集合A含有三个元素2,4,6,且当a∈A,有6﹣a∈A,那么a为()A.2B.2或4C.4D.027.若集合A={x|ax2+(a﹣6)x+2=0}是单元素集合,则实数a=()A.2或18B.0或2C.0或18D.0或2或18 28.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.629.设集合A={1,2,3},B={2,3,4},M={x|x=ab,a∈A,b∈B},则M中的元素个数为()A.5B.6C.7D.830.下列集合表示正确的是()A.{2,4}B.{2,4,4}C.{1,3,3}D.{漂亮女生} 31.集合A={x|x2=x}中所含元素为()A.0,1B.﹣1,1C.﹣1,0D.132.设集合A={0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.3B.4C.5D.633.一次函数y=x+1的图象与x轴的交点构成的集合为()A.{0,1}B.{(0,1)}C.{﹣1,0}D.{(﹣1,0)} 34.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中有()个元素.A.4B.5C.6D.735.下列集合中,表示方程组的解集的是()A.{2,1}B.{x=2,y=1}C.{(2,1)}D.{(1,2)} 36.将集合{(x,y)|}表示成列举法,正确的是()A.{2,3}B.{(2,3)}C.{x=2,y=3}D.(2,3)37.方程x2=x的所有实数根组成的集合为()A.(0,1)B.{(0,1)}C.{0,1}D.{x2=x}38.以方程x2﹣5x+6=0和方程x2﹣x﹣2=0的解为元素的集合为()A.{2,3,1}B.{2,3,﹣1}C.{2,3,﹣2,1}D.{﹣2,﹣3,1} 39.已知集合A={x|ax2﹣3x+2=0}中有且只有一个元素,那么实数a的取值集合是()A.{}B.{0,}C.{0}D.{0,}40.下列集合表示正确的是()A.{2,4}B.{2,4,4}C.(1,2,3)D.{高个子男生}集合的概念及其表述参考答案一.选择题(共40小题)1.B;2.D;3.A;4.A;5.C;6.C;7.D;8.C;9.A;10.B;11.A;12.C;13.C;14.A;15.B;16.A;17.C;18.C;19.B;20.A;21.A;22.A;23.C;24.C;25.A;26.B;27.D;28.B;29.C;30.A;31.A;32.B;33.D;34.C;35.C;36.B;37.C;38.B;39.B;40.A;。

集合的概念(习题作业)解析版--2023年初升高暑假衔接之高一数学

集合的概念(习题作业)解析版--2023年初升高暑假衔接之高一数学

1.1集合的概念一、单选题1.集合{3213,Z}x x x -<-<∈用列举法表示为()A .{2,1,0,1,2}--B .{1,0,1,2}-C .{0,1}D .{1}【答案】C【分析】直接求出集合中的元素即可.【详解】{}{3213,Z}{12,Z}0,1x x x x x x -<-<∈=-<<∈=.故选:C.2.给出下列关系:①12ÎR R ;③3-∈N ;④3Q -∈.其中正确的个数为()A .1B .2C .3D .4【答案】C【分析】结合数的分类判断即可.【详解】1233-=,为自然数及有理数,③④正确.故选:C.3.若()(){}1,20,0A =-,,则集合A 中的元素个数是()A .1个B .2个C .3个D .4个【答案】B【分析】根据定义直接得到答案.【详解】()(){}1,20,0A =-,中的元素个数是2故选:B4.设集合{}21,3M m m =--,若3M -∈,则实数m =()A .0B .1-C .0或1-D .0或1【答案】C【分析】根据元素与集合的关系,分别讨论213-=-m 和33m -=-两种情况,求解m 并检验集合的互异性,可得到答案.【详解】设集合{}21,3M m m =--,若3M -∈,3M -∈ ,213m ∴-=-或33m -=-,当213-=-m 时,1m =-,此时{}3,4M =--;当33m -=-时,0m =,此时{}3,1M =--;所以1m =-或0.故选:C5.定义集合{}*,,A B z z xy x A y B ==∈∈∣,设集合{}1,0,1A =-,{}1,1,3B =-,则*A B 中元素的个数为()A .4B .5C .6D .7【答案】B【分析】根据集合的新定义求得*A B ,从而确定正确答案.【详解】因为{}1,0,1A =-,{}1,1,3B =-,所以{}*3,1,0,1,3A B =--,故*A B 中元素的个数为5.故选:B.6.已知集合{A x x =≤,a =a 与集合A 的关系是()A .a A ∈B .a A∉C .a A=D .{}a A∈【答案】A【分析】对a =210a <,从而得到a a A ∈.【详解】∵a =∴225510a ==+<=,∴a <,∴a A ∈.故选:A7.已知集合{}4,,2A x y =,{}22,,1B x y =--,若A B =,则实数x 的取值集合为()A .{1,0,2}-B .{2,2}-C .{}1,0,2-D .{2,1,2}-【答案】B【分析】根据集合元素的唯一性分类讨论即可.【详解】因为A B =,所以2A -∈.当2x =-时,21y y =-,得13y =;当22y =-时,则2x =.故实数x 的取值集合为{}2,2-.故选:B8.已知{}{}21,2,1m m -=--,则实数m 等于()A .2B .-1C .2或-1D .4【答案】C【分析】根据两集合相等列出方程,解方程,检验后得到答案.【详解】由已知得,22m m -=,解得2m =或-1,经检验符合题意.故选:C.9.已知集合{3,2,0,1,2,3,7},{,}A B xx A x A =--=∈-∉∣,则B =()A .{0,1,7}B .{1,7}C .{0,2,3}D .{0,1,2,3,7}【答案】B【分析】根据集合的描述法及元素与集合的关系求解.【详解】因为{3,2,0,1,2,3,7}A =--,{,}B xx A x A =∈-∉∣,所以{1,7}B =.故选:B.10.集合{},,A a b c =中的三个元素分别表示某一个三角形的三边长度,那么这个三角形一定不是()A .等腰三角形B .锐角三角形C .直角三角形D .钝角三角形【答案】A【分析】根据集合中元素的互异性可得答案.【详解】根据集合中元素的互异性得,,a b b c a c ≠≠≠,故三角形一定不是等腰三角形.故选:A.11.已知集合{}0,1,2,3,4,5,{(,)|,,}A B x y x A y A x y A ==∈∈-∈,则集合B 中所含元素个数为()A .20B .21C .22D .23【答案】B【分析】根据x y -的值分类讨论,即可求出集合B 中所含元素个数.【详解】当0x y -=时,有(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),6个元素;当1x y -=时,有(1,0),(2,1),(3,2),(4,3),(5,4),5个元素;当2x y -=时,有(2,0),(3,1),(4,2),(5,3),4个元素;当3x y -=时,有(3,0),(4,1),(5,2),3个元素;当4x y -=时,有(4,0),(5,1),2个元素;当5x y -=时,有(5,0),1个元素,综上,一共有21个元素.故选:B .12.若集合()220222,10,,2n mn n A m n m n *⎧⎫++⎪⎪==∈∈⎨⎬⎪⎪⎩⎭Z N ,则集合A 的元素个数为()A .4044B .4046C .22021D .22022【答案】B【分析】由已知可得()2023202221=25n n m ++⨯,对n 是偶数和奇数进行分类讨论,对n 的A 的元素的个数.【详解】由题意,()2023202221=25n n m ++⨯,若n 为偶数,21n m ++为奇数,若20232n =,则2022202320225212152n m m +-=⇒-=+∈Z ,以此类推,202325n =⨯,2023225n =⨯,L ,2023202225n =⨯,共2023个n ,每个n 对应一个m ∈Z ;同理,若n 为奇数,21n m ++为偶数,此时05n =、15、L 、20225,共2023个n ,每个n 对应一个m ∈Z .于是,共有4046个n ,每一个n 对应一个m 满足题意.故选:B.二、多选题13.下列各组对象能构成集合的是()A .全体较高的学生B .所有素数C .2021年高考数学难题D .所有正方形【答案】BD【分析】AC 不满足集合的确定性,BD 满足集合的确定性.【详解】A 选项中“比较高”标准不明确,不符合确定性,不能构成集合,A 错误;B 选项,所有素数满足确定性,能构成集合,B 正确;C 选项,“难题”的标准不明确,不符合确定性,不能构成集合,C 错误;D 选项,所有正方形满足确定性,能构成集合,D 正确故选:BD14.以下命题中正确的是()A .所有正数组成的集合可表示为{}0x x >B .大于2020小于2023的整数组成的集合为{}20202023x x <<C .全部三角形组成的集合可以写成{全部三角形}D .N 中的元素比N +中的元素只多一个元素0,它们都是无限集【答案】AD【分析】由集合的概念和集合的表示方法,即可得到答案.【详解】正数均大于0,故所有正数的集合应表示为{|0}x x >,故A 正确;大于2020小于2023的整数组成的集合应表示为{Z |20202023}x x ∈<<或{2021,2022},故B 不正确;全部三角形组成的集合应表示为{三角形}或{|x x 是三角形},故C 不正确;N 为自然数集,N +为正整数集,故N 中的元素比N +中的元素只多一个元素0,它们都是无限集,故D 正确.故选:AD.15.已知集合M 中的元素x满足x a =,其中a ,Z b ∈,则下列选项中属于集合M 的是()A .0BC .211-D .1-【答案】ACD【分析】根据集合M 中的元素x 的性质即可判断.【详解】当0a b ==时,0x =,所以0M ∈,A 正确;当1,1a b =-=-时,1x M =--,C 正确;当1,3a b =-=时,1x M =-∈,D 正确;因为Z a ∈,Z b ∈,故x a =≠M ,B 错误.故选:ACD16.在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类集”,其中{0,1,2,3,4,5}k ∈,记为[]k ,即[]{|6,Z}k x x n k n ==+∈,以下判断不正确的是()A .2022[2]∈B .13[1]-∈C .若[0]a b +∈,则整数,a b 一定不属于同一类集D .若[0]a b -∈,则整数,a b 一定属于同一类集【答案】ABC【分析】由“类集”的定义对选项逐一判断即可得出答案.【详解】对于A ,202263370=⨯+ ,2022[0]∴∈,故A 不正确;对于B ,()13635-=⨯-+ ,13[5]∴-∈,故B 不正确;对于C ,若[0]a b +∈,则整数,a b 可能属于同一类集,比如3[3]a =∈,9[3]b =∈,则12[0]a b +=∈,故C 不正确;对于D ,若[]0a b -∈,则a b -被6除所得余数为0,则整数,a b 被6除所得余数相同,故整数,a b 属于同一类集,故D 正确,故选:ABC .17.下列说法中,正确的是()A的近似值的全体构成集合B .自然数集N 中最小的元素是0C .在数集Z 中,若a ∈Z ,则a -∈Z D .一个集合中可以有两个相同的元素【答案】BC【分析】根据集合的定义以及集合元素的性质逐一判断,即可得到结果.【详解】对于A A 错误;对于B ,由自然数的定义可得B 正确;对于C ,若a ∈Z ,则a -∈Z ,故C 正确;对于D ,由集合的互异性可知,一个集合中不可以有两个相同的元素,故D 错误.故选:BC18.已知集合{}20,,32A m m m =-+,且2A ∈,则实数m 的取值不可以为()A .2B .3C .0D .2-【答案】ACD【分析】根据2A ∈可得出2m =或2322m m -+=,解出m 的值,然后对集合A 中的元素是否满足互异性进行检验,综合可得结果.【详解】因为集合{}20,,32A m m m =-+,且2A ∈,则2m =或2322m m -+=,解得{}0,2,3m ∈.当0m =时,集合A 中的元素不满足互异性;当2m =时,2320m m -+=,集合A 中的元素不满足互异性;当3m =时,{}0,3,2A =,合乎题意.综上所述,3m =.故选:ACD.19.设集合{}23,2,4A x x x =-+-,且5A ∈,则x 的值可以为()A .3B .1-C .5D .3-【答案】BC【分析】根据元素与集合的关系运算求解,注意检验,保证集合的互异性.【详解】∵5A ∈,则有:若25x +=,则3x =,此时249123x x -=-=-,不符合题意,故舍去;若245x x -=,则=1x -或5x =,当=1x -时,{}3,1,5A =-,符合题意;当5x =时,{}3,7,5A =-,符合题意;综上所述:=1x -或5x =.故选:BC.20.下列说法错误的是()A .在直角坐标平面内,第一、三象限的点的集合为()}{,0x y xy >B |2|0y +=的解集为}{2,2-C .集合()}{,1x y y x =-与}{1x y x =-是相等的D .若}{Z 11A x x =∈-≤≤,则0.5A -∈【答案】BCD【分析】根据集合的定义依次判断即可求解.【详解】对于A ,因为0xy >,所以00x y >⎧⎨>⎩或00x y <⎧⎨<⎩,所以集合为()}{,0x y xy >表示直角坐标平面内第一、三象限的点的集合,故A 正确;对于B |2|0y +=的解集为()}{2,2-,故B 错误;对于C ,集合()}{,1x y y x =-表示直线1y x =-上的点,集合}{1x y x =-表示函数1y x =-的定义域,所以集合()}{,1x y y x =-与}{1x y x =-不相等,故C 错误;对于D ,}{}{Z 111,0,1A x x =∈-≤≤=-,所以0.5A -∉,故D 错误.故选:BCD.21.若对任意x A ∈,1A x∈,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是()A .{}1,1-B .1,22⎧⎫⎨⎬⎩⎭C .{}21x x >D .{}0x x >【答案】ABD【分析】根据“影子关系”集合的定义逐项分析即可.【详解】根据“影子关系”集合的定义,可知{}1,1-,1,22⎧⎫⎨⎬⎩⎭,{}0x x >为“影子关系”集合,由{}21x x >,得{1x x <-或}1x >,当2x =时,{}2112x x ∉>,故不是“影子关系”集合.故选:ABD 22.关于x 的方程241x k x x x x-=--的解集中只含有一个元素,则k 的可能取值是()A .4-B .0C .1D .5【答案】ABD【分析】由方程有意义可得0x ≠且1x ≠,并将方程化为240x x k +-=;根据方程解集中仅含有一个元素可分成三种情况,由此可解得k 所有可能的值.【详解】由已知方程得:2100x x x -≠⎧⎨-≠⎩,解得:0x ≠且1x ≠;由241x k x x x x-=--得:240x x k +-=;若241x k x x x x-=--的解集中只有一个元素,则有以下三种情况:①方程240x x k +-=有且仅有一个不为0和1的解,1640k ∴∆=+=,解得:4k =-,此时240x x k +-=的解为2x =-,满足题意;②方程240x x k +-=有两个不等实根,其中一个根为0,另一根不为1;由0400k +⨯-=得:=0k ,240x x ∴+=,此时方程另一根为4x =-,满足题意;③方程240x x k +-=有两个不等实根,其中一个根为1,另一根不为0;由1410k +⨯-=得:5k =,2450x x ∴+-=,此时方程另一根为5x =-,满足题意;综上所述:4k =-或0或5.故选:ABD三、填空题23.已知集合{}22,33A a a =++,且1A ∈,则实数a 的值为____________.【答案】1-或2-【分析】根据元素与集合的关系求解.【详解】因为1A ∈,{}22,33A a a =++,所以2331a a ++=,解得1a =-或2a =-,故答案为:1-或2-24.用列举法表示集合{}4|M x x =-∈∈=N N ___________.【答案】{}0,1,2,3,4【分析】根据题意可得x N ∈且04x ≤≤,再分别令0,1,2,3,4x =进行判断即可.【详解】由题意可得x N ∈且04x ≤≤,当0x =时,44x -=当1x =时,43x -=,符合题意;当2x =时,42x -=,符合题意;当3x =时,41x -=,符合题意;当4x =时,40x -=,符合题意,综上,{}{}4|0,1,2,3,4M x x =-∈∈=N N .故答案为:{}0,1,2,3,4.25.已知{}(1,2)(,)230x y x ay ∈+-=,则a 的值为______.【答案】12/0.5【分析】根据元素与集合的关系,把点坐标代入直线方程运算即可求得a 的值.【详解】因为{}(1,2)(,)230x y x ay ∈+-=,所以2230a +-=,解得:12a =,故答案为:12.26.设集合6ZN 2A x x ⎧⎫=∈∈⎨⎬+⎩⎭,则用列举法表示集合A 为______.【答案】{1,0,1,4}-【分析】根据自然数集N 与整数集Z 的概念分析集合A 中的元素即可.【详解】要使6N 2x ∈+,则2x +可取1,2,3,6,又Z x ∈,则x 可取1,0,1,4-,故答案为:{}1,0,1,4-.四、解答题27.含有三个实数的集合2,,b A a a a ⎧⎫=⎨⎬⎩⎭,若0A ∈且1A ∈,求20222022a b +的值.【答案】1【分析】利用集合中元素的互异性可求解.【详解】由0A ∈,可知0a ≠,故20a ≠,所以0,ba=解得=0b ,又1A ∈可得21a =或=1a ,当=1a 时21a =,与集合中元素的互异性矛盾,所以21a =且1a ≠,所以1a =-,故1a =-,=0b ,所以202220221a b =+.28.已知集合()2{|10}A x x p x q =+-+,()()2{|111}B x x p x q x =-+-+=+,当{}2A =时,求集合B .【答案】{3B =【分析】根据集合和元素的关系解出,p q 的值,代入()()2111x p x q x -+-+=+,解一元二次方程即可.【详解】因为{}2A =,所以()()222120140p q p q ⎧+-⨯+=⎪⎨--=⎪⎩,解得34p q =-⎧⎨=⎩,代入()()2111x p x q x -+-+=+得()()213141x x x ---+=+,整理得2670x x -+=,解得3x =±所以{3B =.29.已知集合2{|320,R,R}A x ax x x a =-+=∈∈.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至多有一个元素,求a 的取值范围【答案】(1)9,8⎛⎫+∞ ⎪⎝⎭(2)a 的值为0或98,当0a =时23A ⎧⎫=⎨⎬⎩⎭,当98a =时43A ⎧⎫=⎨⎬⎩⎭(3)9{0},8∞⎡⎫⋃+⎪⎢⎣⎭【分析】(1)A 是空集,则方程为二次方程,且方程无实根;(2)A 中只有一个元素,则方程为一次方程,或方程为二次方程且方程有两个相同的根;(3)A 中至多有一个元素,则方程为一次方程,或方程为二次方程且至多一个实根.【详解】(1)A 是空集,0a ∴≠且Δ0<,980a ∴-<,解得98a >,a ∴的取值范围为:98+∞(,);(2)当0a =时,集合2{|320}3A x x ⎧⎫=-+==⎨⎩⎭,当0a ≠时,Δ0=,980a ∴-=,解得98a =,此时集合43A ⎧⎫=⎨⎬⎩⎭,综上所求,a 的值为0或98,当0a =时,集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时,集合43A ⎧⎫=⎨⎬⎩⎭;(3)由12(),()可知,当A 中至多有一个元素时,98a ≥或0a =,a ∴的取值范围为:{}90[8+∞ ).30.已知集合(){}2R |1210A x a x x =∈--+=,a 为实数.(1)若集合A 是空集,求实数a 的取值范围;(2)若集合A 是单元素集,求实数a 的值;(3)若集合A 中元素个数为偶数,求实数a 的取值范围.【答案】(1){}2a a >(2)1a =或2a =.(3){|2a a ≠且1}a ≠【分析】(1)若集合A 是空集,要满足二次方程()21210a x x --+=无解;(2)若集合A 是单元素集,则方程()21210a x x --+=为一次方程或二次方程Δ0=;(3)若集合A 中元素个数为偶数,则A 中有0个或2个元素,二次方程()21210a x x --+=无解或两不相同的解.【详解】(1)若集合A 是空集,则()()210Δ2410a a -≠⎧⎪⎨=---<⎪⎩,解得2a >.故实数a 的取值范围为{}2a a >.(2)若集合A 是单元素集,则①当10a -=时,即1a =时,1{R |210}{}2A x x =∈-+==,满足题意;②当10a -≠,即1a ≠时,()()2Δ2410a =---=,解得2a =,此时{}{}2|2101A x x x =∈-+==R .综上所述,1a =或2a =.(3)若集合A 中元素个数为偶数,则A 中有0个或2个元素.当A 中有0个元素时,由(1)知2a >;当A 中有2个元素时,210,Δ(2)4(1)0a a -≠⎧⎨=--->⎩解得2a <且1a ≠.综上所述,实数a 的取值范围为{|2a a ≠且1}a ≠.。

集合练习题以及答案

集合练习题以及答案

集合练习题以及答案集合是数学中的基本概念之一,它涉及到元素与集合之间的关系,以及不同集合之间的运算。

以下是一些集合练习题及其答案,供学习者练习和参考。

练习题1:判断下列命题的真假。

- A = {1, 2, 3}- B = {2, 3, 4}- 命题1:1 ∈ A- 命题2:4 ∈ A- 命题3:A ⊆ B答案1:- 命题1:真,因为1是集合A的元素。

- 命题2:假,因为4不是集合A的元素。

- 命题3:假,因为集合A不包含集合B的所有元素。

练习题2:集合C和D的定义如下,请找出C ∪ D和C ∩ D。

- C = {1, 2, 3, 5}- D = {2, 4, 5, 6}答案2:- C ∪ D = {1, 2, 3, 4, 5, 6},这是C和D所有元素的并集。

- C ∩ D = {2, 5},这是C和D共有的元素。

练习题3:集合E和F如下,求E - F。

- E = {1, 3, 5, 7, 9}- F = {3, 5, 7}答案3:- E - F = {1, 9},这是E中所有不在F中的元素。

练习题4:集合G和H如下,判断它们是否相等。

- G = {x | x是小于10的正整数}- H = {1, 2, 3, 4, 5, 6, 7, 8, 9}答案4:- G和H相等,因为它们包含相同的元素。

练习题5:集合I和J如下,求I的补集。

- I = {x | x是偶数}- J = R(实数集)答案5:- I的补集是所有不在I中的元素,即所有奇数,可以表示为{x ∈ J | x是奇数}。

练习题6:集合K和L如下,找出K相对于L的补集。

- K = {x | x是小于20的正整数}- L = {x | x是小于50的正整数}答案6:- K相对于L的补集是所有在L中但不在K中的元素,即{x ∈ L | 20 ≤ x < 50}。

结束语:通过这些练习题,我们可以加深对集合概念的理解,包括元素与集合的关系、集合的运算以及集合的表示方法。

集合练习题含答案

集合练习题含答案

集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。

- 答案:集合是由一些确定的、不同的元素所组成的整体。

集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。

2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。

- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。

3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。

- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。

A∩B={2, 3},表示A和B中共有的元素集合。

4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。

- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。

5. 证明题:证明对于任意集合A,A⊆A。

- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。

因为集合A中的元素自然属于A本身,所以A⊆A。

6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。

求至少喜欢一门科目的学生人数。

- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。

根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。

7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。

- 答案:A∩(B∪C)不为空集。

因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。

集合的概念练习题(内含详细答案)

集合的概念练习题(内含详细答案)

集合的概念练习题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.下列选项中,表示同一集合的是()A.A={0,1},B={(0,1)}B.A={2,3},B={3,2}C.A={x|–1<x≤1,x∈N},B={1}D.A=∅,2.下列各项中,不能组成集合的是()A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素5.下列关于集合的命题正确的有()①很小的整数可以构成集合②集合{y|y=2x2+1}与集合{(x,y) |y=2x2+1}是同一个集合;③1,2,|-|,0.5,这些数组成的集合有5个元素④空集是任何集合的子集A.0个B.1个C.2个D.3个x+=的实数解”中,能够表6.在“①个子较高的人;②所有的正方形;③方程260示成集合的是( )A .②B .③C .①②③D .②③评卷人得分 二、填空题7.已知集合A ={x ,,1},B ={x 2,x +y ,0},若A =B ,则x 2017+y 2018=______.8.定义集合A -B ={x|x∈A,且x ∉B},若集合A ={x|2x +1>0},集合B ={x|<0},则集合A -B =____________.9.在数集{}0,1,2x -中,实数x 不能取的值是______. 10.下列对象:①方程x 2=2的正实根,②我校高一年级聪明的同学,③大于3小于12的所有整数,④函数y =2x 的图像上的点.能构成集合的个数为___________________________________.评卷人得分 三、解答题11.已知集合,是否存在这样的实数,使得集合有且仅有两个子集?若存在,求出所有的的值组成的集合;若不存在,请说明理由.答案1.下列选项中,表示同一集合的是A .A={0,1},B={(0,1)}B .A={2,3},B={3,2}C .A={x|–1<x≤1,x∈N},B={1}D .A=∅,【答案】B【解析】【分析】利用集合相等的定义直接求解.【详解】在A中,A={0,1}是数集,B={(0,1)}是点集,二者不表示同一集合,故A错误;在B中,A={2,3},B={3,2},集合中的元素具有无序性,所以两个集合相等,表示同一集合,故B正确;在C中,A={x|–1<x≤1,x∈N}={0,1},B={1},二者不相等,不表示同一集合,故C错误;在D中,A=∅,={0},二者不相等,不表示同一集合,故D错误.故选B.【点睛】本题考查集合相等的判断,考查集合相等的定义等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.下列各项中,不能组成集合的是A.所有的正数B.所有的老人C.不等于0的数D.我国古代四大发明【答案】B【解析】【分析】根据集合的三要素:确定性、互异性、无序性得到选项.【详解】集合中的元素具有确定性,老人的标准不确定,元素不能确定,故所有的老人不能构成集合,故选B.【点睛】本题考查集合中元素满足的三要素:确定性、互异性、无序性.3.下列对象能构成集合的是( )①NBA联盟中所有优秀的篮球运动员;②所有的钝角三角形;③2015年诺贝尔经济学奖得主;④大于等于0的整数;⑤我校所有聪明的学生.A.①②④B.②⑤C.③④⑤D.②③④【答案】D【解析】由集合中元素的确定性知,①中“优秀的篮球运动员”和⑤中“聪明的学生”不确定,所以不能构成集合.选D4.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素【答案】C【解析】【分析】根据集合的含义逐一分析判断即可得到答案【详解】选项A,不满足确定性,故错误选项B,不大于3的自然数组成的集合是,故错误选项C,满足集合的互异性,无序性和确定性,故正确选项D,数1,0,5,,,,组成的集合有5个元素,故错误故选C【点睛】本题考查了集合的含义,利用其确定性、无序性、互异性进行判断,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标 集合的含义及其表示
姓名:_________
一、选择题:
1.下面四个命题:(1)集合N 中的最小元素是1:(2)若a N -∉,则a N ∈ (3)244x x +=的解集为{2,2};(4)0.7Q ∈,其中不正确命题的个数为 ( )
A. 0
B. 1
C.2
D.3
2.下列各组集合中,表示同一集合的是 ( ) A.(){}(){}3,2,2,3M N = B.{}{}3,2,2,3M N ==
C.(){},1M x y x y =+=,{}1N y x y =+=
D. {}(){}1,2, 1.2M N ==
3.下列方程的实数解的集合为12,23⎧⎫
-⎨⎬⎩⎭
的个数为 ( )
(1)224941250x y x y +-++=;(2)2620x x +-=; (3) ()()2
21320x x -+=;(4) 2
620x x --=
A.1
B.2
C.3
D.4
4.集合{}
(){}
2
2
10,6100
A x x x
B x N x x x =++==∈++=,{}450
C x Q x =∈+<,
{}2D x x =为小于的质数 ,其中时空集的有 ( ) A. 1个B.2个 C.3个 D.4个 5. 下列关系中表述正确的是 ( )
A.{}200x ∈=
B.(){}00,0∈
C. 0∈∅
D.0N ∈ 6. 下列表述正确的是( )
A.{}0=∅
B.{}{}1,22,1=
C.{}∅=∅
D.0N ∉
7. 下面四个命题:(1)集合N 中的最小元素是1:(2)方程()()()3
1250x x x -+-=的
解集含有3个元素;(3)0∈∅(4)满足1x x +>的实数的全体形成的集合。

其中正确命题的个数是 ( ) A.0 B. 1 C. 2 D.3 二.填空题:
8.用列举法表示不等式组240121x x x +>⎧⎨+≥-⎩的整数解集合为
9.已知集合12,6A x x N N x ⎧⎫
=∈∈⎨⎬-⎩⎭
用列举法表示集合A 为
10.已知集合241x A a
x a ⎧⎫-⎪⎪
==⎨⎬+⎪⎪⎩⎭
有惟一解,又列举法表示集合A 为 三、解答题:
11.已知{}{}2A=1,a,b ,,,B a a ab =,且A=B ,求实数a,b ;
12. 已知集合{}
2210,A x ax x x R =++=∈,a 为实数
(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值 (3)若A 中至多只有一个元素,求a 的取值范围
13. 设集合{}
22,M a a x y a Z ==-∈
(1)请推断任意奇数与集合M 的关系 (2)关于集合M ,你还可以得到一些什么样的结论
参考答案:DBBBDBC
8.{}1,0,1,2- 9{}0,2,3,4,5;10,17224⎧⎫
--⎨⎬⎩⎭
,,11,a= -1,b=0;12,(1)a>1(2)a=0or1(3)a=0 or a ≥113(1)任意奇数都是集合M 的元素(2)略。

相关文档
最新文档