新人教版九年级数学上册导学案:24.2.1切线长定理

合集下载

新人教版初中数学九年级上册《第二十四章圆:切线长定理三角形的内切圆内心》赛课获奖教案_1

新人教版初中数学九年级上册《第二十四章圆:切线长定理三角形的内切圆内心》赛课获奖教案_1

24.2直线与圆的位置关系(切线长定理)教案
一、教学目标
1.理解切线长的概念,掌握切线长定理;
2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.
3.会利用尺规作图作三角形的内切圆.
重点:
切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.
二、难点:
与切线长定理有关的证明和计算问题.
三、教学方法:
(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;
(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.
四、教学过程设计:
(一)观察、猜想、证明,形成定理
1.探究经过平面上的已知点作已知圆的切线,会有怎样的情形呢?
由此结合图形学习切线长的概念。

2.比一比:切线和切线长两个不同的概念。

引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线
长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.
3. 利用动画,引导学生直观判断,发现PA=PB,∠APO=∠BPO
组织学生分析证明方法.关键是作出辅助线OA,OB.
4. 归纳学习切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.
5.强调切线长定理的作用,并利用图形开拓学生的证明思维
(1)写出图中所有的垂直关系;
、PB于点C、D,则
的长。

人教版九年级(上)数学导学案:24.2.2切线长定理

人教版九年级(上)数学导学案:24.2.2切线长定理

24.2.2切线长定理主备人:符后丽 审核:数学备课组 课型:新授课学习目标:1、 掌握切线长定理,能利用切线长定理解决相关的计算和证明问题。

2、 培养抓基本图形的能力,规范、严谨的书写计算和证明的过程。

学习重点:切线长定理的证明和应用学习过程:一 复习回顾1、如图1,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB=120°,那么 ∠CAB= 时,AC 才能成为⊙O 的切线。

2、如图2,AB 切⊙O 于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠A=36°,则∠C=3、如图3,BC 是⊙O 的直径,P 是CB 延长线上的一点,PA 切⊙O 于A ,若PA=3,PB=1,则⊙O 的半径为 。

二 新知探究1、 画图:如图,过⊙O 外一点P 作⊙O 的切线,2、 可以作条。

2、度量:圆外点P 到两个切点的距离是 (填“相等”或“不相等”);操作:将上面的图形沿着直线PO 折叠,你发现了 ,∠APO 与∠BPO 的大小 (填“相等”或“不相等”);3、 根据你的度量和操作,你的猜想是 。

4、 你能证明你的猜想吗?5、 归纳总结:如图所示,PA,PB 是⊙O 的两条切线,切点分别为A ,B 。

直线OP 交⊙O 于点D ,E ,交AB 于点C 。

(1) 写出图中所有的垂直关系;(2)写出图中所有的等腰三角形; (3) 写出图中所有的全等三角形; 图1 图2 图3(4) 若∠APB=70°,你可求出哪些角的度数?6、 基础训练(1)如图4,PA,PB 是⊙O 的切线,且∠APB=40°,下列说法不正确的是( )A PA=PB B ∠APO=20°C ∠OBP=70°D ∠AOP=70°(2)如图5,从⊙O 外一点P 引⊙O 的两条切线PA,PB ,切点分别为A ,B 。

如果∠APB=60°,PA=8,那么弦AB 的长是( )A 4 B 8 C 34 D 38(3)如图6PA,PB 是⊙O 的两条切线,切点分别为A ,B 。

新人教版九年级数学上册第24.2.3节 切线长定理优秀教学设计和反思

新人教版九年级数学上册第24.2.3节 切线长定理优秀教学设计和反思

新人教版九年级数学上册第24.2.3节切线长定理优秀教学设计和反思教材分析“切线长定理”是人教版九年级数学上册第二十四章“圆”的第二节的内容,本节内容安排六个课时,本课时是本节内容的第五课时,本课设计主要是在切线的基础上,明确切线长的定义,通过学生动手操作,逻辑证明来明确切线长定理,引出三角形的内切圆,通过与三角形的内切圆有关的练习巩固切线长定理。

学情分析我班学生来自全县各个乡镇,学生的基础参差不齐。

再加上这个班是进入九年级我才接手的成绩较差的班级,基础薄弱,因而要加强动手操作探究知识来源的教学,让学生学知识学到“知其然并知其所以然”,不仅“知其所以然”,还要学以致用。

教学目标一、知识与技能:1.了解切线长的概念.2.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用.3.复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题.二、数学思考:1.通过操作、观察两条切线长,发展学生的合情推理能力和演绎推理能力。

2.学生经历知识的形成与运用过程,培养学生的数学语言概括、表达能力。

三、解决问题1.学生探索切线长定理过程中,学会用数形结合思想解决问题。

2.学生运用切线长定理解题,提高运用知识和技能解决问题的能力。

四.情感、态度与价值观培养学生主动参与探索知识来源,获得数学知识的良好学习习惯,从而提高学生学习数学的积极性。

教学重点和难点1.重点:切线长定理及其运用.2.•难点与关键:切线长定理的导出及其证明和运用切线长定理解决一些实际问题.教学过程。

24.2.2切线长定理和三角形的内切圆(教案)

24.2.2切线长定理和三角形的内切圆(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理和三角形内切圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
三角形内切圆的部分,学生们在小组讨论和实验操作中表现出了很高的热情。通过实际操作,他们能够更好地掌握内切圆半径的计算方法,这也证明了实践活动在数学教学中的重要性。今后,我会继续加大实践环节的比重,让学生在实践中学习和探索。
在小组讨论环节,我发现有些学生较为内向,不太愿意主动表达自己的观点。为了鼓励他们积极参与,我会在今后的教学中更加关注这些学生,多给予他们肯定和鼓励,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“切线长定理和三角形内切圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
24.2.2切线长定理和三角形的内切圆(教案)
一、教学内容
本节课选自教材24.2.2节,主要内容包括:
1.切线长定理:探讨圆的切线与半径的关系,推导并掌握切线长定理,即从圆外一点引圆的两条切线,切线长相等。
2.三角形的内切圆:介绍三角形内切圆的概念,探讨内切圆的半径与三角形面积的关系,掌握内切圆半径的计算公式。

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《24.2.2 第3课时 切线长定理》教案、导学案、同步练习

《第3课时 切线长定理》教案【教学目标】1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.2.了解有关三角形的内切圆和三角形的内心的概念.3.学会利用方程思想解决几何问题,体验数形结合思想.【教学过程】一、情境导入新农村建设中,张村计划在一个三角形中建一个最大面积的圆形花园,请你设计一个建筑方案.二、合作探究探究点一:切线长定理 【类型一】利用切线长定理求三角形的周长如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________.解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB ,因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PEF 的周长PE +EF +PF =PE +EC +CF +PF =(PE +EC )+(CF +PF )=PA +PB =2+2=4. 【类型二】利用切线长定理求角的大小如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度.解析:如图所示,连接OA、OB.∵PA、PB是⊙O的切线,切点分别为A、B,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.又∵∠AOB=2∠ACB=140°,∴∠APB =360°-∠PAO-∠AOB-∠OBP=360°-90°-140°-90°=40°.又易证△POA≌△POB,∴∠OPA=12∠APB=20°.故答案为20.方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据全等的判定,可得到PO平分∠APB.【类型三】切线长定理的实际应用为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一把刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径.若测得PA=5cm,则铁环的半径长是多少?说一说你是如何判断的.解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.∵AP、AQ为⊙O 的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO +∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,∴OP=55(cm),即铁环的半径为55cm.探究点二:三角形的内切圆【类型一】求三角形的内切圆的半径如图,⊙O是边长为2的等边△ABC的内切圆,则⊙O的半径为________.解析:如图,连接OD .由等边三角形的内心即为中线,底边高,角平分线的交点.所以∠OCD =30°,OD ⊥BC ,所以CD =12BC ,OC =2OD .又由BC =2,则CD =1.在Rt △OCD 中,根据勾股定理得OD 2+CD 2=OC 2,所以OD 2+12=(2OD )2,所以OD =33.即⊙O 的半径为33. 方法总结:等边三角形的内心为等边三角形中线,底边高,角平分线的交点,它到三边的距离相等. 【类型二】求三角形的周长如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E )上任一点P 作⊙O 的切线MN 与AB 、BC 分别交于点M 、N .若⊙O 的半径为r ,则Rt △MBN 的周长为( )A .r B.32r C .2r D.52r 解析:连接OD ,OE ,∵⊙O 是Rt △ABC 的内切圆,∴OD ⊥AB ,OE ⊥BC .又∵MD ,MP 都是⊙O 的切线,且D 、P 是切点,∴MD =MP ,同理可得NP =NE ,∴C Rt △MBN =MB +BN +NM =MB +BN +NP +PM =MB +MD +BN +NE =BD +BE =2r ,故选C. 三、板书设计【教学反思】教学过程中,强调用切线长定理可解决有关求角度、周长的问题.明确三角形内切圆的圆心是三角形三条角平分线的交点,到三边的距离相等.《第3课时切线长定理》教案【教学目标】:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。

新人教版九年级数学上册《24.1切线长定理3》导学案

新人教版九年级数学上册《24.1切线长定理3》导学案

新人教版九年级数学上册《24.1切线长定理3》导学案学习 目标1、了解切线长的概念.了解三角形的内切圆、三角形的内心等概念。

2、理解切线长定理,并能熟练运用切线长定理进行解题和证明。

3、会作已知三角形的内切圆。

重难点: 1、重点:了解切线长的概念.了解三角形的内切圆、内心等概念。

2、难点:理解切线长定理,并能熟练运用切线长定理。

时间 分配导课3分、自学 5 分、交流 10 分、小结 3 分、巩固 7 分学习 过程学案(学习过程)导案(学法指导)一、自学新知:自学教材自学教材P 99---P 100,思考下列问题(1)通过自学教材P99页的探究你知道什么是切线长吗?切线长和切线有区别吗?区别在哪里?(2)通过自学教材P99页的探究可得切线长定理:从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________.(3)若PO 与圆相分别交于C 、D,连接AB 于PO 交于点E,图中有哪些相等的线段?有哪些相等的角,有哪些相等的弧?有哪些互相垂直的线段?有哪些全等的三角形。

(4)__________________叫做三角形的内切圆,三角形叫做圆的__________三角形,内切圆的圆心是__________的交点,内切圆的圆心叫做三角形的__________。

二、合作交流展示:如图,已知PA 、PB 是⊙O 的两条切线. 求证:PA=PB ,∠OPA=∠OPB . 证明:__________________三、当堂检测:1、过圆外一点作圆的切线,这点和 ,叫做这点到圆的切线长。

2、从圆外一点可以引圆的两条切线,它们的_________相等,这一点和圆心的连线平分__________________.3、与三角形各边都 ____________ 的圆叫三角形的内切圆;内切圆的圆心叫___________;这个三角形叫做________。

4、作三角形两内角的平分线,两角平分线的交点就是内切圆的圆心,5、如图,PA,PB,分别切⊙O 于点A,B,∠P=70°,∠C 等于 。

新人教版九年级数学上册《切线长定理》导学案

新人教版九年级数学上册《切线长定理》导学案

新人教版九年级数学上册《切线长定理》导学案 课 题切线长定理 课 型 展示课 执笔人 审核人级部审核 学习时间 第 周第 导学稿教师寄语学习目标 1、理解切线长定理、三角形内心的性质。

2、能利用切线长定理、三角形内心的性质进行简单的计算与证明。

(重、难点)学生自主活动材料 一.前置性自学1、自学内容:课本96-98页,把不明白的问题记录下来以便与老师、同学交流。

2、自学检测:(1)已知:如图,P 为⊙O 外一点,PA 、PB 为⊙O 的切线,A 和B 是切点。

写出三个以上正确结论: _____________________________________________________________________________________。

(2)如图,△ABC 中,∠A=45°,I 是内心,则∠BIC=( )A .112.5°B .112°C .125°D .55°(3)已知:如图,在△ABC 中,BC=14cm ,AC=9cm ,AB=13cm ,它的内切圆分别和BC 、AC 、AB 切于点D 、E 、F ,则AF=_________、BD=______________、CE=________________.二.小组反馈 1、若⊙O 的切线长和半径相等,则两条切线所夹角的度数为( )A.30°B.45°C.60° D .90°2、若AB 、AC 分别切⊙O 于B 、C ,延长OB 到D 使BD =OB ,连AD ,∠DAC =78°,则∠ADO =( )A.56°B.39°C.64°D.78°3、如图 :AB 、AC 切⊙O 于B 、C ,BC 交OA 于D ,则图中的直角三角形共有 ( ) A.3 B.4 C.5 D.64、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( )A.三条中线的交点,B.三条角平分线的交点,C.三条高的交点,D.三边的垂直平分线的交点。

人教版数学九年级上册第24章圆《切线长定理》教学设计

人教版数学九年级上册第24章圆《切线长定理》教学设计
2.结合信息技术,利用多媒体和动态几何软件辅助教学,提高学生的学习兴趣和效率。
-使用动态图形展示切线与圆的关系,帮助学生形成直观的认识。
-利用信息技术手段,制作互层次的学生设计不同难度的练习和任务,使每个学生都能在原有基础上得到提高。
-设计探究活动,鼓励学生提出假设,通过实际操作验证假设。
-组织小组讨论,培养学生的合作意识和交流能力。
2.逻辑推理:运用几何知识和逻辑推理方法证明切线长定理。
-引导学生运用已学的几何知识,如圆的性质、直角三角形的性质等,进行逻辑推理。
-培养学生的逻辑思维和分析问题的能力。
3.应用与实践:将切线长定理应用于解决实际问题,提高学生的应用能力。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生的生活经验和已有知识,激发他们对新知识的兴趣和好奇心。首先,我会提出一个问题:“在日常生活中,你们有没有见过或听说过道路或铁路在接近圆形交叉路口时,为什么会设计成曲线而非直线呢?”通过这个问题,引导学生思考圆与直线的关系,从而自然过渡到切线的概念。
-注意:要求学生在解题过程中注重逻辑推理的严密性和步骤的完整性。
2.实践应用题:选择一个生活中的实际问题,如道路设计、园林规划等,运用切线长定理进行解决,并将解题过程和结果写成小报告。通过这项作业,学生可以更好地理解数学与实际生活的联系,提高解决实际问题的能力。
-提示:鼓励学生使用图形和图表来辅助说明解题思路,使报告更加清晰易懂。
1.切线与半径的垂直关系:通过动态演示切线与半径的垂直关系,引导学生观察和思考,从而得出切线与半径垂直的结论。
2.切线长定理的证明:利用直角三角形的性质,分步骤引导学生完成切线长定理的证明。在此过程中,强调每一步的逻辑推理和几何依据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优质文档
新人教版九年级数学上册导学案:24.2.1切线长定理
课题24.2.1切线长定理课型探究课课时
1
(提示:假设符合条件的圆已经做出,那么它应当与三角形的三条边都相切,这个圆的圆心到
三角形的三条边的距离都等于半径。

如何找到这个圆心呢?).
并得出结论:
与三角形各边都的圆叫做三角形的内切圆,内
切圆的圆心是三角形三条的交点,叫做三角形的内心。

四、反馈提升[来源学科网]
例1:如图△ABC的内切圆⊙O与BC、CA、AB分别相切于点D,E,F,且AB=9cm,BC=14cm,
CA=13cm,求AF,BD,CE的长.
五、达标测评
1、如图,△ABC中,∠ABC=50°,∠ACB=75°,点O是内心,求∠AOC的度数。

[来源:学#科#网Z#X#X#K]
2、△ABC的内切圆半径为r,△ABC的周长为l,求△ABC的面积。

(提示:设内心
为O,连接OA,OB,OC)
总结与反思[来源学科网ZXXK]
学法指导栏
学习目标[来源学科网ZXXK]1.知道切线长的概念[来源:学科网ZXXK]
2.理解切线长定理
3.三角形的内切圆和三角形的内心的概
念,熟练掌握它的应用
学习
重点
知道三角形的内切圆和三角形的内心的概念
学习
难点
熟练掌握它的应用
教师“复备栏”或学生“笔记栏”学习过程:
一、情景引入或知识回顾
知识准备
三角形的外心:
角平分线的性质定理:
角平分线的判定定理:
二、自主学习
问题1:如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线po将纸对折,设圆上与
点A重合的点为B,这时,OB是⊙O的一条半径吗?PB是⊙O的切线吗?利用图形的轴
对称性,说明图中的PA与PB,∠APO与∠BPO有说明关系?
由探究得出结论:
经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的
如上图,PA、PB是⊙O的两条切线,
∴OA⊥AP, OB⊥BP.
又OA=OB, OP=OP,
在Rt△AOP和Rt△BOP中
∴Rt△AOP≌Rt△BOP()
∴PA=PB, ∠OPA=∠OPB.()
由此得到切线长定理:
从圆外一点可以引圆的两条,它们的切线长,这一点和圆心的连线
两条切线的 .
三、问题探究
如图,是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?
P
A
O
P
A
B
O
E
D
F
O
A
C
B
O
B C
A。

相关文档
最新文档