高三数学数列的极限PPT优秀课件
合集下载
《高数》数列极限课件PPT
定义与其他概念的关系
极限与连续性的关系
函数的连续性是指在某一点处的极限 值等于该点的函数值,因此,函数的 连续性可以看作是极限的一种特殊情 况。
极限与可导性的关系
极限与积分的关系
积分是研究面积和体积的重要工具, 而积分的计算需要用到极限的概念。
可导性是指函数在某一点处的切线斜 率存在,而这个切线斜率可以通过函 数在该点的极限值来定义。
数列极限与其他数学概念的关系
数列极限与函数极限的关 系
函数极限是数列极限的一个特例,即当自变 量n趋于无穷大时,函数值趋于一个常数, 这个常数就是函数的极限值。函数极限和数 列极限有许多共同的性质和定理,如单侧极 限、连续性等。
数列极限与微积分学
微积分学中的许多概念都与数列极限有关, 如导数、定积分等。通过数列极限,我们可 以更好地理解这些概念的本质和性质。同时 ,微积分学中的许多问题也需要借助数列极
04
数列极限的应用
在数学分析中的应用
极限是数学分析的基本概念之一,数列极限在数学分析中有 着广泛的应用。通过研究数列极限,可以更好地理解函数的 变化趋势、导数和积分的定义和性质等。
数列极限在证明一些数学定理和推导数学公式中也有着重要 的作用。例如,利用数列极限可以证明实数的完备性定理、 级数收敛的判别法等。
数列极限的几何解释
数列极限的几何解释是通过图形直观 地理解数列收敛和发散的概念。在平 面坐标系中,我们可以绘制数列的图 像,通过观察图像的变化趋势来理解 数列的收敛性和发散性。
收敛数列的图像会趋近于一个固定的 点,而发散数列的图像则会远离这个 点。通过比较不同数列的图像,我们 可以更好地理解数列极限的性质和特 点。
闭区间套定理
总结词
闭区间套定理是数列极限存在的一个充分条件,它表明如果一个数列的项构成一个闭区 间套,则该数列收敛。
《数列极限》课件
数列极限的求法和定理
夹逼定理
当数列中的部分项趋近于某值 时,可以用夹逼定理计算数列 极限。
单调有界性原理
针对单调有界数列极限计算, 有效避免无关项的干扰。
等比数列求和公式
等比数列常用求和公式是根据 数列的公比、项数和首项等参 数来计算其总和。
数Байду номын сангаас极限的应用
1
概率论
数列极限可以用于计算连续抛硬币等随机事件的概率。
2
微积分
通过数列极限的积分运算,在空间形体的计算上取得模型化精确结果。
3
金融学
通过数列极限的公式及定理,对于计息的时间长度和贷款利率有精确的计算方法。
数列极限和函数极限的关系
概念解释
数列极限和函数极限都是极 限概念,数列极限为数列中 每一项趋向于某个常数值, 函数极限为自变量无限接近 某一值时因变量所趋向的极 限值。
《数列极限》PPT课件
欢迎大家来学习本课程,我们将深入了解数列极限的概念及应用,同时带您 领略数学的神奇之处。
数列极限概述
1 数列
数列就是按照一定次序排 列的一列数。
2 收敛与发散
数列收敛是指数列的值无 限地靠近某个数,发散表 示数列的值趋于正无穷或 负无穷。
3 应用
数列极限有诸如杨辉三角、 黄金分割数等数学问题的 解决方法。
针对实际问题,通过数列极限相 应的公式和求值技巧得出定量结 果。
数列的定义及分类
等差数列
其数列中每一项与前一项之差相 等。
等比数列
其数列中每一项与前一项之比相 等。
斐波那契数列
其数列中每一项都等于前两项之 和。
数列极限的定义和性质
1 数列极限的定义
数列极限是 指随着数列项数的增加,数列中 的每一项趋近于某个确定的常数。
《数列极限》课件
性。
适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛
适用于任何收敛数列的证明 。
需要选择合适的正数 $varepsilon$,以确保证明
的有效性。
夹逼定理证明法
01 总结词
通过夹逼定理来证明数列的收 敛性。
02 详细描述
03 适用范围
适用于某些收敛数列的证明。
夹逼定理指出,如果存在两个 常数$a$和$b$,使得$a leq a_n leq b$且$lim_{n to infty} a = lim_{n to infty} b = L$, 则数列${a_n}$也收敛于$L$。 通过证明存在这样的常数$a$和 $b$,可以证明数列的收敛性。
利用数列极限探究数学规律或现象,如 探究数学猜想、探究函数的周期性等。
利用数列极限求解复杂数学问题,如求 解高阶导数、求解微分方程等。
详细描述 利用数列极限证明函数的性质或定理。
THANKS
感谢观看
微积分基本定理的推导
01
微积分基本定理的 内容
微积分基本定理是微积分学中的 重要定理,它建立了定积分与不 定积分之间的关系。
02
微积分基本定理的 推导过程
通过极限理论、实数完备性等数 学工具,可以推导出微积分基本 定理。
03
微积分基本定理的 应用
微积分基本定理是计算定积分的 基石,可以用于解决面积、体积 、长度等几何和物理问题。
需要选择合适的正数,以确 保证明的有效性。
柯西收敛准则证明法
总结词
详细描述
适用范围
注意事项
通过柯西收敛准则来证明数 列的收敛性。
柯西收敛准则指出,如果对于任 意正数$varepsilon$,存在正整 数$N$,使得当$n, m > N$时, 有$|a_n - a_m| < varepsilon$ ,则数列收敛。通过证明存在这 样的$N$,可以证明数列的收敛
《数列的极限》课件
单调有界定理
总结词
如果一个数列单调增加或单调减少,且存在上界或下界,则该数列存在极限。
详细描述
单调有界定理是数列极限存在性定理中的一个重要推论,它表明如果一个数列单调增加或单调减少,并且存在上 界或下界,那么这个数列存在极限。这是因为单调性保证了数列不会无限增大或减小,而有界性则保证了数列不 会趋于无穷大或无穷小。
数列的极限
目录
CONTENTS
• 数列极限的定义 • 数列极限的性质 • 数列极限的存在性定理 • 数列极限的应用 • 数列极限的证明方法
01 数列极限的定义
CHAPTER
定义及性质
定义
对于数列${ a_{n}}$,如果当$n$趋于无穷大时,$a_{n}$趋于某个常数$a$,则称数列${ a_{n}}$收敛 于$a$。
05 数列极限的证明方法
CHAPTER
定义法
总结词
通过直接使用数列极限的定义来证明数列的极限。
详细描述
定义法是最基本的证明数列极限的方法,它基于数列 极限的定义,通过直接计算数列的项与极限值之间的 差的绝对值,并证明这个差可以任意小,从而证明数 列的极限。
柯西收敛准则证明法
总结词
利用柯西收敛准则来证明数列的极限。
性质
极限的唯一性、四则运算法则、夹逼准则等。
收敛与发散
收敛
当数列的项逐渐接近一个常数时,该 数列称为收敛的。
发散
如果数列的项没有收敛到任何值,则 该数列称为发散的。
收敛的几何意义
几何解释
在数轴上,如果一个数列的项逐渐接 近一个点,那么这个数列就是收敛的 ,而这个点就是它的极限。
举例
考虑数列${ 1, -1, 1, -1, ldots }$,该 数列在$x=0$处收敛,因为当$n$趋 于无穷大时,该数列的项逐渐接近0 。
《高数》数列极限》课件
详细描述
几何级数是每一项都等于前一项乘以一个固 定比例的数列。数列极限的概念用于计算几 何级数的和,帮助我们了解这种数列的增长
趋势和规律。
05
数列极限的扩展知识
无穷级数的概念
要点一
无穷级数定义
无穷级数是无穷多个数按照一定顺序排列的数列,可以表 示为$sum_{n=0}^{infty} a_n$,其中$a_n$是级数的项。
《高数》数列极限》ppt课件
• 数列极限的定义 • 数列极限的性质与定理 • 数列极限的运算 • 数列极限的应用 • 数列极限的扩展知识
01
数列极限的定义
定义及性质
定义
数列的极限是指当项数n无限增大时 ,数列的项无限趋近的数值。
性质
极限具有唯一性、有界性、局部保序 性等性质。
收敛与发散
收敛
如果数列的极限存在,则称该数列收敛。
单调有界定理
如果数列单调递增且有上界或单调递减且有下界,则 该数列收敛。
反例
举出一些不满足单调有界定理的数列,如无界且无周 期的数列等。
应用
单调有界定理在证明某些数学问题时具有重要应用, 如求函数的极值点等。
柯西收敛准则
柯西收敛准则
数列收敛的充要条件是对于任意 给定的正数$varepsilon$,存在 正整数$N$,使得当$n,m>N$时 ,有$|a_n - a_m|<varepsilon$ 。
幂级数求极限
幂级数求极限的方法
介绍如何利用幂级数的方法求极限,包 括将函数展开为幂级数,并利用幂级数 的性质求极限。
VS
举例说明
通过具体例子演示如何运用幂级数求极限 ,如求lim(x->0) (1+x)^1/x的极限值。
高等数学放明亮版课件1.2-数列的极限ppt.ppt
2024/9/27
17
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
xn
1
(1)n n
无限接近于常数1 .
怎样用精确的数学语言来阐述“当 n 趋于无穷大时,
数列 xn 无限接近一个确定的常数 a ”这一变化趋势? 我们知道,两个数 a 与 b 之间的接近程度可以用这两个
数之差的绝对值| b a | 来度量( | b a | 的几何意义表示点 a
与点 b 之间的距离),| b a | 越小,a 与 b 就越接近.为此,“数
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2. 收敛数列一定有界.
(Roundedness)
证: 设nl imxn a, 取 1, 则 N , 当 nN 时, 有 xn a 1,从而有
去求最小的 N.
2024/9/27
9
目录
上页
下页
返回
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例2 证明
lim
n
(1)n (n 8)3
0
证:
xn0
( 1) n (n 8)3
极限是唯一的.
2024/9/27
12
目录
上页
下页
数列的极限ppt
恒有 f ( x) A .
记作 lim f ( x) A 或 x x0 0 ( x x0 )
注意:{x 0 x x0 }
f ( x0 0) A.
{ x 0 x x0 } { x x x0 0}
. Sept. 26 Mon
Review
1.数列极限性质:唯一性,有界性,夹逼性, 保号性;
定理 : lim f ( x) A x x0
f ( x0 0) f ( x0 0) A.
lim
n
xn
a,
或 xn a (n ).
如果数列没有极限,就说数列是发散的.
注意:1. 不等式 xn a 刻划了 xn 与 a 的无限接近;
2. N 与任意给定的正数 有关.
极限的 N 定义:
lim
n
xn
a
0, N 0,使 n N 时,恒有 xn a .
几何买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
x1 , x2 ,, xi ,xn ,
xn1 , xn2 ,, xnk ,
xn
1
(1)n 2
子列 1,1,
0,0,
0, 1, 0, 1,
定义3. 设有序列{ xn },若 M 0,对一切n 都有: | xn | M 则称 {xn} 是有界序列。
例: 0,1,0,1,
为有界序列。
二. 数列极限的定义
有界,几个特殊数列的极限; 。
高等数学第一章第二节数列的极限课件.ppt
1
1 2n
1
二、数列的定义
定义:按自然数1,2,3,编号依次排列的一列数
x1 , x2 ,, xn ,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项,xn 称为通项(一般项).数列(1)记为{ xn }.
例如 2,4,8,,2n ,;
1 2
,
1 4
,
1 8
,,
1 2n
,;
{2n}
1 {2n }
五、小结
数列:研究其变化规律; 数列极限:极限思想、精确定义、几何意义; 收敛数列的性质: 有界性、唯一性、保号性、子列的收敛性
练习题
一、利用数列极限的定义证明:
1、lim 3n 1 3 ; n 2n 1 2
2、lim0.999....9 1 n
二、设数列
xn
有界,又lim n
yn
0,
有 xn 1 成立.
定义 如果对于任意给定的正数 (不论它多么
小),总存在正数 N ,使得对于n N 时的一切 xn,
不等式 xn A 都成立,那末就称常数 A 是数列
xn的极限,或者称数列 xn收敛于 A,记为
lim
n
xn
A,
或 xn A (n ).
如果数列没有极限,就说数列是发散的.
n
n
例2
设xn
C(C为常数),
证明 lim n
xn
C.
说明:常数列的极限等于同一常数.
小结: 用定义证数列极限存在时,关键是任意给 定 0,寻找N,但不必要求最小的N.
例3 证明 lim qn 0,其中q 1. n
四、数列极限的性质
性质1 如果数列有极限,则极限是唯一的.
数列极限-PPT精选文档
2.几个重要极限:
1 0 limC C (C为常数) lim n n n
q 0 当 q 1 时 lim n
n
3.我们可以将an看成是n的函数即an=f(n),n∈N*,an就
是一个特殊的函数,对于一般的函数f(x) x∈R是否有同
样的结论?
3、数列极限的运算法则 lim bn=B 如果 lim an=A,
n
n 1
例2:已) 5 a n b n
2
求常数a、b、c的值。
例3.已知数列{ an }是由正数构成的数列, a1=3,且满足于lgan =lgan-1 +lgc,其中 n 是 大于1的整数,c 是正数
(1)求数列{ an }的通项公式及前n项和Sn
例1:求下列极限
2n n7 (1 )lim 2 5 n 7 n
2
(2 )lim ( n nn )
2 n
2 4 2 n 2 . . . . . 2) ( 3 ) l i m (n 2 n n n
a ( 1 a ) ( 1 a) ( a 1 ) ( 4 ) l i m n 1 n 1 a ) ( 1 a ) . . . . . . . . . . . n a (
2 a n 求 的 值 (2) lim n n 2 a n 1
n 1
课堂小结 1、极限的四则运算,要特别注意四则运 算的条件是否满足。
2.几个重要极限:
limC C (C为常数)
n
1 lim 0 n n
q 0 当 q 1 时 lim n
n
2、本节复习内容是数列极限在代数,平 面几何、三角、解析几何中的综合应用, a1 尤其要注意公式S= 的运用。 1 q
《数列的极限》PPT课件
1.数列极限的定义
设{an}是一个无穷数列,如果当项数 n 无限增大时,项 an 无限地趋近于某个常数 a(即|an
-a|无限地接近于
0),那么就说数列{an}以
a
为极限(或者说
a
是数列{an}的极限),记作
lim n→∞
an=a.
2.几个常用极限
(1)lim C=C(C 为常数); n→∞
(2)lim n→∞
答案:1000
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
知识要点一:对数列极限的理解 1.数列{an}的极限是指当 n 无限增大时,an 无限趋近的那个常数.如果当 n 无限增大时, an 不趋近于任何一个常数,那么这个数列就没有极限.数列的极限是一个常数,这个常数与 n 无关,求数列的极限就是求这个常数. 2.一个数列如果有极限,那么这个数列的极限是唯一的,即一个数列不可能有两个或 更多个极限.
知识要点二:几种常用数列的极限 1.常数数列的极限是这个常数本身,即n→lim∞C=C(C 为常数). 2.如果|a|<1,那么n→lim∞an=0;如果n→lim∞an=0,那么|a|<1;如果n→lim∞an 存在,那 么-1<a≤1.
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
首页 上一页 下一页 末页
瀚海导与练 成功永相伴
瀚海书业
瞻前顾后 要点突破 典例精析 演练广场 考题赏析
02数列的极限PPT课件
•数列与函数
数列{xn}可以看作自变量为正整数n的函数: xn=f(n), nN .
首页
上页
返回
下页
结束
铃
❖数列极限的通俗定义 当n无限增大时, 如果数列{xn}的一般项xn无限接近
于常数a, 则常数a称为数列{xn}的极限, 或称数列{xn}收 敛a, 记为
例如
首页
上页
返回
下页
结束
铃
当n无限增大时, 如果数列{xn}的一般项xn无限接近 于常数a, 则数列{xn}收敛a.
2. 数列1, -1, 1, -1, , (-1)N1, 的有界性与收敛 如何?
首页
上页
返回
下页
结束
铃Байду номын сангаас
二、收敛数列的性质
❖定理1(极限的唯一性) 如果数列{xn}收敛, 那么它的极限唯一.
❖定理2(收敛数列的有界性)
如果数列{xn}收敛, 那么数列{xn}一定有界. ❖定理3(收敛数列的保号性)
首页
上页
返回
下页
结束
铃
❖数列极限的精确定义
设{xn}为一数列, 如果存在常数a, 对于任意给定的正
数e , 总存在正整数N, 使得当n>N 时, 不等式
|xn-a |<e
都成立, 则称常数a是数列{xn}的极限, 或者称数列{xn}收 敛于a, 记为
如果不存在这样的常数a, 就说数列{xn}没有极限,
•数列的几何意义
数列{xn}可以看作数轴上的一个动点, 它依次取数轴 上的点x1, x2, x3, , xn , .
x1
xn x4 x3 x5 x2
首页
上页
返回
数列{xn}可以看作自变量为正整数n的函数: xn=f(n), nN .
首页
上页
返回
下页
结束
铃
❖数列极限的通俗定义 当n无限增大时, 如果数列{xn}的一般项xn无限接近
于常数a, 则常数a称为数列{xn}的极限, 或称数列{xn}收 敛a, 记为
例如
首页
上页
返回
下页
结束
铃
当n无限增大时, 如果数列{xn}的一般项xn无限接近 于常数a, 则数列{xn}收敛a.
2. 数列1, -1, 1, -1, , (-1)N1, 的有界性与收敛 如何?
首页
上页
返回
下页
结束
铃Байду номын сангаас
二、收敛数列的性质
❖定理1(极限的唯一性) 如果数列{xn}收敛, 那么它的极限唯一.
❖定理2(收敛数列的有界性)
如果数列{xn}收敛, 那么数列{xn}一定有界. ❖定理3(收敛数列的保号性)
首页
上页
返回
下页
结束
铃
❖数列极限的精确定义
设{xn}为一数列, 如果存在常数a, 对于任意给定的正
数e , 总存在正整数N, 使得当n>N 时, 不等式
|xn-a |<e
都成立, 则称常数a是数列{xn}的极限, 或者称数列{xn}收 敛于a, 记为
如果不存在这样的常数a, 就说数列{xn}没有极限,
•数列的几何意义
数列{xn}可以看作数轴上的一个动点, 它依次取数轴 上的点x1, x2, x3, , xn , .
x1
xn x4 x3 x5 x2
首页
上页
返回
1-02-数列的极限-PPT精品文档
则对一切 n,皆 自有 xn然 M 数 , 故 xn有.界
注意:有界性是数列收敛的必要条件. 推论 无界数列必定发散.
2、唯一性
定理2 收敛的数列极限唯一。
证 设 l n ix n m a ,又 l n ix n m b , 由定义,
0,N 1,N 2.使当 得 n N 1 时x 恒 n a 有 ;
定理2 收敛的数列极限唯一。
证 法二 设 l n ix n m a ,又 l n ix n m b ,
假设a
b,不
妨
设
a
b,则 可 取 0
a
2
b
0,
lim
n
xn
a
对于0
0,N 1,n
N1,
xn a
0,
xn
a
0
a
2
b
,
只有(至 有多 限 N 个 只 )个 落有 在 . 其外
例1 证l明 im n(1)n11. n n
证
xn
1
n(1)n1 n
11, n
任给0,要xn1,只要n1,或n1,
所以, 取N1,则当nN时,就有n(1)n11
n
n(1)n1 n
Xn
1
1 2n
1
数 定义:按自然数1,2,3,编号依次排列的一列数
列
x1, x2,, xn,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项,xn称为通项(一般项).数列(1)记为{xn}.
例如 2,4,8, ,2n, ; { 2 n }
注意:有界性是数列收敛的必要条件. 推论 无界数列必定发散.
2、唯一性
定理2 收敛的数列极限唯一。
证 设 l n ix n m a ,又 l n ix n m b , 由定义,
0,N 1,N 2.使当 得 n N 1 时x 恒 n a 有 ;
定理2 收敛的数列极限唯一。
证 法二 设 l n ix n m a ,又 l n ix n m b ,
假设a
b,不
妨
设
a
b,则 可 取 0
a
2
b
0,
lim
n
xn
a
对于0
0,N 1,n
N1,
xn a
0,
xn
a
0
a
2
b
,
只有(至 有多 限 N 个 只 )个 落有 在 . 其外
例1 证l明 im n(1)n11. n n
证
xn
1
n(1)n1 n
11, n
任给0,要xn1,只要n1,或n1,
所以, 取N1,则当nN时,就有n(1)n11
n
n(1)n1 n
Xn
1
1 2n
1
数 定义:按自然数1,2,3,编号依次排列的一列数
列
x1, x2,, xn,
(1)
称为无穷数列,简称数列.其中的每个数称为数
列的项,xn称为通项(一般项).数列(1)记为{xn}.
例如 2,4,8, ,2n, ; { 2 n }
高等数学教学课件 第二节 数列的极限
A n 6 2 n 1 1 2 R 2 s6 i 2 2 n n 1 3 2 n 1 R 2 s6 i 2 2 n n 1 R2
4/18
2、截丈问题:
“一尺之棰,日截其半,万世不竭”
第一天截下的杖 X1 长 12;为 第二天截下的为 杖 X2长 12总 212和 ;
例如 2,4,8,,2n,;
{2 n }
12,14,18,,21n,;
1 {2 n }
6/18
1,1,1,,(1)n1,; {(1)n1}
2,1,4,,n(1)n1,;
n (1)n1
{
}
23
n
n
3 ,3 3 , ,3 3 3 ,
注意:1.数列对应着数轴上一个点列.可看作一
动点在数轴上依次取 x1,x2,,xn,.
13/18
例2
证li明 q m n0 ,其q 中 1 . n
证 任给 0, 若q0, 则 lim qnlim 00;
n
n
若 0q1, xn0qn, nlnqln,
n ln , ln q
取N [ln], 则n 当 N时 , lnq
就q 有 n0, lim qn0. n
14/18
四、收敛数列的性质
证明: nl im xn a
对于 a0,正整 N数 0,
2
当 nN时 ,有 xnaa 2
从 而a0 a0
xxnnaaa2a23a22a00.
刻划它. 我们知,两 道个数之间的接 可近 以程 用度 这两个
数之差的绝对值, 来差 度值 量越小越. 接近
xn1(1)n1
1 n
1 n
9/18
给定 1 , 100
由1 1 , n 100
4/18
2、截丈问题:
“一尺之棰,日截其半,万世不竭”
第一天截下的杖 X1 长 12;为 第二天截下的为 杖 X2长 12总 212和 ;
例如 2,4,8,,2n,;
{2 n }
12,14,18,,21n,;
1 {2 n }
6/18
1,1,1,,(1)n1,; {(1)n1}
2,1,4,,n(1)n1,;
n (1)n1
{
}
23
n
n
3 ,3 3 , ,3 3 3 ,
注意:1.数列对应着数轴上一个点列.可看作一
动点在数轴上依次取 x1,x2,,xn,.
13/18
例2
证li明 q m n0 ,其q 中 1 . n
证 任给 0, 若q0, 则 lim qnlim 00;
n
n
若 0q1, xn0qn, nlnqln,
n ln , ln q
取N [ln], 则n 当 N时 , lnq
就q 有 n0, lim qn0. n
14/18
四、收敛数列的性质
证明: nl im xn a
对于 a0,正整 N数 0,
2
当 nN时 ,有 xnaa 2
从 而a0 a0
xxnnaaa2a23a22a00.
刻划它. 我们知,两 道个数之间的接 可近 以程 用度 这两个
数之差的绝对值, 来差 度值 量越小越. 接近
xn1(1)n1
1 n
1 n
9/18
给定 1 , 100
由1 1 , n 100
高等数学之数列的极限PPT课件
§2 数列的极限
一、概念的引入 二、数列的概念 三、数列极限的定义 四、数列极限的性质
1
一、概念的引入
1、割圆术: “割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
——刘徽
2
正六边形的面积 A1
正十二边形的面积 A 2
R
正62n1形的面积 A n
A 1,A 2,A 3, ,A n,S
随着 n 的无限增大而无限趋于 0 .
4
二、数列的概念
定义:按自然数1,2,3,编号依次排列的一列数
x1 , x2 ,, xn ,
(1)
称为实数列,简称数列.其中的每个数称为数列
的项, xn称为通项(一般项).数列(1)记为{xn }.
例如 2,4,8, ,2n, ;
{2 n }
12,14,18,,21n,;
则对一切 n,皆 自有 xn然 M 数 , 故 xn有.界
推论 无界数列必定发散.
13
例 数x列 n(1)n1.
事实 ,{xn}是 上有 ,但 界却 的 . 发散
注意:有界性是数列收敛的必要条件.
14
3、保号性 定理3 若 ln imxn a, 且a >0( 或a <0),则存在
证 设数 x n k 是 列数 x n 的 列 任一子
ln i m xna,
0 , N 0 , 使 n N 时 , 恒 x n a 有 . 取KN,
则k 当 K时 , n k n k n KN .
xnk a. k l i m xnk a.
证毕.
21
说明: 由此性质可知 , 若数列有两个子数列收敛于不同的极 限 , 则原数列一定发散 . 例如,
一、概念的引入 二、数列的概念 三、数列极限的定义 四、数列极限的性质
1
一、概念的引入
1、割圆术: “割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
——刘徽
2
正六边形的面积 A1
正十二边形的面积 A 2
R
正62n1形的面积 A n
A 1,A 2,A 3, ,A n,S
随着 n 的无限增大而无限趋于 0 .
4
二、数列的概念
定义:按自然数1,2,3,编号依次排列的一列数
x1 , x2 ,, xn ,
(1)
称为实数列,简称数列.其中的每个数称为数列
的项, xn称为通项(一般项).数列(1)记为{xn }.
例如 2,4,8, ,2n, ;
{2 n }
12,14,18,,21n,;
则对一切 n,皆 自有 xn然 M 数 , 故 xn有.界
推论 无界数列必定发散.
13
例 数x列 n(1)n1.
事实 ,{xn}是 上有 ,但 界却 的 . 发散
注意:有界性是数列收敛的必要条件.
14
3、保号性 定理3 若 ln imxn a, 且a >0( 或a <0),则存在
证 设数 x n k 是 列数 x n 的 列 任一子
ln i m xna,
0 , N 0 , 使 n N 时 , 恒 x n a 有 . 取KN,
则k 当 K时 , n k n k n KN .
xnk a. k l i m xnk a.
证毕.
21
说明: 由此性质可知 , 若数列有两个子数列收敛于不同的极 限 , 则原数列一定发散 . 例如,
高三数学数列的极限精选课件PPT
0 .9 19 0 4 0 .3 0 1 50 0 .9 59 0 1 0 .5 0 1 20 2 0 .9 19 0 0 2 .2 0 1 0 40 4 0 .9 29 0 5 0 .1 0 1 0 80 8 由此猜想 lim 0.9n 90
n
一般地,如果 |ห้องสมุดไป่ตู้a | 1,那么 nl im an0.
周分成三等分、六等分、十二等分、二十四等分、···这样 继续分割下去,所得多边形的周长就无限接近于圆的周长.
定量分析
圆的半径 R 1 2
2.3 数列的极限
项号 边数 内 接 多 边 形 周 长
1 3 2.598076211353 2 6 3.0 3 12 3.1 4 24 3.1
5 48 3.7
2.3 数列的极限
2.3 数列的极限
战国时代哲学家庄周著的《庄子·天 下篇》引用过一句话:
一尺之棰 日取其半 万世不竭.
……
定量分析
2.3 数列的极限
项号 项
1
1
2
1
2
4
1
3
8
4
1 16
1
5
32
6
1 64
1
7
128
1
8
256
……
这一项与0的差的绝对值
| 1 0|0.5 2
| 10|0.25 4
| 10|0.125 8
(2)
1, 2, 3, , n, 234 n1
(3) 1 , 2 1, 1 3, , ( n 1 )n,
共同特性是:不论这些变化趋势如何,随着项数n 的无 限增大,数列的项 a n无限地趋近于常数a(即 ana 无限地接 近于0) .
n
一般地,如果 |ห้องสมุดไป่ตู้a | 1,那么 nl im an0.
周分成三等分、六等分、十二等分、二十四等分、···这样 继续分割下去,所得多边形的周长就无限接近于圆的周长.
定量分析
圆的半径 R 1 2
2.3 数列的极限
项号 边数 内 接 多 边 形 周 长
1 3 2.598076211353 2 6 3.0 3 12 3.1 4 24 3.1
5 48 3.7
2.3 数列的极限
2.3 数列的极限
战国时代哲学家庄周著的《庄子·天 下篇》引用过一句话:
一尺之棰 日取其半 万世不竭.
……
定量分析
2.3 数列的极限
项号 项
1
1
2
1
2
4
1
3
8
4
1 16
1
5
32
6
1 64
1
7
128
1
8
256
……
这一项与0的差的绝对值
| 1 0|0.5 2
| 10|0.25 4
| 10|0.125 8
(2)
1, 2, 3, , n, 234 n1
(3) 1 , 2 1, 1 3, , ( n 1 )n,
共同特性是:不论这些变化趋势如何,随着项数n 的无 限增大,数列的项 a n无限地趋近于常数a(即 ana 无限地接 近于0) .
《高数数列极限》PPT课件
如果数列没有极限,就说数列是发散的.
注意:
1. 不等式 xna 刻 画了xn 和a 的“无限接近”,
2. 必须是可以任意小的,不能只是局限于某些个别的;
2. N与 有关, 通常随着 的不同而变化; 3. 但对于固定的, N又是不唯一的!
n 3. nN 刻画了变标 的变n 化程度, 与 N 无关! 10
12
上下
例2.
xn (n(11)n)2 , 证明 n l i m xn0.
证:
xn0
(1)n (n1)2
0
(n
1 1)2
1 n 1
0(设 1),
欲使
xn0,只要
1
n1
,
即
1
n
1.
取 故
Nn l i[ 1m xn1 ],n l 那 当i m 么(n ( 1 n1 ) n )2N 0 时,
就有
上下
➢几何解释:
a 2 a x 2 x1 xN1 a xN2 x 3 x
当 nN 时 ,所 有 x n 都 的 ( 落 a 点 ,a 在 )内 ,
只有 (至 有多 限 N 个 )落 只 个 在 有 . 其外
➢.符号定义: ln i m xn a
0 , N 0 , 当 n N 时 , 有 x n a .
取 N m N 1 ,N a 2 ,及x b2a
则n 当 N时有 b 2axnab 2a
xn
ab 2
b 2axnbb 2a
xn
ab 2
矛盾. 故收敛数列极限唯一.
15
上下
二、收敛数列的性质
2.有界性 【定理2】 收敛的数列必定有界.
只 要 n 1 0 0 0 0 时 ,有xn1100 100;
高等数学随堂讲义数列极限(1).pptx
序列
x1, x2, x3 , xn ,
就叫做数列,记为 xn .
➢表示: (a) 数轴上的一系列点
(b) 平面上的一系列点
x3 x1 x2 x4 xn x
xn x1 x2 x3 x4
o
1 2 34 n
➢实质: 自变量为正整数的函数 xn f (n), n N
(二)数列极限的定义
1.数列的概念 2.数列极限的描述性定义 3.数列极限的精确定义 4.数列极限的意义
➢定理3
如果lim n
xn
a,且 a
0(或 a
0)
那么存在正整数 N 0, 当 n N时,都有
xn 0(或 xn 0)
➢推论 如果数列xn从某项起有 xn 0(或 xn 0)
且
lim
n
xn
a , 那么
a
0(或 a
0)
二、收敛数列的性质
(四)收敛数列与其子数列间的关系
➢子数列概念
在数列中任意抽取无限多项并保持这些项在原数列{xn}中
来 越
正十二边形:S3 …… Sn
接 近
S
当n无限增大时
Sn的变化趋势为S
2. “一尺之棰,日取其半, 万世不竭”
第一天后: 1/2 第二天后:
(一)引例
1. 求半径为r的 圆的面积S
作圆的内接正多边形
正三角形:S1 越
正六边形:S2
来 越
正十二边形:S3 …… Sn
接 近
S
当n无限增大时
Sn的变化趋势为S
(一)引例
1. 求半径为r的 圆的面积S
2. “一尺之棰,日取其半, 万世不竭”
作圆的内接正多边形
正三角形:S1 越
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 解:排除法:取an=(-1)n,排除A;
• 取an= ,1 排除B;取an=bn=n,
•
n 都不存在,排除D.
ln i m anln i m bn
题型1 求代数式的极限
• 1. 求下列极限:
1lim n24nn; n
2lni m 121213121n12; 3lni m C22C32C42Cn2(C21C31C41Cn1)n; 4lni m 33n n11aan n11(a> 0,且为常数).
存 示lnim)在.an,求t的取值范围,并求
lim
n
an(用t表
• 解法1:由题设知 an+1=tb,n+1得+1an+1=t2an+1.
• 又已知t≠2,
an=2bn+1
• 可得
2t 2
a n 1 t 2 2 (a n t 2 ).
• 由f(b)≠g(b),t≠2,t≠0, • 可知 a 1 t 2 2 tb t 2 2 0 , 2 t 0 ,
• 3. 常见的数列的极限
• (1)若C为常数, limC ⑦ C.
• •
((23))若|qlnim|< n11k =,⑧q为常0n (其数 中,k则>0为lim常q=n数⑨).
0
.
• (4)设无穷等比数列{an}的公比n为 q,
• 前n项和为Sn,若|q|<1,
•则
=⑩
lim
n
Sn
a1 .
1 q
• •
所以{
an
t
2
2
其首项为 tb
}是等比数列, 2 ,公比为 t
.
• 于是
a n t 2 2 t( t 2b t 2 2 ) ( 2 t) n 2 1 ,
• • •
即 又 所以-lna 2in m< a( t存n<tb 在2 且,t 2 t≠可2 0) 得.故( 02 t<) n |1 lni mta2t |2 n<2 .1t,22.
• 解:(1 )
n21
n21an2anbnb
anb
n1
n1
1an2abn1b.
n1
• 由已知
lni m n n2 1 1anb0,得
1-a=0 a+b=0,
• 即a=1,b=- m a 33n 1 1 n3 n a 0 ,1nln i m 3 a 13 1 n1 3,
• 解:(1)原式lim 4 n lim 4 2 .
• (2)原式
n n 24 n nn 14 1 n
221 321 421 n21
lim n
22
• 32
• 42
•• n2
1•3 2•4 3•5 n1n1
lni m 22 • 32 • 42 ••
n2
limn11. n 2n 2
• (3)原式=
• 1.下列极限正确的个数是( B )
① ln i m n 1 0 (> 0 ); ② ln i m qn0 ;
③ ln i m 2 2 n n 3 3 n n 1 ; ④ ln i m C C (C 为 常 数 ).
• A. 2
B. 3
• C. 4
D. 都不正确
• 解:①③④正确.故选B.
9
a n1 3
a
n1
3
1. 9
• 点评:求根式型数列的极限一般是先分子 有理化;求分式型数列的极限一般先对分
式进行通分、约分;求含参数的数列的极 限注意分类讨论.
• •
(1)若 (2)已知
lni m lni m n n 3 2 n 1 11 3a n an 1b n 0 1 3, , 求求aa和的b取的值值范. 围.
• 所以 | a 1 |<1,所以-4<a<2.
3
• 故a的取值范围是(-4,2).
题型2
数列背景下的极限问题
• 2. 已知数列{an}、{bn}与函数f(x)、g(x),x∈R 满足条件:b1=b,an=f(bn)=g(bn+1)(n∈N*).若 f(x)=tx+1(t≠0,t≠2),g(x)=2x,f(b)≠g(b),且
2n
lim (n• • )lim 2.
n 3 4 5 n2 n n2
• 3.下列四个命题中正确的是( C)
A.若lni man2 A2,则lni man A
B.若an>0, lni man A,则A>0
C.若lni man A,则lni man2 A2
D.若lni m anbn 0,则lni man lni mbn
ln 地 或 2那 别 ⑥i m . 接者么地(如an 近说,果•b 于如an ln .是i) ④m ②果 ln数(i a m C 0n 列是a )na,{b 常ban ,;)那na数}③ 的ln么lin ,mi m 极就 (那abba限nn说n ±么)ln , i b数m ⑤ b;记, 列C 作{•aa ab nn }的lni m ( 极ba≠n限0C)为a.·特a.a,
第十二章 极限与导数
第讲
考点
●数列极限的含义,数列极限的四 则运算法则
搜 索 ●数列极限的基本公式高
高 考 1.在数列背景下求极限.
猜想
2.转化极限条件,求相关参数的取 值范围.
• 1. 如果当项数n无限增大时,无穷数列{an}的第
n项an无限地① 趋近于某个常数a(即|an-a|无限
• • •
lni m23C 4n31nnlni m3!nn12•nnn(n11)
2
lni m3nn12
11 lim n
n31n2
1. 3
• (4)当a>3时,原式=
lim
n
3 a
n1
1
9
•
3 a
n1
1
1;
• 当a=3时,原式=
23n1 lni m 83n1
1; 4
• 当0<a<3时,原式
lim
1
n
• 解法2:由题设知tbn+1=2bn+1,且t≠2,
• •
可 由f得(b)≠gb (n b1 ) ,tt 1 ≠2 2,2 tt≠ 0b n ,t 12 .
• 可知 b 1 0, t0,
• •
所以{ 公比为
bn的t t等t12 比2}是数首列2项. 为下
b 1,
t2
2
• 所以 b n t 1 2 ( b t 1 2 ) ( 2 t) n 1 ,
• •
2等. 于l n (i m [ n C) 1 1 3 1 1 4 ( 1 1 5 ) ( 1 n 1 2 ) ]
• A. 0 B. 1 C. 2 D. 3
• 解:
ln i m [ n 11 3 11 4 (11 5) (1n 12)]
2 3 4 n1