二次函数图像和性质教案
二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生了解二次函数的定义和标准形式;2. 理解二次函数的性质,包括顶点、开口、对称轴等;3. 掌握二次函数图像的特点,如开口方向、顶点位置等;4. 能够运用二次函数的性质和图像解决实际问题。
二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质:顶点、开口、对称轴;3. 二次函数图像的特点:开口方向、顶点位置等;4. 实际问题举例。
三、教学重点与难点1. 重点:二次函数的性质和图像的特点;2. 难点:运用二次函数的性质和图像解决实际问题。
四、教学方法1. 采用讲解、演示、练习、讨论等教学方法;2. 使用多媒体课件辅助教学,直观展示二次函数的图像;3. 引导学生通过实际问题,探究二次函数的性质和图像特点。
五、教学过程1. 引入:通过生活中的实例,引导学生思考二次函数的存在;2. 讲解:讲解二次函数的定义和标准形式,阐述二次函数的性质,如顶点、开口、对称轴等;3. 演示:使用多媒体课件,展示二次函数的图像,让学生直观理解二次函数的性质和图像特点;4. 练习:布置练习题,让学生巩固二次函数的性质和图像知识;5. 讨论:组织学生分组讨论,分享解题心得和实际问题解决方法;6. 总结:总结二次函数的性质和图像特点,强调运用二次函数解决实际问题的重要性。
六、教学评估1. 课堂练习:设计一份包含不同难度的练习题,以评估学生对二次函数性质与图像的理解程度。
2. 小组讨论:观察学生在小组讨论中的参与情况和合作能力,评估他们对知识点的掌握和运用能力。
3. 课后作业:布置一道综合性的课后作业,要求学生应用二次函数的性质与图像解决实际问题,以评估他们的应用能力。
七、教学资源1. 多媒体课件:制作详细的课件,包括二次函数的图像、性质解释和实际问题示例。
2. 练习题库:准备一份涵盖各种类型题目的题库,用于课堂练习和课后作业。
3. 实际问题案例:收集一些与二次函数相关的实际问题案例,用于教学中的实例分析。
二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。
二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。
三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。
四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。
五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。
七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。
八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。
二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案一、教学目标1. 理解二次函数的顶点式图像及其性质。
2. 学会如何通过顶点式来确定二次函数的图像和性质。
3. 能够运用二次函数的顶点式图像和性质解决实际问题。
二、教学内容1. 二次函数的顶点式图像:通过顶点式y=a(x-h)^2+k 来分析二次函数的图像,理解顶点式中的h 和k 对图像的影响。
2. 二次函数的顶点式性质:掌握顶点式中的a、h 和k 对二次函数图像的开口方向、对称轴和最值的影响。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过观察和分析来发现二次函数的顶点式图像和性质。
2. 利用多媒体演示和实物模型辅助教学,帮助学生直观地理解二次函数的顶点式图像和性质。
3. 组织小组讨论和练习,鼓励学生互相交流和合作,提高学生的解决问题的能力。
四、教学步骤1. 引入:通过一个实际问题,引出二次函数的顶点式图像和性质的概念。
2. 讲解:讲解二次函数的顶点式图像和性质,并通过示例来说明。
3. 演示:利用多媒体演示二次函数的顶点式图像和性质的变化,让学生直观地感受。
4. 练习:给出一些练习题,让学生运用二次函数的顶点式图像和性质来解决问题。
五、教学评估1. 课堂讲解:观察学生在课堂上的参与程度和理解程度,及时进行反馈和调整教学方法。
2. 练习题:通过学生完成的练习题来评估学生对二次函数的顶点式图像和性质的理解程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括合作能力、交流能力和解决问题的能力。
六、教学活动1. 互动游戏:设计一个互动游戏,让学生通过游戏来加深对二次函数顶点式图像和性质的理解。
例如,可以设计一个“顶点抓取”游戏,学生通过操作鼠标或触摸屏,捕捉二次函数图像的顶点,并回答相关问题。
2. 小组竞赛:将学生分成小组,进行竞赛活动。
每组需要解决一系列与二次函数顶点式图像和性质相关的问题,并在规定时间内提交答案。
教师根据答案的正确性和提交时间来评分,奖励获胜的小组。
22.1.2二次函数的图像和性质(教案)

最后,我意识到在课堂上,对于学生的疑问和困惑,我需要更加耐心和细致地进行解答。有时候,一个简单的解释就能帮助学生跨越理解的障碍。在今后的教学中,我会更加注重与学生的互动,鼓励他们提出问题,并及时给予反馈。
-重点三,利用图示和计算,说明二次函数与x轴的交点即为二次方程的实数根;
-重点四,通过图像和数学推导,让学生理解二次函数最值的含义及其计算方法。
2.教学难点
-理解二次函数图像的对称性,特别是对称轴的概念及其与顶点的关系;
-掌握顶点坐标计算公式的应用,尤其是对于含有绝对值、分式等复杂二次函数的顶点求解;
-学会求解二次函数与坐标轴的交点,理解这些交点与二次方程解的关系;
-掌握二次函数的最值问题,明确当a>0时,函数有最小值;当a<0时,函数有最大值。
举例解释:
-对于重点一,强调a的符号决定了图像的形状,并通过实例展示a的正负对图像的影响;
-重点二,通过具体函数示例,演示如何计算顶点坐标,并解释顶点即为对称轴上的点;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“22.1.2二次函数的图像和性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体抛高后落地的情况?”(如抛球游戏)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数图像和性质的奥秘。
3.二次函数图像的顶点坐标计算,顶点公式为(-b/2a,4ac-b²/4a);
4.二次函数图像的对称轴,即x = -b/2a;
九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。
2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。
3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。
二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。
2. 教学难点:通过图像理解和应用二次函数的性质。
三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。
四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。
2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。
3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。
4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。
五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。
六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。
二次函数的图像与性质教案

二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。
教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。
2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。
3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。
步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。
2. 详细解释如何确定二次函数的顶点、轴和开口方向。
3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。
步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。
2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。
3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。
步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。
2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。
3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。
步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。
2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。
教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。
2. 白板、彩色笔等教学工具。
3. 实际问题的案例素材。
评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。
二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制二次函数的图像,并分析图像的性质;4. 能够运用二次函数解决实际问题。
二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质;3. 二次函数的图像;4. 实际问题中的应用。
三、教学重点与难点1. 重点:二次函数的性质和图像;2. 难点:二次函数图像的分析与应用。
四、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像;3. 结合实际例子,让学生学会运用二次函数解决实际问题。
五、教学准备1. 教学课件;2. 练习题;3. 实物模型或图形软件。
教案内容请参考下述示例:一、二次函数的定义和标准形式1. 二次函数的定义:形如y=ax^2+bx+c(a≠0,a、b、c为常数)的函数称为二次函数。
2. 二次函数的标准形式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。
二、二次函数的性质1. 对称轴:二次函数的对称轴为x=h。
2. 顶点:二次函数的顶点坐标为(h,k)。
3. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
三、二次函数的图像1. 绘制二次函数的图像:通过顶点、对称轴、关键点等方法绘制。
2. 分析二次函数的图像:观察开口方向、对称轴、顶点等。
四、实际问题中的应用1. 利用二次函数解决实际问题:如抛物线与坐标轴的交点、最值问题等。
2. 结合实际例子,让学生学会运用二次函数解决实际问题。
五、课堂练习1. 练习题:巩固二次函数的性质与图像知识。
2. 实物模型或图形软件:让学生直观地感受二次函数的图像。
六、教学过程1. 导入:通过回顾一次函数和线性函数的图像,引导学生思考二次函数图像的特点。
2. 新课:介绍二次函数的定义和标准形式,解释对称轴、顶点、开口方向等概念。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案

22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
二次函数的图像和性质教案

--34.3 二次函数的图像和性质( 5)1.教学目标(1)知识性目标2)的图像≠0)+k(a)能够作出函数a y=a(x- h2b)能够正确说出 y=a(x- h)+k(a≠0)图像的开口方向、对称轴和顶点坐标c)能够理2解 y=a(x- h) +k(a≠0)图像的单调性(2)能力与技能目标a)通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解 .b)经历探索二次函数的图像的作法和性质的过程,培养学生的探索能力 . (3)情感与价值观目标a)经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点 . b)让学生学会与人合作,并能与他人交流思维的过程和结果 ..教学重点22 ka y a x h(1)经历探索二次函数 .+ (≠0)的图像的作法和性质的过程= ( - )2)的图像a≠ ky a( x h)(. (2)能够作出0 + = -2)图像的开口方向、对称轴和顶点坐标(a)(x h≠ ky a - 能够正确说出3)(0 = +(k2)图像的单调性y a( x h) a≠(4)能够理解0 + - =6.教学难点22x x )≠) k(a≠)的图像;能够正确说出 y a( ahh) k(能够作出 y a( -0 0 = - + = +图像的开口方向、对称轴和顶点坐标 .一、教学过程设计教学教学过程设计意图环节 1.让学生联系生活中的抛物线,从而体会数学来源与生活,数学和生数学和生活密切相 .活息息相关关,引发学复习兴趣;温.老师展示“ NBA 篮球比赛”视频,抽象出篮球的轨迹—抛物线,并 2“数学化”,故知新,复提问:习习前面知)这条抛物线的表达式是怎么样( 1 . 的?识具有什么性)抛物线( a≠ 0) ( 22 ?质y=ax激发学习.老师呈现“用一个平面切割圆锥”的视频动画,截面的边缘曲线是1 设计抛物线吗?兴趣,数学----情无处不在;景 2.设计:“老师对这个问题研究后,得到如下结果,但是被墨水?!你,到该课的引对“比----. 较主题中来能帮我还原这个函数的图像吗?”情景,引入今天的新课 2 入一般的二次函数函数”的研究1) +1 -y=( x新 . 知----抛物线 ( ) 2活动一y= a h +k -x 2的图像.- 1) +1 y=( x1.画出二次函数2y= a ( ) +kx -h 以致不能完整地画出取值可能仍是关于 y 轴对称地选取,学生对 x 安排应 .函数图像用上面结论的 .展示一个完整的图像,从而引导学生带着疑问学习练习:2回答下面问 , +1 的图像2.观察二次函数 y=( x-1) 不画图题.像,指)它是轴对称图形吗?若是,请说出它的对称轴.( 1 出下面)怎样列表才能保证描出的点具有对称性?对这个函数你应该怎么( 2各抛物取点?线的对)这个图像有最高点(或最低点)吗?若有,它的坐标是多少?( 3称轴、顶点坐)这个图像有怎样的开口方向?( 4标和开师两侧对称取对于( 2),让学生充分思考,讨论,从而体会在 x=1 口方向点 y=0.5(-x .的必要性 . 其他问题,学生都能从图像上,容易的解决;4)2+23生-y= 3( x-活动二3.6)2+12的图像.( x+1) +2 1.画出二次函数 y=- 8 ;以致不能完整地画出取值可能仍是关 y 轴对称地选取,学生对 x y=( x+6 函数于;)2+14 互-y= .图像 27( x+1.展示一个完整的图像,从而引导学生带着疑问学习 1)2 -13.2回答下面问题.( x+1) 2.观察二次函数 y=- , +2 的图像动,)它是轴对称图形吗?若是,请说出它的对称 1(轴.)怎样列表才能保证描出的点具有对称性?对这个函数你应该怎么( 2 取点?探 3)这个图像有最高点(或最低点)吗?若有,它的坐标是多少?( 4)这个图像有怎样的开口方向?(两侧对称取x=1 ),让学生充分思考,讨论,从而体 2对于(点会在索其他问题,学生都能从图像上,容易的解决的必要性 . . 新总结活动一、活动二的性质:抛物线对称轴顶点坐标开口方向 1) y=( x-2 x=11)+1,(1 向上知 22) 1,-( 1-x= (向下( x+1) +2 y=-一给学生提出:对称轴、顶点坐标和开口方向怎么由表达式确定?).猜测:下面各抛物线的对称轴、顶点坐标和开口方向222;( x+3) y=+18 3) y=3( x 3) -y=( x +16;-;-+1- y=213.-5( x+1)2)的性y=a(≠ a( k+ h-x) 0 质:总结二次函数----活动一动学生,探求知识的愿望,让学生经历画函数图像—疑问—探究—解决的学习过程,初步感受二次函数的特征 .活动二改变二次函数,重复活动一的探究过程,再次感受二次函数的特征 .观察上面活动结果,引导学生发现抛物线的对称轴、顶点坐标和开口方向和表达式的关系.让学生自己总结性质.安排适当的练习,巩固知识 .----用“几何画板”动画呈现,二次函数的单调性. 对于函数的增减2的动画,回答下面问题:1.观察 y=a ( x- h) +k ( a≠ 0) 性,师当 a>0 时,学生有前( 1)在对称轴的左侧(即 x<h),面函数做铺垫,比 y 的变化情况?当 x 增大时,较生)在对称轴的右侧( 2 (即> ),容易得到 x h 结果;通 y 的变化情况?当 x 增大时,过当 a<0 时,观察几何互画板课( 1)在对称轴的左侧(即 x<h),件,当 x 增大时, y 的变化情况?自主总结( 2)在对称轴的右侧 x>h .),(即性质动,的变化情况?增大时, y 当x .总结2 用看图,填表的形式,让学生自己总结探时,a>0 当侧(即在对称轴的的增 x y 随时), ; x<大而索在对称轴侧(即的的增时), y 随 x . x> 大而新 a<0 时,当在对称轴的侧(即知的增 y 随 x 时), x< 大而; (二在对称轴的侧(即)的增大时),y 随 x.x> 而例画出二次函2 +1 -1.( x+1) y= 利用得到例的图像.数先让学生根据性质,得到它的对称轴,然后在对称轴的两侧对称的性质,着规题演取点;范的画函示学生画图完成后;, . 数图像巩老师呈现规范的步骤,结果:固⑴列表知识x -4 -3 -2 -1 0 1 2 ,2y=-( x+1)+1 -8 -3 00-3-8 1 规----范⑵描点格式⑶连线(图在课件上)课堂练习理论联系21.指出抛物线 y=- 2( x+ 1)- 3 的开口方向、对称轴和顶点坐实际,应标,用设置并把你的结果与同学交练流.得到的性习质做些巩2- 2)+ 1 的图像,固练习 .画出二次函数 2. =(,yx 巩并说明当 x 取哪些值时, y 随 x 的增大而增大;固知当 x 取哪些值时, y 随 x 的增大而减小.识----师生合作谈谈你的收获?2=h x≠- h) +k( a 0)的图像,列表时:在对称轴 1、画 y=a( x小结,培养两侧对学生归纳 .称取点和概括的2)具有以下性质:-2、y=a(xh)+ k (a≠ 0能力,帮助顶点坐标对称轴开口方向抛物线学生梳理,( h 知识脉络, x=h向上- h)2+k k) y= a (x 回顾自己 (a>0)在本节课畅学习中的)= 向下 ( , hh)2+k y= a ( x-收获、困难谈h k x (a<0) 收和需要改获 . 进的地方2),从图像上可以看出: a≠ 0- h)+k(3、对于抛物线 y=a( x当 a>0 时,在对称轴的左侧x<h 时), y 随 x 的增大而减(即小,;的增大而增大随 x 在对称轴的右侧(即 x>h 时), y当a<0 时,在对称轴的左侧(即 x<h 时), y 随 x 的增大而增大,在对称轴的右侧(即 x>h 时), y 随 x 的增大而减小 .作业作业分层,适合不同 3必做题:习题1.程度的学 P72.选做题:《中华一题》生的要求,作体现基础业教育的全面性和因材施教的原则 . 34. 3 二次函数的图像和性质( 2)一、复习二、一起探究1(1)活动22()活动2(k+) h-( y=a总结: x a 0≠)的性质二、观察思考增减性三、例题2 1四、课堂练习、五、小结六、作业--。
二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言1.1 二次函数的定义引导学生回顾一次函数的定义,引入二次函数的概念。
通过示例说明二次函数的一般形式:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠0。
1.2 二次函数的图象解释二次函数图象的形状和特点,如开口方向、顶点等。
利用图形展示二次函数的图象,让学生观察并理解二次函数的图象与函数表达式之间的关系。
第二章:二次函数的顶点2.1 顶点的定义解释二次函数图象的顶点概念,即图象的最高点或最低点。
通过示例说明如何找到二次函数的顶点。
2.2 顶点的性质探讨顶点在二次函数图象中的重要性,如顶点是图象的对称中心。
利用图形和数学推导说明顶点的性质,如顶点的横坐标是-b/2a。
第三章:二次函数的开口3.1 开口方向的定义解释二次函数开口的概念,即函数图象向上或向下的弯曲形状。
通过示例说明如何确定二次函数的开口方向。
3.2 开口与a的关系探讨开口方向与二次函数系数a的关系,如a > 0时开口向上,a < 0时开口向下。
利用图形和数学推导说明开口与a的关系。
第四章:二次函数的增减性4.1 增减性的定义解释二次函数增减性的概念,即函数值随自变量增大或减小的变化趋势。
通过示例说明如何判断二次函数的增减性。
4.2 增减性与a的关系探讨增减性与二次函数系数a的关系,如a > 0时函数先增后减,a < 0时函数先减后增。
利用图形和数学推导说明增减性与a的关系。
第五章:二次函数的零点5.1 零点的定义解释二次函数零点的概念,即函数图象与x轴的交点。
通过示例说明如何找到二次函数的零点。
5.2 零点与判别式的关系探讨零点与二次函数判别式b^2 4ac的关系,如判别式大于0时有两个不相等的零点。
利用图形和数学推导说明零点与判别式的关系。
第六章:二次函数的方程6.1 方程的定义解释二次函数方程的概念,即通过设置f(x) = 0来表示二次函数的零点。
二次函数的图像和性质教案

二次函数的图像和性质教案教案标题:二次函数的图像和性质教学目标:1. 理解二次函数的定义、图像和性质;2. 能够画出二次函数的图像,并根据图像分析其性质;3. 掌握二次函数的顶点、对称轴、零点以及开口方向的求解方法;4. 运用二次函数的性质解决实际问题。
教学重点:1. 二次函数的图像及其意义;2. 二次函数的性质及其应用。
教学难点:1. 二次函数性质的理解和应用;2. 实际问题转化为二次函数求解。
教学准备:1. 教师:计算机、投影仪;2. 学生:纸张、铅笔、计算器。
教学过程:一、导入(5分钟)1. 展示一个抛物线的图像,引发学生思考:这个图像与平面解析几何中的什么有关?2. 引导学生回顾解析几何中的抛物线,了解其定义和性质。
二、知识讲解(15分钟)1. 介绍二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0;2. 讲解二次函数图像的基本形状和性质,包括抛物线的开口方向、顶点、对称轴等概念;3. 指导学生如何利用顶点求解二次函数的最值和对称轴的方程。
三、图像绘制(20分钟)1. 学生利用计算器或手工绘制二次函数的图像,从中观察和分析抛物线的特征;2. 小组讨论并汇报图像的性质,如开口方向、顶点坐标、对称轴等。
四、性质探究(15分钟)1. 学生根据图像和定义,推导二次函数与其各特征之间的关系;2. 学生以小组为单位,解答提出的问题,并进行讨论。
五、解题实践(20分钟)1. 提供一组具体的问题,要求学生利用所学二次函数的性质解答;2. 学生独立或合作解答问题,并与小组成员讨论思路和解题方法;3. 学生汇报解答结果,并进行讨论。
六、拓展与总结(10分钟)1. 引导学生思考:二次函数的图像和性质在哪些实际问题中能够应用?2. 总结本节课所学内容,强调二次函数图像与性质的重要性。
教学延伸:1. 进一步讲解二次函数图像的平移、伸缩等变换;2. 利用软件工具进行二次函数的探索和应用。
二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 让学生理解二次函数的定义,掌握二次函数的一般形式;2. 引导学生探究二次函数的性质,包括对称性、单调性等;3. 让学生学会绘制二次函数的图像,并能分析图像的特点;4. 培养学生运用二次函数解决实际问题的能力。
二、教学重点与难点:重点:二次函数的定义、性质及图像特点;难点:二次函数图像的绘制及分析。
三、教学方法:1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像特点;3. 采用实例分析法,培养学生解决实际问题的能力。
四、教学准备:1. 教师准备PPT,包括二次函数的定义、性质、图像等;2. 准备一些实际问题,用于巩固所学知识。
五、教学过程:1. 引入:通过一个实际问题,引导学生思考二次函数的应用;2. 讲解:介绍二次函数的定义、一般形式,引导学生探究二次函数的性质;3. 演示:利用PPT展示二次函数的图像,让学生直观地理解二次函数的图像特点;4. 练习:让学生绘制一些二次函数的图像,并分析其性质;5. 总结:对本节课的内容进行总结,强调二次函数的性质及图像的特点;6. 作业:布置一些练习题,巩固所学知识。
教学反思:在教学过程中,要注意引导学生主动探究二次函数的性质,培养学生的动手能力。
通过实际问题的分析,让学生感受二次函数在生活中的应用,提高学生的学习兴趣。
在讲解二次函数的图像时,要注重让学生理解顶点、对称轴等关键点的作用,以便能更好地分析二次函数的性质。
六、教学拓展:1. 引导学生探讨二次函数在实际生活中的应用,如抛物线运动、最优化问题等;2. 介绍二次函数与其他数学知识的关系,如导数、积分等;3. 引导学生思考二次函数在自然界中的体现,如物体的自由落体运动等。
七、课堂小结:1. 回顾本节课所学内容,让学生总结二次函数的性质及图像特点;2. 强调二次函数在实际问题中的应用价值;3. 提醒学生注意在学习过程中积累经验,提高解决问题的能力。
二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 引入二次函数的一般形式:y = ax^2 + bx + c1.2 解释二次函数的顶点式图像:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 探讨顶点式图像的特点:开口方向、对称轴、顶点坐标等1.4 利用顶点式图像分析二次函数的增减性、最大值或最小值等性质第二章:开口方向与a的取值2.1 分析a的取值对开口方向的影响:a > 0时,开口向上;a < 0时,开口向下2.2 利用顶点式图像观察不同开口方向的二次函数特点2.3 引导学生通过观察图像判断开口方向及a的取值范围第三章:对称轴与顶点坐标3.1 解释二次函数的对称轴公式:x = h3.2 探讨对称轴与顶点坐标的关系:对称轴经过顶点3.3 利用顶点式图像分析二次函数的对称性质3.4 引导学生通过图像找到对称轴及顶点坐标第四章:增减性与最值4.1 解释二次函数的增减性:a > 0时,函数在顶点左侧递减,在顶点右侧递增;a < 0时,函数在顶点左侧递增,在顶点右侧递减4.2 探讨最值的求法:当a > 0时,最小值为顶点的y坐标;当a < 0时,最大值为顶点的y坐标4.3 利用顶点式图像观察二次函数的最值及增减性4.4 引导学生通过图像分析二次函数的最值和增减性第五章:实际问题与二次函数的顶点式图像5.1 引入实际问题:如抛物线运动、物体的抛物线轨迹等5.2 解释实际问题中的二次函数顶点式图像与性质的应用5.3 利用顶点式图像解决实际问题,如求物体的最大高度等5.4 引导学生将实际问题与二次函数的顶点式图像和性质相结合,提高解决问题的能力第六章:二次函数图像的平移6.1 回顾一次函数图像的平移规律:上加下减,左加右减6.2 介绍二次函数图像的平移规律:上加下减,左加右减,改变顶点坐标6.3 利用顶点式图像展示二次函数图像的平移过程6.4 引导学生通过实际例子,掌握二次函数图像的平移规律第七章:二次函数图像的叠加7.1 解释二次函数图像的叠加原理:两个函数图像在同一坐标系中绘制,观察交点情况7.2 利用顶点式图像展示两个二次函数图像的叠加情况7.3 探讨二次函数图像的叠加规律:开口方向、对称轴、顶点坐标等7.4 引导学生通过实际例子,理解二次函数图像的叠加原理第八章:二次函数图像与坐标轴的交点8.1 分析二次函数图像与x轴的交点:令y = 0,解方程得到x的值8.2 分析二次函数图像与y轴的交点:令x = 0,解方程得到y的值8.3 利用顶点式图像找出二次函数图像与坐标轴的交点8.4 引导学生通过实际例子,求解二次函数图像与坐标轴的交点第九章:二次函数图像的应用9.1 引入实际应用场景:如抛物线运动、物体的抛物线轨迹等9.2 解释实际应用中二次函数图像的重要性9.3 利用顶点式图像解决实际应用问题,如求物体的最大速度等9.4 引导学生将实际应用与二次函数图像相结合,提高解决问题的能力10.2 强调二次函数图像在实际问题中的应用价值10.3 提出拓展问题,激发学生对二次函数图像与性质的深入研究兴趣10.4 引导学生进行拓展练习,巩固所学知识重点和难点解析一、二次函数的顶点式图像重点和难点解析:理解顶点式图像的开口方向、对称轴、顶点坐标等特点是教学的重点,也是学生理解的难点。
二次函数的顶点式图像与性质教案

二次函数的顶点式图像与性质教案第一章:二次函数的顶点式图像1.1 理解二次函数的一般形式:y = ax^2 + bx + c1.2 引入顶点式的概念:y = a(x h)^2 + k,其中(h, k)为顶点坐标1.3 绘制二次函数的顶点式图像,观察顶点、开口方向、对称轴等特征1.4 探讨顶点式图像与一般形式图像的关系第二章:顶点式图像的性质2.1 理解顶点式图像的顶点坐标对图像的影响2.2 探讨顶点式图像的开口方向与a的关系2.3 分析顶点式图像的对称轴方程:x = h2.4 探讨顶点式图像的增减性:a > 0时,y随x增大而增大;a < 0时,y先增大后减小第三章:二次函数的顶点式与一元二次方程3.1 理解二次函数的顶点式与一元二次方程的根的关系3.2 利用顶点式将二次函数转化为一元二次方程:y = a(x h)^2 + k = 03.3 求解一元二次方程,得出x的值3.4 分析一元二次方程的根与顶点式图像的交点关系第四章:实际问题中的应用4.1 引入实际问题,如:抛物线与坐标轴的交点、物体运动等4.2 利用顶点式图像分析实际问题中的最大值、最小值等4.3 探讨实际问题中对称性的应用4.4 分析实际问题中开口方向与实际情况的关系第五章:总结与拓展5.1 总结二次函数的顶点式图像与性质的主要内容5.2 探讨二次函数的顶点式图像在实际问题中的应用5.3 提出拓展问题,如:二次函数的顶点式图像与线性函数的关系等5.4 鼓励学生自主研究,培养学生的探究能力第六章:对称轴与顶点的关系6.1 回顾顶点式y = a(x h)^2 + k 中对称轴的定义6.2 分析对称轴与顶点坐标的h 值的关系6.3 探讨对称轴在实际问题中的应用,如抛物线射击、几何图形的对称性等6.4 进行对称轴相关的练习题,巩固学生对对称轴的理解第七章:开口方向与二次函数的性质7.1 引入开口方向的概念,分析a 值对开口方向的影响7.2 探讨开口方向与顶点式图像的关系7.3 分析开口方向在实际问题中的应用,如球的体积、光学问题等7.4 进行开口方向相关的练习题,帮助学生理解开口方向的意义第八章:增减性分析8.1 回顾顶点式图像的增减性:a > 0 时,y 随x 的增大而增大;a < 0 时,y 的变化为先增大后减小8.2 分析增减性在实际问题中的应用,如气温变化、经济曲线等8.3 进行增减性相关的练习题,让学生掌握增减性的分析方法8.4 探讨增减性与对称轴、开口方向的关系第九章:实际问题中的二次函数应用9.1 引入复杂的实际问题,如利润最大化、路程优化等9.2 利用二次函数的顶点式图像分析实际问题,求解最优解9.3 探讨实际问题中二次函数的多种应用场景,如物理运动、工程设计等9.4 进行实际问题相关的练习题,提高学生解决实际问题的能力第十章:总结与拓展10.1 回顾本节课的主要内容,总结二次函数的顶点式图像与性质的关键点10.2 鼓励学生进行拓展学习,如研究三次函数、高次函数的图像与性质10.3 提出课程延伸问题,如二次函数的顶点式图像在、大数据等领域的应用10.4 布置课后作业,巩固学生对二次函数顶点式图像与性质的理解和应用重点和难点解析一、顶点式图像的绘制与观察:理解顶点式y = a(x h)^2 + k 并能绘制出相应的图像,观察顶点、开口方向和对称轴等特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,二次函数形如
可以通过配方化成
y
a(x
h)2
k 的形式,即:y
a(x
b )2 2a
4ac b 2 4a
其中对
称轴 x
b 2a
,顶点坐标(
b 2a
, 4ac 4a
b2)44 - 让每个人平等地提升自我例题:画出函数 y 2x 2 8x 8 的图象,并支出抛物线的开口、对称轴、顶
1) 通过对给定的一般二次函数形式进行配方得到顶点式,类比顶点 式的图象及性质求解一般式。
情感态度
价值观
1) 体会数形结合思想,体验数学的乐趣,体验数学间的层层联系。
教学重点 11
运用配方法研究二次函二次函数发开口方向、对称轴、顶点、y 随 x 的变化情况。
2
2
2
1 (x 2
6)2
3配方法22 - 让每个人平等地提升自我y
分析:方法:①根据前面多学过的知识,我们画函数
1 (x 2
6)2
3 的图
y
象可以把它看作是函数
1 x2 2 向右平移 6 的单位后,又向上平移 3 个单位所得
到的图象
②根据配方法 轴。
y
1 (x 2
6)2 3
得,便可以知道图象的定点坐标和对称
上面的形式进行化简呢?
y
假设:对
1 x2 2
6x
21 提出
1 2
得
y
1 (x 2 2
12x )
21
对其括号里面
y 化成类似完全平方公式,则可以变为
1 (x 2 2
12x
36) 21 ,由于要保持所
化等式与原式相等括号里面多加了一个数就要相应的减去一个数,即:
y 1 x 2 6x 21 1 (x 2 12x ) 21 1 (x 2 12x 36 36) 21
y
a(x
b )2 2a
4ac 8b 2 4a
其中对称轴 x
b 2a
,顶点坐标(
b 2a
,
4ac 4a
b2 )
6 10
a>0
4
a<0
8
图
2
6
像
-10
-5
-2
4
5
10
2
X 的取值
-10 -4
-6
-5 -2
R
-4
5
10
对称轴 顶点
图形的变化 情况
-6
b x
2a
b 4ac b2 ( 2a , 4a )
题
课题二次函数 - 让每个人平等地提升自我的图象与性质
第 1 课时
1) 掌握二次函数的图象和性质,运用配方法求解二次函数的
知识与技能
对称轴、顶点、y 随 x 的变化情况。
8 数学思考 教 教
学
目 问题解决
标
1) 通 过 二 次 函 数 顶 点 式 的 图 象 和 性 质 讨 论 二 次 函 数 高,在讲这节课中可能会对一些知识点的讲解中不是太详细,会忽视一些重点的 强调以及练习的强化训练,为此我将做出改正一般地,二次函数形如
二次函数
的图像与性质
10
可以通过配方化成 y a(x h )2 k 的形式,即:
b
b
当 x< 2a 时,y 随 x 的增大而 当 x< 2a 时,y 随 x 的增大而增
b
b
减小,当 x> 2a 时,y 随 x 的 大,当 x> 2a 时,y 随 x 的增大
增大而增99
对称轴的右侧,当 x 2 时,抛物线的值 y 随 x 的增大而减小。
(小结)综上所述可以得出如8
6
a>0
4
10
a<0
8
图
2
像
-10
-5
-2
6
4
5
10
2
X 的取值
-10 -4
-6
-5 -2
R
-4
5
10
对称轴 顶点
图象的变化 情况
-6
b x
2a
b 4ac b2 ( 2a , 4a )
求解:
列表
x
…3
4
5
6
7
8
9
…
y
1 (x 2
6)2
3
…
5
3
5
…
描点、连线: 12
y 10
8
6
4
1 y = ∙x2 6∙x + 21
2
AA: (6.00, 3.00)
2
5
O
5
10结论:从图上可以看出,
a
1 2
0 ,抛物线开口向上,在对称轴的左侧,当
x 6 时,抛物线的值 y 随 x 的增大而减小,在对称轴的右侧,当 x 6 时,抛
教学过程:
思考:我们前一节已经学过了二次函数 y a(x h)2 k 的图象和性质,那么
像这样的二次函数 y
1 2
x2
6x
21又会有什么样的图象和性质呢?
问题:①能不能用一种方法把
y
1 x2 2
6x
21
化成类似于
y a(x h)2 k 的形式呢?
②我们之前学过了完全平方公式时形如a 2 2ab b 2 (a b)2,能否把
b
b
当 x< 2a 时,y 随 x 的增大而 当 x< 2a 时,y 随 x 的增大而增
b
b
减小,当 x> 2a 时,y 随 x 的 大,当 x> 2a 时,y 随 x 的增大
增大而增大,
而减小,
作业布置:习题必做题第 5 题(1)、(3) 选做题第 11 题
教学反思:
本节课程存在这很大的抽象性,而且难度也比较大,对于学生学习还是要求比较
点坐标,及 y 随 x 的变化情况。
解:列表
x
…
0
1
2
3
4
…
y 2x 2 8x 8 …
-8
-2
0
-2
-8
…
6
描点、连线
4
2
A A: (2.00, 0.00)
5
O
5
10
2
4
y = 2∙x2 + 8∙x 8
6
8
10
由图象可以得出 a
x 2 0 ,抛物线开口向下,对称轴
b 2a
2 ,顶点坐
标(2,0)在对称轴的左侧,当 x 2 时,抛物线的值 y 随 x 的增大而增大,在
物线的值 y 随 x 的增大而增大。
思考:根据图象中的顶点坐标和对称轴分析 x 6 和()与函数
y
1 x2
2
6x
21
的系数有什么关系:
6
6 2* 1
x234 Nhomakorabea*
1 2
*
21 (6)2
4* 1
2
x 类比本节标题对进行配方可以得出,即对称轴满足
b 2a
顶点坐标满足
(
b 2a
, 4ac 4a
b2 )