第20届华杯赛小高组答案详解
第二十届华杯赛解答

(B) 12 分
(24 ´ 60) ´ 66 = 1452 720 分钟,所以比标准 11
时间 24 小时对应的 24 ´ 60 = 1440 分钟多了 1452-1440=12 分钟,即慢了 12 分钟
6. 在右图的 6× 6 方格内, 每个方格中只能填 A, B, C, D, E, F 中的某个字母,要求每行、每列、每个 3 长方形的六个字母均不能重复.那么, 标有粗线的 2× 第四行除了首尾两个方格外, 中间四个方格填入的字母
【答案】630 【题型】几何:一半模型 【解析】
A A ①② F ③ D⑫ ④ ⑪ P ⑤ ⑩ ⑨ ⑧⑦ ⑥ C B E C
D P B E
F
S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ; 过点 P 作 AB , AC , BC 的平行线, 则 S1 = S2 ,
第二十届华罗庚金杯少年数学邀请赛
初赛 A 卷解析(小学高年级组)
总分:150 分时间:60 分钟
一、选择题. (每小题 10 分,共 60 分.以下每题的四个选项中,仅 有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号 内. )
1.
现在从甲、 乙、 丙、 丁四个人中选出两个人参加一项活动. 规定: 如果甲去, 那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去 参加活动的两个人是() . (A)甲、乙 (B)乙、丙 (C)甲、丙 (D)乙、丁
1 1 2 所以 S阴影 =S白 = S△ABC = 2028 = 1014cm ,则 S△PCF = 1014 - 192 2 = 630cm2 2 2
9. 自然数 2015 最多可以表示成________个连续奇数的和.
华杯赛小高近 真题 附详解 C

2
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
答案解析
1.
【答案】 A
【解析】 原式
1 4
+
1 5
1 5
1+1+1 667
1 7
1 8
+
1 8
+
1 9
120
4 3
1 4
+
1 9
120
4 3
30+ 40 3
4 3
42 .
按分数从高到低居第三位的同学的分数至少是( ).
A.94
B.95
C.96
D.97
5. 如图,BH 是直角梯形 ABCD 的高,E 是梯形对角线 AC 上一点;如果 △DEH 、△BEH 、△BCH 的面积依
次是 56、50、40,那么 △CEH 的面积是( ).
A.32
B.34
C.35
D.36
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
3月1 4 相 约 华杯
8. 整数 n 一共有 10 个约数,这些约数从小到大排列,第 8 个是 n ,那么整数 n 的最大值是________. 3
9. 在边长为 300 厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 ________平方厘米,两块阴影部分的周长差是________厘米.( π 取 3.14 )
A
B
E
D
H
C
6. 【答案】 B 【解析】 3 3 、 4 4 能够成功,例子如图:
第二十届华罗庚金杯少年数学邀请赛初赛试题 C(小学高年级组)
18~22届华杯赛小高组初赛试题及参考答案

第一章 计算篇
1、【第 18 届华杯赛初赛 A 第 1 题】
2012.25×2013.75-2010.25×2015.75=( )
(A)5
(B)6
(C)7
(D)8
2、【第 18 届华杯赛初赛 B 卷第 2 题】
2 2 3 2 3 3 2 3 3 3 2 33的个位数字是( )。
9个3
-4-
第三章 几何篇
1、【第 18 届华杯赛初赛 A 卷第 5 题】
右图 ABCD 是平行四边形,M 是 DC 的中点,E 和 F 分别位于 AB 和 AD 上,且 EF
平行于 BD。若三角形 MDF 的面积等于 5 平方厘米,则三角形 CEB 的面积等于( )
平方厘米。
(A)5
(B)10
(C)15
计算: 481 1 265 1 904 1 184 29 160 41 703 55 _____。
6
12
20
30
42
56
7、【第 20 届华杯赛初赛 C 卷第 1 题】
计算: 9 11 13 15 17 120 1 1 ( )
20 30 42 56 72
34
(A)42
(B)43
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
华杯赛高中组试题及答案

华杯赛高中组试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2+2x+1的最小值是()。
A. 0B. 1C. 2D. 3答案:B解析:函数f(x)=x^2+2x+1可以写成f(x)=(x+1)^2,这是一个开口向上的抛物线,其最小值出现在顶点处,即x=-1时,f(-1)=1。
2. 已知数列{an}满足a1=1,an+1=2an+1,求a3的值是()。
A. 3B. 5C. 7D. 9答案:C解析:根据递推关系,a2=2a1+1=2*1+1=3,a3=2a2+1=2*3+1=7。
3. 已知三角形ABC的三边长分别为a、b、c,且满足a^2+b^2=c^2,判断三角形ABC的形状是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:B解析:根据勾股定理的逆定理,若a^2+b^2=c^2,则三角形ABC为直角三角形。
4. 已知函数f(x)=x^3-3x,求f'(x)的值是()。
A. 3x^2-3B. 3x^2+3C. x^2-3D. x^2+3答案:A解析:对f(x)=x^3-3x求导,得到f'(x)=3x^2-3。
二、填空题(每题5分,共20分)5. 已知函数f(x)=x^2-4x+3,求f(2)的值是______。
答案:-1解析:将x=2代入函数f(x)=x^2-4x+3,得到f(2)=2^2-4*2+3=-1。
6. 已知等差数列{an}的首项a1=2,公差d=3,求a5的值是______。
答案:11解析:根据等差数列的通项公式an=a1+(n-1)d,得到a5=2+(5-1)*3=11。
7. 已知双曲线方程为x^2/a^2-y^2/b^2=1,其中a=2,b=1,求双曲线的渐近线方程是______。
答案:y=±x解析:双曲线的渐近线方程为y=±(b/a)x,代入a=2,b=1,得到y=±x。
8. 已知函数f(x)=sin(x)+cos(x),求f'(π/4)的值是______。
2015年第二十届华杯赛小高组初赛详解

【题型】几何:一半模型 【解析】
帅
A F C作 AB , AC , BC 的平行线,则 S1 = S 2 , S3 = S4 , S5 = S6 , S7 = S8 , S9 = S10 , S11 = S12 ;
1 1 2 所以 S阴影 =S白 = S△ABC = × 2028 = 1014cm ,则 S△PCF = 1014 − 192 × 2 = 630cm 2 2 2
余帅老师公众号:shuaiteacher
帅
第 3 页 兴趣是最好的老师
老
师
学习有意思
快乐思维
二、填空题 (每小题 10 分,共 40 分)
1 1 1 29 41 55 7. 计算: 481 + 265 + 904 − 184 − 160 − 703 =________. 6 12 20 30 42 56
余
如图所示 示,第一列和 和第二行已经 经有 A,所以 以左上角 3*2 粗线方格的 A 只能填在第二列;因为 为第一列 3*2 粗线方格 和第二列 列已经有 A, 所 所以左下角 格的 A 只能填 填在第三列; 因为第五列和第四行已经 经有 A, 3*2 2 A A 所以右中 中位置的 粗线方格的 的 只能填在 在第四列; 因为 为第五行和第 第五列已经有 有 , 右下角 3*2 所以右 粗线方格 格的 A 只能填 填在第六列;以此类推,可以填出所 所以的数.
学习有意思
快乐思维
2015年第二十届华杯赛小高组初赛详解
0分 总分:100 时间 间:60 分钟
0 分,共 60 分.以下每题的 一、选 选择题. (每小题 10 以 的四个选项 项中,仅有 有一个 是正确 确的,请将 将表示正确 确答案的英 英文字母写在每题 题的圆括号 号内. )
第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组c卷)

2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)一、填空题(每小题10分,共80分)1.(10分)计算:+=.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有种不同的分法.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是平方厘米.5.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出种不同类型的卡片.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是平方厘米.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x =.8.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?2015年第二十届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组C卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)计算:+= 1 .【分析】把繁分数的分子分母中的算式分别化简,然后根据分数的基本性质解答即可.【解答】解:+=+=+=1;故答案为:1.2.(10分)将自然数1至8分为两组,使两组的自然数各自之和的差等于16,共有8 种不同的分法.【分析】根据题意,分成的两组之和为(1+8)×8÷2=36,因为两组的自然数各自之和的差等于16,因此和较大的一组等于(36+16)÷2=26,较小的一组是36﹣26=10,由此即可解答.【解答】解:分成的两组之和为:(1+8)×8÷2=9×8÷2=36和较大的一组等于:(36+16)÷2=52÷2=26较小的一组是:36﹣26=10因为10=2+8=3+7=4+6=1+2+7=1+3+6=1+4+5=2+3+5=1+2+3+4相应地26=1+3+4+5+6+7=1+2+4+5+6+8=1+2+3+5+7+8=3+4+5+6+8=2+4+5+7+8=2+3+6+7+8=1+4+6+7+8=5+6+7+8所以共有8种不同的分法故答案为:8.3.(10分)将2015的十位、百位和千位的数字相加,得到的和写在2015个位数字之后,得到一个自然数20153;将新数的十位、百位和千位数字相加,得到的和写在20153个位数字之后,得到201536;再次操作2次,得到201536914,如此继续下去,共操作了2015次,得到一个很大的自然数,这个自然数所有数字的和等于8479 .【分析】按题设条件,操作16次后,如上图,发现数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现.根据整个规律,推出操作了2015次,得到的数,再求和即可.【解答】解:按题设条件,操作16次后,如下:数字的规律为:从7次开始数字为11、3、3、5、7,从第12次开始为11、3、3、5、7,这5个数字重复出现,则操作2015次:(2015﹣6)÷5=401…4,则2015次操作的对应的数字是5;则所有自然数和为:前4位:2+0+1+5=8,后6为:3+6+9+1+4+1+6+6=36,重复的数字和为:1+1+1+3+3+5+7=21,重复401次后,和为401×21=8421,余数4,对应数字的和为:1+1+1+3+3+5=14,以上数字相加即为所有自然数和=8+36+8421+14=8479.故:应该填:8479.4.(10分)如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是边长为 9 厘米的正方形,H在AB上,∠EDH是直角,三角形EDH的面积是101 平方厘米.【分析】1、延长EF、AD交于点K;2、将△DEK和△ADH面积相等,所以,HB=2;3、S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE【解答】根据上述分析故答案是:S阴影=S ABEK﹣S DEK﹣S ADH﹣S BHE=11×(11+9)﹣0.5×9×11﹣0.5×9×11﹣0.5×2×(11+9)=1015.(10分)如图是网格为3×4的长方形纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形.沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出8 种不同类型的卡片.【分析】可首先分析向左的减法,然后根据左右对称情况得出向右的剪法,减去重合的剪法,从而得出总的不同剪法.【解答】解:先考虑从正面剪,中间那条粗线是一定要剪开的,剪开后,从点1有三种选择,向上向左向右;1、向上:,属于第1种类型;2、向左:剪至点3,又有3种选择,向上向左向下,(1)向上(黑线):,红线是和黑线对称的情况,但按红线剪出的图形旋转后和黑线相同,属于第2种类型;(2)向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第3、4种类型;(3)向下:向下剪至点6,有两种选择,向左,向下,①向左:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第5、6种类型;②向下:,按红线剪出的图形旋转后和黑线不同,是两种不同的类型,属于第7、8种类型;综上可得,总共有8种类型.故答案是:8.6.(10分)一个长方体,棱长都是整数厘米,所有棱长之和是 88 厘米,问这个长方体总的侧面积最大是224 平方厘米.【分析】长宽高的和是:88÷4=22厘米,长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,然后再利用长方体的侧面积公式,也就是用底面周长乘高,据此解答即可.【解答】解:长宽高的和是:88÷4=22(厘米),长方体的总侧面积最大,长宽高的长度必须最接近,即22=8+7+7,(7+7)×2×8=28×8=224(平方厘米);答:这个长方体的总侧面积最大是224平方厘米.故答案为:224.7.(10分)[x﹣]=3x﹣5,这里[x]表示不超过x的最大整数,则x=2 .【分析】按题意,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,而3x﹣5为整数,不难求得x=2.【解答】解:根据分析,要使原式成立,则[x﹣]≤x﹣,⇒3x﹣5≤x﹣,⇒x≤,∵3x﹣5≥0∴x=2而3x﹣5为整数,不难求得x=2.故答案是:28.(10分)右边是一个算式,9个汉字代表数字1至9,不同的汉字代表不同的数字,则该算式可能的最大值是8569 .【分析】观察这个算式,要使这个算式的值最大,那么两位数与两位数的乘积就要尽可能的大,所以天空=96,则湛蓝=87;同理,两位数与一位数的乘积也要尽可能的大,所以翠绿=43,则树=5;那么盼=1,望=2;据此解答即可.【解答】解:根据分析可得,1×2+43×5+96×87=2+215+8352=8569;故答案为:8569.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.(10分)已知C地为A,B两地的中点.上午7点整,甲车从A出发向B 行进,乙车和丙车分别从B和C出发向A行进.甲车和丙车相遇时,乙车恰好走完全程的,上午10点丙车到达A地,10点30分当乙车走到A 地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?【分析】首先根据甲丙相遇走完全程的一半,乙走完全程的即可列出一组甲乙丙速度的关系式,再根据丙3小时走一半路程,乙3.5小时走完全程可以列出乙丙的速度关系式.重点求出甲乙的速度比,根据甲车距离B 地84千米,求得对应的份数,即可求出所求.【解答】解:根据题意可知,当甲丙相遇时走完全程的一半,乙走完全程的,即(V甲+V丙)=V乙.①再根据丙3小时走了全程的一半,乙3.5小时走完全程,即6V丙=3.5V乙.②根据①②得:V甲:V乙=3:4.所以甲乙路程之比就是3:4.一份量是:84÷(4﹣3)=84千米.全程是:84×4=336千米.故答案为:336千米.10.(10分)将2015个分数,,…,,化成小数,共有多少个有限小数?【分析】先找出分母中只有因数2,5,同时有2和5的数的个数,即可得出结论.【解答】解:在2015个分数,,…,,的分母中,只有因数2的数有2,4,8,16,32,64,128,256,512,1024共10个数,只有因数5的数有5,25,125,625共4个数,既有因数2,也有因数5的数有10,20,40,50,80,100,160,200,250,320,400,500,640,800,1000,1250,1280,1600,2000共19个数,所以总有10+4+19=33个有限小数,答:共有33个有限小数.11.(10分)a,b 为正整数,小数点后第3位经四舍五入后,式子+=1.51,求a+b=?【分析】根据条件,代入验证,求出a,b,即可得出结论.【解答】解:由题意,a=7,则取b=1,+=1.4+0.143≈1.54,不符合题意;a=6,则取b=3,+=1.2+0.429≈1.63,不符合题意;a=5,则取b=4,+=1+0.571≈1.57,不符合题意;a=4,则取b=5,+=0.8+0.714≈1.51,符合题意;∴a+b=9.12.(10分)已知算式abcd=aad×e,式中不同字母代表不同的数码,问四位数abcd最大值是多少?【分析】aad×e=abcd中,d×e的个位数仍为d(1~9)×1=(1~9)(2、4、6、8)×6=(12、24、36、48)5×(3、5、7、9)=(15、25、35、45)【解答】解:从上面的分析可以看出e可能为1、6、(3、5、7、9)设:e为9,希望得最大值,则d为5从a=(1~9)检测,得115×9=1035225×9=2025335×9=3015…通过检测,∴abcd的最大值为3015答:这个四位数最大是3015.三、解答下列各题(每题15分,共30分,要求写出详细过程)13.(15分)在图中,ABCD是平行四边形,F在AD上,△AEF的面积=8cm2,△DEF的面积=12cm2,四边形BCDF的面积=72cm2,求出△CDE的面积?【分析】连接BD(如下图),若△AEF以AF为底、△EFD以FD为底,他们的高相等,则底边比等于面积比,可以求出AF:DF=2:3;若△ABF、△BFD分别以AF、FD为底,他们高相同,则S△ABF=0.2×S▱ABCD、而S△BDF=0.6×S△ABD=0.3×S▱ABCD;S△BCDF=S△BFD+S△BCD,求出S▱ABCD;由S△ABF=0.2×S▱ABCD,求出S△ABF;,根据S△AEB=S△ABF﹣S△AEF,可以S△AEB;S△AEB与S△ECD之和为平行四边形面积的一半,可以求出S△ECD.【解答】解:连接BD(如上图),根据△AEF的面积=8cm2,△DEF的面积=12cm2,求出AF:DF=8:12=2:3;S△BCDF=S△BFD+S△BCD=0.5S▱ABCD+0.3S▱ABCD=0.8S▱ABCD=72,所以:S▱ABCD=90;S△ABF=0.2S▱ABCD=18,S△ABE=S△ABF﹣S△AEF=10;S△ABE+S△ECD=0.5×S▱ABCD=45;故S△ECD=45.答:S△ECD的面积为45cm2.14.(15分)将530本书分给48名学生,至少有几名学生分到的数量相同?【分析】①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同,据此解答即可.【解答】解:①若48名学生分到的数量互不相同,则至少要:0+1+2+3+…+47=1128>530,不满足条件;②若只有2名学生分到的书数量相同,则至少要:(0+1+2+3+…+23)×2=552>530,不满足条件;③若只有3名学生分到的书数量相同,则至少要:(0+1+2+3+…+15)×3=360<530,满足条件;所以至少3名学生分到的书数量相同.答:至少3名学生分到的书数量相同.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 10:59:44;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2020年华杯数学深圳冬令营(惠州)小高年级组试题

…………○…………○…………订学校:___________班级:___________考号………装…………○………………线…………○…………绝密★启用前 2020年华杯数学深圳冬令营(惠州)小高年级组试题 一、填空题 1.1312.514 5.24254⨯+⨯=____。
2.在下面的加法算式中,相同的汉字代表相同的数字,不同汉字代表不同数字。
当算式成立时,我爱数字的最大值是____。
2020+我爱数学冬令营 3.如图,在直角ABC 的两个直角边,AC BC 上分别作正方形ACDE 和CBFG 。
若14,28AC BC ==。
则BEG 的面积等于____。
4.方程:20202242462462020x x x x ++++=+++++++的解为____。
5.在33⨯的方格表中填入了9个自然数,使得方格表中每行、每列、两对角线上三个数的和都相等。
图中有两个格中填的数已经标出,则“?”格应填的数是____。
6.设1100n ≤≤,且81n +为完全平方式,则符合条件的整数n 的个数为____。
7.在一副扑克牌中任意选出6张,其中黑桃选3张,红桃选2张,梅花选1张,小明将这6张牌从左左到右摆放。
要求任意两张黑桃之间必须有其他花色的牌,那么共有____种符合要求的摆放方式。
…装……………………订………__姓名:_________:___________考号:____订…………○………………○…………………8.将一个棱长为整数厘米的长方体的各表面都涂满红色。
然后将该长方体恰分割成若干个棱长为1厘米的小正方体,若其中任何一面都没有涂色的小正方体有17个,则原来的长方体的体积为____立方厘米。
9.甲乙丙三人进行1000米跑步场比赛,当甲跑完时,乙还差100米到终点,丙离乙还差90米,甲到终点后等了18秒,乙也到达终点。
问此时丙还要____秒到达终点。
10.在22221,2,3,,202这202个数中,有____个十位为奇数的数。
2015年第20届“华杯赛”少年数学邀请赛初赛试卷c(小高组)

【分析】通过分析: 如图:
第 6页(共 10页)
深圳竞争力培训
的和是质数,所以“杯”为 3,“杯”与”“华”的和为质数,所以“华”为 2,剩下的 D 就是 6,;所 以四位数“相约华杯”是 4123,据此解答即可. 【解答】解:如图:
因为第三行存在 1.、3、4,所以 A 为 2,5,6 之一,而 3 与 A 的和是质数,所以 A 为 2.在 A 所在的长方形中,还剩下 1、4、5、6 没有使用. 而 3 与“相”的和是质数,所以“相”是 4. “相”与”“约”的和为质数,“约”为 1, “约”与”“月”的和为质数,“月”为 6, 剩下的 C 为 5.第三行只剩下数字 5,所以 B 为 5; 在 B 所在的长方形中,还剩下 2、3、6 没有使用. 而 4 与“杯”的和是质数,所以“杯”为 3,“杯”与”“华”的和为质数,所以“华”为 2,剩下的 D 就是 6; 所以四位数“相约华杯”是 4123. 故答案为:4123. 【点评】解答本题的关键是充分利用相邻两格所填数的和是质数,一步步推理得出答案.
3.(10 分)春季开学后,有不少同学都将部分压岁钱 捐给山区的贫困学生;事后,甲、乙、 丙、丁 4 位同学有如下对话: 甲:“丙,丁之中至少有 1 人捐了款” 乙:“丁,甲之中至多有 1 人捐了款” 丙:“你们 3 人之中至少有 2 人捐了款” 丁:“你们 3 人之中至多有 2 人捐了款” 已知这 4 位同学说的都是真话且其中恰有 2 位同学捐了款,那么这 2 位同学是( ) A.甲,乙 B.丙,丁 C.甲,丙 D.乙,丁 【分析】因为有 2 位同学捐了款,所以根据: 丙:“你们 3 人之中至少有 2 人捐了款,说明捐款的只能是甲乙丁中的两个人,而丙没捐钱; 甲:“丙,丁之中至少有 1 人捐了款”因为丙没捐钱,所以只能是丁捐款; 乙:“丁,甲之中至多有 1 人捐了款”只能是丁,所以甲没捐款; 这恰好印证了丁:“你们 3 人之中至多有 2 人捐了款”是正确的. 据此解答即可. 【解答】解:根据分析可得: 丙:“你们 3 人之中至少有 2 人捐了款,说明捐款的只能是甲乙丁中的两个人,而丙没捐钱; 甲:“丙,丁之中至少有 1 人捐了款”因为丙没捐钱,所以只能是丁捐款; 乙:“丁,甲之中至多有 1 人捐了款”只能是丁,所以甲没捐款; 这恰好印证了丁:“你们 3 人之中至多有 2 人捐了款”是正确的,只有乙和丁捐了款.
2020华杯赛决赛小学高年级组试题A参考答案详解

处的木桩上.
【考点】圆与扇形
【答案】B 【解析】拴在B处活动区域最大,为 3 圆。
4
2. 在所有是20的倍数的正整数中, 不超过2014并且是14的倍数的数之和是
.
【考点】最小公倍数,等差数列
【答案】14700
【解析】 20,14
140
,
2014 140
14
,140
1
2
3
14
14700
.
3. 从1~8这八个自然数中任取三个数, 其中没有连续自然数的取法有
则 a+b+c+d=5+3+10=18 或 a+b+c+d=5+3+11=19 (2)当 c=4 时,b+d 不进位,只能取 b+d=1,0+1=1 符合要求
此时 a+b+c+d=5+4+1+0=10.
聚智堂教研组王乃聪
9
当a=8+25=33时,b=5,共2组整数解。
8. 平面上的五个点A, B, C, D , E 满足: AB = 8厘米, BC = 4厘米, AD = 5厘米, DE = 1厘米, AC = 12
厘米, AE = 6厘米. 如果三角形EAB的面积为24平方厘米, 则点 A 到 CD 的距离等于
厘
米
聚智堂教研组王乃聪
4
您身边的教学专家
0 51 4 63
2
7. 学校组织1511人去郊游, 租用42座大巴和25座中巴两种汽车. 如果要求恰好每人一座且每座一
人, 则有
种租车方案.
【考点】不定方程
【答案】2
【解析】设大巴a辆,中巴b辆
第二十届“华杯赛”决赛小高组试题A答案解析

此时对应的数是115、552 或 232、435 .
10.酒店有 100 个标准间,房价为 400 元/天,但入住率只有 50%,若每降低 20 元的房价, 则能增加 5 间入住,求合适的房价,使酒店收到的房费最高.
【考点】组合、最值 【难度】☆☆☆ 【答案】22500 【分析】初始状况是:400 元、50 间, 设降价了 x 个 20 元, 房费是: (400 20x)(50 5x) 100(20 x)(10 x)
7.一次数学竞赛有 A、B、C 三题,参赛的 39 个人中,每个至少答对了一道题.在答对 A 的
人中,只答对 A 的比还答对其它题目的多 5 人;在没答对 A 的人中,答对 B 的是答对 C 的
2 倍;又知道只答对 A 的等于只答对 B 的与只答对 C 的人数之和,那么答对 A 的最多有
______________人. 【考点】组合、容斥原理、最值问题 【难度】☆☆☆☆ 【答案】23 【分析】根据题意得,如下图所示:只答对 A 的人数是 3b a ,答对 A 还答对其他题目的人
S D G I F A 84 若从 2 以上开始, S 77 ,不可能,所以这十一个数是 1~11 则 S=66,则 D G I F A 18 8 4 3 2 1 7 5 3 2 1 6 5 4 2 1 分(1)(2)(3)情况讨论: (1) H 12 矛盾 (2) E 7 矛盾 (3)
个数和为 6 a b c d 1111 73326 ,得 a b c d 11 ,此时只有数字 1、2、
3、5. 这些四位数中最大的是 5321.
6.如右图所示,从长、宽、高分别为15cm , 5cm , 4cm 的 长方体中切割走一块长、宽、高分别为 ycm , 5cm , xcm 的
18~22届华杯赛【小高组】决赛试题打印版

18~22届华杯赛决赛试题【小高组】目录计算篇 (1)计数篇 (6)几何篇 (16)数论篇 (30)应用题 (40)行程篇 (46)组合篇 (50)第一部分:计算篇1、【第18届华杯赛决赛B A 、卷第1题】 计算:______5.1281281125.019=-⨯+⨯.2、【第18届华杯赛决赛C 卷第1题】计算:______2785111111131322=÷⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛-⨯.3、【第19届华杯赛决赛D B A 、、卷第5题】 如果54□711○<<成立,则“○”与“□”中可以填入的非零自然数之和最大为______.4、【第19届华杯赛决赛C 卷第1题】 计算:______5213.23.0241225.095.22.3=-⨯++⨯-.5、【第20届华杯赛决赛B 卷第1题】 计算:______2110804.1451848.28586.57=+⨯-⨯+⨯.6、【第20届华杯赛决赛C 卷第1题】 计算:______528.11.03.0441225.175.01=-+⨯++-.7、【第20届华杯赛决赛D 卷第1题】 计算:______8.0195105375.119484=⨯+⨯.8、【第21届华杯赛决赛A 卷第1题】计算:______107143214.2317=÷⎪⎭⎫ ⎝⎛⨯+-.9、【第21届华杯赛决赛B 卷第1题】计算:_____4.213453611753971=-÷⨯⎪⎪⎪⎪⎭⎫ ⎝⎛-.10、【第21届华杯赛决赛B 卷第8题】现有算式:甲数□乙数○1,其中□,○是符号+,-,×,÷中的某两个.李雷对四组甲数、乙数进行了计算,结果见右表,那么,A ○B =______.11、【第21届华杯赛决赛B 卷第9题】 计算:201620152016201420152014201635343201624232201613121+⎪⎭⎫ ⎝⎛++⋅⋅⋅+⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++12、【第21届华杯赛决赛C 卷第1题】计算:______525125.022143225.0412=-⨯+-+.13、【第21届华杯赛决赛C 卷第3题】 大于20161且小于20151的真分数有______个.14、【第22届华杯赛决赛A 卷第1题】用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_____.15、【第22届华杯赛决赛A 卷第2题】从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为______.16、【第22届华杯赛决赛B 卷第1题】______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-.第二部分:计数篇1、【第18届华杯赛决赛B A 、卷第13题】用八个右图所示的2×1的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:在所有可能拼成的正方形图形中,上下对称、第一行有两个空白小方格且空白小方格相邻的图形有多少种?2、【第18届华杯赛决赛B 卷第9题】 右图中,不含“*”的长方形有多少个?3、【第18届华杯赛决赛C 卷第3题】 最简单分数b a 满足4151<<b a ,且b 不超过19,那么b a +的最大可能值与最小可能值之积为______.4、【第18届华杯赛决赛C 卷第12题】一次数学竞赛中,参赛各队每题的得分只有0分,3分和5分三种可能.比赛结束时,有三个队的总得分之和为32分.若任何一个队的总得分都可能达到32分,那么这三个队的总得分共有多少种不同的情况?5、【第18届华杯赛决赛C 卷第14题】用八个右图所示的1×2的小长方形可以拼成一个4×4的正方形.若一个拼成的正方形图形经过旋转与另一个拼成的正方形图形相同,则认为两个拼成的正方形相同.问:有几种拼成的正方形图形仅以一条对角线为对称轴?6、【第19届华杯赛决赛D B A 、、卷第3题】从1~8这八个自然数中任取三个数,其中没有连续自然数的取法有______种.7、【第19届华杯赛决赛A 卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么9=n 时有多少种不同放置方法?8、【第19届华杯赛决赛D B 、卷第9题】把n 个相同的正方形纸片无重叠地放置在桌面上,拼成至少两层的多层长方形(含正方形)组成的图形,并且每一个上层正方形纸片要有两个顶点各自在某个下层的正方形纸片一边的中点上.下图给出了6=n 时所有的不同放置方法,那么8=n 时有多少种不同放置方法?9、【第19届华杯赛决赛C卷第7题】1的小正方块堆成一立体,其俯视图如右图所示,问共有用八块棱长为cm种不同的堆法(经旋转能重合的算一种堆法).10、【第19届华杯赛决赛C卷第11题】a、和c.现有5块上面有一颗星、两颗星和三颗星的积木分别见下图的b一颗星,2块两颗星和1块三颗星的积木,如果用若干个这些积木组成一个五颗星的长条,那么一共有多少种不同的摆放方式?(下图d是其中一种摆放方式).(a)(b)(c)(d)11、【第20届华杯赛决赛B卷第5题】贝塔星球有7个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国,对于一种这样的星球局势,共可以组成______个两两都是友国的三国联盟.12、【第20届华杯赛决赛B卷第12题】两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是31分,一人赢了第一局且赢得比赛,那么第二局的比分共有多少种可能?13、【第20届华杯赛决赛C卷第2题】将自然数1至8分成两组,使两组的自然数各自之和的差等于16,共有______种不同的分法.14、【第20届华杯赛决赛C卷第5题】如图,3×4的长方形网格纸片,长方形纸片正面是灰色,反面是红色,网格是相同的小正方形,沿网格线将长方形裁剪为两个形状相同的卡片,如果形状和正反面颜色相同,则视为相同类型的卡片,则能裁剪出______种不同类型的卡片.15、【第20届华杯赛决赛D 卷第7题】一次数学竞赛有C B A 、、三题,参赛的39个人中,每人至少答对了一道题,在答对A 的人中,只答对A 的比还答对其他题目的多5人,在没答对A 的人中,答对B 的是答对C 的2倍;又知道只答对A 的等于只答对B 的 与只答对C 的人数之和,那么答对A 的最多有______人.16、【第20届华杯赛决赛D 卷第8题】甲,乙两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后,多得两分者胜,两人的得分总和都是30分,在不计比分先后顺序时,三局的比分共有______种情况.17、【第21届华杯赛决赛A 卷第4题】在9×9的格子纸上,1×1小方格的顶点叫做格点.如右图,三角形ABC 的三个顶点都是格点.若一个格点P 使得三角形PAB 与三角形PAC 的面积相等,就称P 点为“好点”.那么在这张格子纸上共有______个“好点”.18、【第21届华杯赛决赛A 卷第5题】对于任意一个三位数n ,用 表示删掉n 中为0的数位得到的数,例如 102=n 时, 12=那么满足 n <,且 是n 的约数的三位数n 有 ______个.19、【第21届华杯赛决赛A 卷第9题】复活赛上,甲乙二人根据投票结果决出最后一个参加决赛的名额.投票人数 固定,每票必须投给甲乙二人之一.最后,乙的得票数为甲的得票数的2120,甲胜出.但是,若乙得票数至少增加4票,则可胜甲.请计算甲乙所得的票数.20、【第21届华杯赛决赛A 卷第13题】如右图,有一张由四个1×1的小方格组成的凸字形纸片和一张5×6的方格纸.现将凸字形纸片粘到方格纸上,要求凸字形纸片的每个小方格都要与方格纸的某个小方格重合,那么可以粘出多少种不同的图形?(两图形经旋转后相同看作相同图形)21、【第21届华杯赛决赛C 卷第11题】如图,是一个等边三角形,等分为4个小的等边三角形,用红和黄两种颜色涂染它们的顶点,要求每个顶点必须涂色,且只能涂一种颜色.涂完后,如果经过旋转,等边三角形的涂色相同,则认为是相同的涂色,则共有多少种不同的涂法?22、【第22届华杯赛决赛B A 、卷第3题】在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).23、【第22届华杯赛决赛A 卷第5题】某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是______.24、【第22届华杯赛决赛B A 、卷第8题】如右图,六边形的六个顶点分别标志为F E D C B A 、、、、、.开始的时候“华罗庚金杯赛”六个汉字分别位于F E D C B A 、、、、、顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有______种.25、【第22届华杯赛决赛A 卷第10题】某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几.26、【第22届华杯赛决赛B 卷第4题】小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.27、【第22届华杯赛决赛B卷第7题】一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.28、【第22届华杯赛决赛B卷第11题】从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.第三部分:几何篇1、【第18届华杯赛决赛A卷第4题】如右图,在边长为12厘米的正方形ABCD中,以AB为底边作腰长为10厘米的等腰三角形PAB.则三角形PAC的面积等于______平方厘米.2、【第18届华杯赛决赛A卷第4题、B卷第6题】两个大小不同的正方体积木粘在一起,构成右图所示的立体图形,其中,小积木的粘贴面的四个顶点分别是大积木的粘贴面各边的一个三等分点.如果大积木的棱长为3,则这个立体图形的表面积为______.3、【第18届华杯赛决赛A卷第8题,B卷第12题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.4、【第18届华杯赛决赛B 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且4:1:=PD AP ,2:3:=QC AQ ,如果正方形ABCD 的面积为25,那么三角形PBQ 的面积是______.5、【第18届华杯赛决赛B 卷第10题】如右图,三角形ABC 中,BD AD 2=,EC AD =,18=BC ,三角形AFC 的面积和四边形DBEF 的面积相等,那么AB 的长度是多少?6、【第18届华杯赛决赛C 卷第4题】如图所示,Q P 、分别是正方形ABCD 的边AD 和对角线AC 上的点,且3:1:=PD AP ,1:4:=QC AQ ,如果正方形ABCD 的面积为100,那么三角形PBQ 的面积是______.7、【第18届华杯赛决赛C卷第6题】两个较小的正方体积木分别粘在一个大正方体积木的两个面上,构成右图所示的立体图形,其中,每个小积木粘贴面的四个顶点分别是大积木粘贴面各边的一个五等分点.如果三个积木的棱长互不相同且最大的棱长为5,那么这个立体图形的表面积是______.8、【第18届华杯赛决赛C卷第8题】由四个完全相同的正方体堆积成如右图所示的立体,则立体的表面上(包括底面)所有黑点的总数至少是______.9、【第18届华杯赛决赛C卷第9题】右图中,大正方形的周长比小正方形的周长多80厘米,阴影部分的面积为880平方厘米.那么,大正方形的面积是多少平方厘米?10、【第18届华杯赛决赛C 卷第13题】在等腰直角三角形ABC 中,90=∠A 度,1==AC AB ,矩形EHGF 在三 角形ABC 内,且H G 、在边BC 上.求矩形EHGF 的最大面积.11、【第19届华杯赛决赛D B A 、、卷第1题】如右图,边长为12米的正方形池塘的周围是草地,池塘边D C B A 、、、处各有一根木桩,且3===CD BC AB 米.现用长4米的绳子将一头羊拴在其中的某根木桩上.为了使羊在草地上活动区域的面积最大,应将绳子拴在______处的木桩.12、【第19届华杯赛决赛A 卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上 画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.13、【第19届华杯赛决赛A 卷第8题】平面上的五个点E D C B A 、、、、满足:8=AB 厘米,4=BC 厘米, 5=AD 厘米,1=DE 厘米,12=AC 厘米,6=AE 厘米.如果三角形EAB 的面积为24平方厘米,则点A 到CD 的距离等于______厘米.14、【第19届华杯赛决赛A 卷第12题】如右图,在三角形ABC 中,D 为BC 的中点,BF AF 2=,AE CE 3=.连接CF 交DE 于P 点,求DPEP 的值.15、【第19届华杯赛决赛D B 、卷第4题】如右图所示,网格中每个小正方格的面积都为1平方厘米.小明在网格纸上画了一匹红鬃烈马的剪影(马的轮廓由小线段组成,小线段的端点在格子点上或在格线上),则这个剪影的面积为______平方厘米.16、【第19届华杯赛决赛B 卷第8题】平面上的五个点E D C B A 、、、、满足:16=AB 厘米,8=BC 厘米, 10=AD 厘米,2=DE 厘米,24=AC 厘米,12=AE 厘米.如果三角形EAB 的面积为96平方厘米,则点A 到CD 的距离等于______厘米.17、【第19届华杯赛决赛D B 、卷第12题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 2=.连接CF 交DE 于P 点,求DPEP 的值.18、【第19届华杯赛决赛C 卷第3题】如右图,在直角三角形ABC 中,点F 在AB 上且BF AF 2=,四边形EBCD 是平行四边形,那么EF FD :为______.19、【第19届华杯赛决赛C 卷第4题】右图是由若干块长12厘米、宽4厘米、高2厘米的积木搭成的立体的正视图,上面标出了若干个点.一只蚂蚁从立体的左侧地面经过所标出的点爬到右侧的地面.如果蚂蚁向上爬行的速度为每秒2厘米,向下爬行的速度为每秒3厘米,水平爬行的速度为每秒4厘米,则蚂蚁至少爬行了______秒.20、【第19届华杯赛决赛C 卷第8题】如右图,在三角形ABC 中,BF AF 2=,AE CE 3=,BD CD 4=.连接CF 交DE 于P 点,求DPEP 的值.21、【第19届华杯赛决赛D 卷第8题】长为4的线段AB 上有一动点C ,等腰三角形ACD 和等腰三角形BEC 在过AB 的直线同侧,DC AD =,EB CE =,则线段DE 的长度最小为______.22、【第20届华杯赛决赛B 卷第7题】如图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角 形DOE 的面积为______.23、【第20届华杯赛决赛B 卷第10题,D 卷第6题】如图,从长、宽、高为15,5,4的长方体中切割走一块长、宽、高为y , 5,x 的长方体(y x 、为整数),余下部分的体积为120,求x 和y 的值.24、【第20届华杯赛决赛B 卷第13题】如图,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G ,若三角形FCG 的面积与三角形MED 的面积之差为13平方厘米,求平行四边形ABCD 的面积?25、【第20届华杯赛决赛C卷第4题】如图,四边形ABCD是边长为11厘米的正方形,G在CD上,四边形CEFG是直角,三角形EDH的是边长为9厘米的正方形,H在AB上,EDH面积是______.26、【第20届华杯赛决赛C卷第6题】一个长方体,棱长都是整数厘米,所有棱长之和是88厘米,问这个长方体总的侧面积最大是______平方厘米.27、【第20届华杯赛决赛C卷第13题】如图,ABCD是平行四边形,F在AD上,三角形AEF的面积是8平方厘米,三角形DEF的面积是12平方厘米,四边形BCDF的面积是72平方厘米,求三角形CDE的面积?28、【第20届华杯赛决赛D 卷第2题】如图,用六个正方形,六个三角形,一个正六边形组成的图案,正方形边 长都是cm 2,这个图案的周长是______.29、【第20届华杯赛决赛D 卷第11题】如图,长方形ABCD 的面积为2m 56,cm 3=BE ,cm 2=DF ,求:三角形AEF 的面积是多少?30、【第20届华杯赛决赛D 卷第13题】如图,ABCD 是平行四边形,MB AM =,CN DN =,FC EF BE ==四边形EFGH 的面积是1,求平行四边形ABCD 的面积.31、【第21届华杯赛决赛A 卷第3题】右图中,5=AB 厘米,85=∠ABC °,45=∠BCA °,20=∠DBC °, 则______=AD 厘米.32、【第21届华杯赛决赛A 卷第10题】如右图,三角形ABC 中,180=AB 厘米,204=AC 厘米,F D 、是AB 上的点,G E 、是AC 上的点,连结FG EF DE CD 、、、,将三角形ABC 分 成面积相等的五个小三角形.则AG AF +为多少厘米?33、【第21届华杯赛决赛B 卷第2题】如右图,30个棱长为1的正方体粘成一个四层的立体,这个立体的表面积等于______.34、【第21届华杯赛决赛B 卷第4题】如右图所示,将一个三角形纸片ABC 折叠,使得点C 落在三角形ABC 所在平面上,折痕为DE .已知74=∠ABE °,70=∠DAB °,20=∠CEB °,那么CDA ∠等于______.35、【第21届华杯赛决赛B 卷第1题】如右图,正方形ABCD 的边长为5,F E 、为正方形外两点,满足4==CF AE ,3==DF BE ,那么______2=EF .36、【第21届华杯赛决赛B 卷第11题】如右图,等腰直角三角形ABC 与等腰直角三角形DEF 之间的面积为20,2=BD ,4=EC ,求三角形ABC 的面积.37、【第21届华杯赛决赛B 卷第13题】如右图,正方形ABCD 的面积为1,M 是CD 边的中点,F E 、是BC 边上的两点,且FC EF BE ==.连接DF AE 、分别交BM 分别于G H 、.求四边形EFGH 的面积.38、【第21届华杯赛决赛卷第5题】如图,AD AB =,21=∠DBC °,39=∠ACB °,则______=∠ABC .39、【第21届华杯赛决赛C 卷第1题】如图,ABCD 是直角梯形,上底2=AD ,下底6=BC ,E 是DC 上一点,三角形ABE 的面积是15.6,三角形AED 的面积是4.8,则梯形ABCD 的面积是______.40、【第22届华杯赛决赛A 卷第6题、B 卷第5题】右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,90=∠MHB °.已知20=AB 厘米.则MH 的长度为______厘米.【几何天地】求阴影面积是正方形面积的几分之几?第四部分:数论篇1、【第18届华杯赛决赛B A 、卷第3题】 某些整数分别被119977553,,,除后,所得的商化作带分数时,分数部分分别是92725232,,,,则满足条件且大于1的最小整数是______.2、【第18届华杯赛决赛A 卷第3题】有一筐苹果,甲班分,每人3个还剩11个;乙班分,每人4个还剩10个;丙班分,每人5个还剩12个.那么这筐苹果至少有______个.3、【第18届华杯赛决赛A 卷第7题】设n 是小于50的自然数,那么使得54+n 和67+n 有大于1的公约数的所有n 的可能值之和为______.4、【第18届华杯赛决赛A 卷第14题】不为零的自然数n 既是2010个数字和相同的自然数之和,也是2012个数 字和相同的自然数之和,还是2013个数字和相同的自然数之和,那么n 最 小是多少?5、【第18届华杯赛决赛B卷第5题】有一箱苹果,甲班分,每人3个还剩10个;乙班分,每人4个还剩11个;丙班分,每人5个还剩12个.那么这箱苹果至少有______个.6、【第18届华杯赛决赛B卷第8题】用“学”和“习”代表两个不同的数字,四位数“学学学学”与“习习习习”的积是一个七位数,且它的个位和百万位数字与“学”所代表的数字相同,那么“学习”所能代表的两位数共有______个.7、【第18届华杯赛决赛B卷第14题】对于155个装有红、黄、蓝三种颜色球的盒子,有三种分类方法:对于每种颜色,将该颜色的球数目相同的盒子归为一类.若从1到30之间所有的自然数都是某种分类中一类的盒子数.1)求三种分类的类数之和?2)说明,可以找到三个盒子,其中至少有两种颜色的球,它们的数目分别相同.8、【第18届华杯赛决赛C卷第5题】四位数abcd与cdab的和为3333,差为693,那么四位数abcd为______.9、【第18届华杯赛决赛C 卷第7题】设c b a 、、分别是0~9中的数字,它们不同时都为0也不同时都为9.将循环小数⋅⋅⋅c b a .0化成最简分数后,分子有______不同情况.10、【第18届华杯赛决赛C 卷第11题】设n 是小于50的自然数,求使得53+n 和45+n 有大于1的公约数的所有n .11、【第19届华杯赛决赛A 卷第2题】在所有是20的倍数的正整数中,不超过2014并且是14的倍数的数之和是______.12、【第19届华杯赛决赛A 卷第13题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的5倍.求n 的最大值,并说明理由.13、【第19届华杯赛决赛D B 、卷第2题】在所有是20的倍数的正整数中,不超过3000并且是14的倍数的数之和是______.14、【第19届华杯赛决赛D B 、卷第14题】从连续自然数1,2,3,…,2014中取出n 个数,使这n 个数满足:任意取其中两个数,不会有一个数是另一个数的7倍.求n 的最大值,并说明理由.15、【第19届华杯赛决赛C 卷第5题】设e d c b a 、、、、均是自然数,并且e d c b a <<<<,3005432=++++e d c b a ,则b a +的最大值为______.16、【第19届华杯赛决赛C 卷第10题】 把20142013201420122014220141,,,,⋅⋅⋅中的每个分数都化成最简分数,最后得到的以2014为分母的所有分数的和是多少?17、【第19届华杯赛决赛B 卷第12题】某自然数减去39是一个完全平方数,减去144也是一个完全平方数,求此自然数.18、【第19届华杯赛决赛B 卷第14题】 将每个最简分数m n (其中n m 、为互质的非零自然数)染成红色或蓝色,染色规则如下:1)将1染成红色;2)相差为1的两个数颜色不同;3)不为1的数与其倒数颜色不同.问:20142013和72分别染成什么颜色?19、【第20届华杯赛决赛B 卷第4题】某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小是______.20、【第20届华杯赛决赛B卷第6题】由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是______,最小的是______.21、【第20届华杯赛决赛B卷第8题】三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么3个数之积的末尾3位数有______种可能数值.22、【第20届华杯赛决赛B卷第9题】将1234567891011的某两位的数字交换能否得到一个完全平方数?请说明理由.23、【第20届华杯赛决赛B卷第14题】设“一家之言”,“言扬行举”,“举世皆知”,“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少?24、【第20届华杯赛决赛C 卷第7题】5321-=⎥⎦⎤⎢⎣⎡-x x ,这里的[]x 表示不超过x 的最大整数,则______=x .25、【第20届华杯赛决赛C 卷第10题】将2015个分数2016120151413121,,,,,⋅⋅⋅化成小数,共有多少个有限小数?26、【第20届华杯赛决赛C 卷第11题】 b a 、为正整数,小数点后三位经四舍五入后,式子51.175≈+b a ,求 =+b a27、【第20届华杯赛决赛C 卷第12题】 已知原式e aad abcd ⨯=,式中不同字母代表不同的数字,问四位数abcd 的最大值是多少?28、【第20届华杯赛决赛D 卷第5题】由四个非零数字组成的没有重复数字的所有四位数的和为73326,则这些四位数中最大的是______.29、【第20届华杯赛决赛D 卷第9题】两个自然数之和为667,它的最小公倍数除以最大公约数所得的商等于120,求这两个数?30、【第20届华杯赛决赛D 卷第12题】当n 取遍1,2,3,…,2015中的所有的数时,形如33n n 的数中能够被7整除的有多少个?31、【第20届华杯赛决赛D 卷第14题】“虚有其表”,“表里如一”,“一见如故”,“故弄玄虚”四个成语中每个汉字代表11个非零连续自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数,且“表”>“一”>“故”>“如”>“虚”,且 各个成语中四个汉字所代表的数的和都是21,则“弄”可以代表的数最大 是多少?32、【第21届华杯赛决赛B A 、卷第7题】如果832⨯能表示成k 个连续正整数的和,则k 的最大值为______.33、【第21届华杯赛决赛A 卷第14题】设n 是正整数.若从任意n 个非负整数中一定能找到四个不同的数d c b a 、、、使得d c b a --+能被20整除,则n 的最小值是多少?34、【第21届华杯赛决赛B 卷第12题】试找出这样的最大的五位正整数,它不是11的倍数,通过划去它的若干数字也不能得到可被11整除的数.35、【第21届华杯赛决赛C 卷第7题】n 为正整数,形式为12-n 的质数称为梅森数,例如:712,31232=-=-是梅森数.最近,美国学者刷新了最大梅森数,74207281=n ,这个梅森数也是目前已知的最大的质数,它的个位数字是______.36、【第22届华杯赛决赛B A 、卷第12题】 使1523++n n 不为最简分数的三位数n 之和等于多少.37、【第22届华杯赛决赛B 卷第10题】求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.第五部分:应用题篇1、【第18届华杯赛决赛A卷第10题】小明与小华同在小六(1)班,该班学生人数介于20和30之间,且每个人的出生日期均不相同.小明说:“本班比我大的人数是比我小的人数的两倍”,小华说:“本班比我大的人数是比我小的人数的三倍”问这个班的有多少名学生?2、【第18届华杯赛决赛B卷第11题】若干人完成了植树2013棵的任务,每人植树的棵数相同.如果有5人不参加植树,其余的人每人多植2棵不能完成任务,而每人多植3棵可以超额完成任务.问:共有多少人参加了植树?3、【第18届华杯赛决赛C卷第10题】某高中根据入学考试成绩确定了录取分数线,录取了四分之一的考生.所有被录取者的成绩平均分比录取分数线高10分,所有没有被录取的平均分比录取分数线低26分,所有考生的平均成绩是70分.求录取分数线是多少?4、【第19届华杯赛决赛A卷第7题】学校组织1511人去郊游,租用42座大巴和25座中巴两种汽车.如果要求恰好每人一座且每座一人,则有______种租车方案.5、【第19届华杯赛决赛A卷第10题】有一杯子装满了浓度为16%的盐水.有大、中、小铁球各一个,它们的体积比为10:4:3.首先将小球沉入盐水杯中,结果盐水溢出10%,取出小球;其次把中球沉入盐水杯中,又将它取出;接着将大球沉入盐水杯中后取出;最后在杯中倒入纯水至杯满为止.此时杯中盐水的浓度是多少?(保留一位小数)B、卷第7题】6、【第19届华杯赛决赛D学校组织482人去郊游,租用42座大巴和20座中巴两种汽车.如果要求每人一座且每座一人,则有______种租车方案.。
18~22届华杯赛小高组初赛试题及参考答案

(A)3
(B)2
(C)1
(D)0
5、【第 18 届华杯赛初赛 C 卷第 9 题】
黑板上有 11 个 1,22 个 2,33 个 3,44 个 4,做以下操作: 每次擦掉 3 个不同
的数字,并且把没擦掉的第四种数字多写 2 个。例如: 某次操作擦掉 1 个 1,1
个 2,1 个 3,那就再写上 2 个 4.经过若干次操作后, 黑板上只剩下 3 个数字,
4、【第 19 届华杯赛初赛 A 卷第 9 题】 四个黑色 1×1×1 的正方体和四个白色 1×1×1 的正方体可以组成________种不 同的 2×2×2 的正方体(经过旋转得到相同的正方体视为同一种情况)。 5、【第 19 届华杯赛初赛 B 卷第 10 题】 从 1,2,3,…,2014 中取出 315 个不同的数(不计顺序)组成等差数列,其中组 成的等差数列中包含 1 的有________种取法;总共有________种取法。 6、【第 20 届华杯赛初赛 A 卷第 3 题】
某个自然数的五次方,那么 的最小值是( )。
(A)10
(B)17
(C)23
(D)31
4、【第 18 届华杯赛初赛 C 卷第 6 题】
从 1~11 这 11 个整数中任意取出 6 个数, 则下列结论正确的有( )个。
①其中必有两个数互质;②其中必有一个数是其中另一个数的倍数;
③其中必有一个数的 2 倍是其中另一个数的倍数。
目录
计算篇……………………………………………………………………………..…1 计数篇 ………………………………………………………………………………3 几何篇 ………………………………………………………………………………5 数论篇 ………………………………………………………………………………9 应用题 ………………………………………………………………………………12 行程篇 ………………………………………………………………………………14 组合篇 ………………………………………………………………………………16
第20届华赛杯小学高年级组数学邀请赛试题(含答案)

个同学成绩最小,则第 2 个同学成绩取最大值
为:98,进而求出另三位同学的总成绩,进而
根据“总成绩÷总人数=平均分”能求出另三名同
学的平均分,继而分析、推导得出所求问题的
答案.
解答:
解:92.5×6﹣99﹣76=380(分),
由于最高分是 99 分,所以第二个的最好成绩
第 5页(共 21页)
点评:
故选:B.
点评:
本题主要考查了学生根据排列的知识和抽届
原理来解决问题的能力.
二、填空题:(每小题 10 分,满分 40 分) 7.(10 分)在每个格子中填入 1﹣6 中的一个,使得每行、每列及每个 2×3 长方形内(粗线 框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和 是质数,那么四位数“相约华杯”是 4123 .
考点: 专题:
幻方. 菁优网版 权所有
传统应用题专题.
第 7页(共 21页)
分析: 解答: 点评:
通过分析: 如图:
因为第三行存在 1.、3、4,所以 A 为 2,5, 6 之一,而 3 与 A 的和是质数,所以 A 为 2.在 A 所在的长方形中,还剩下 1、4、5、6 没有 使用.而 3 与“相”的和是质数,所以“相”是 4.“相”与”“约”的和为质数,“约”为 1,“约” 与”“月”的和为质数,“月”为 6,剩下的 C 为 5. 第三行只剩下数字 5,所以 B 为 5;在 B 所在 的长方形中,还剩下 2、3、6 没有使用.而 4 与“杯”的和是质数,所以“杯”为 3,“杯” 与”“华”的和为质数,所以“华”为 2,剩下的 D 就是 6,;所以四位数“相约华杯”是 4123,据 此解答即可. 解:如图:
6.(10 分)一个由边长为 1 的小正方形组成的 n×n 的方格网,用白色或黑色对每个小正方
第二十届华杯初赛小学高级组C卷(含解析)

第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)(时间:2014 年 3 月 14 日 10:00〜11:00)一、选择题(每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内 )『9 11 13 1517 )1 11120 一30 42 5672 丿 3 43.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、 下的对话:甲:“丙、丁之中至少有1人捐了款” 乙:“丁、甲之中至多有1人捐了款” 丙:“你们3人中至少有2人捐了款” 丁: “你们3人中至多有2人捐了款” 己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这 4位同学是()A .甲、乙 B.丙、丁 C.甲、丙D.乙、丁4.六位同学数学考试的平均成绩是 92.5分,他们的成绩是互不相同的整数,最高的那么按分数从高到低居第三位的同学的分数至少是().A. 94 B . 95 C. 96D . 975.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线 AC 上一点;如果 DEH 、•汨EH 、厶BCH 的面积 依次为56、50、40,那么 CEH 的面积是(). A. 32B . 34C. 35D. 366.—个由边长为1的小正方形n n 的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的 4个用上的小正方形不全同色,那么正整数的最大值是(). A . 3 B. 4 C. 5D. 6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯 是 __________ .&整数n —共有10个约数,这些约数从小到大排列.笫 8个是-.那么整数的最大值是=(20 A. 42B. 43C.2.如图, 有一排间距相同但高度不等的小树,1 2 15— D. 1633这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6 B. 2.4 C. 2.2 D. 2.0丙、丁 4位同学有如99分,最低的76分,39.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是平方厘米,两块阴影部分的周长差是 _____________ 厘米.(二取3.14)10. A 地、B 地、C 地依次分布在同一条公路上,甲、乙、丙三人分别从 A 地、B 地、C 地同时出发,匀 速向D 地行进.当甲在 C 地追上乙时,甲的速度减少 40% ;当甲追上丙时,甲的速度再次减少 40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少 25% ;如乙追上丙后再行 50米,三人同时到 D地•已知乙出发时的速度是每分钟 60米,那么甲出发时的速度是每分钟 _______ 米,A 、D 两地间的路程是 ___________ 米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C 卷)参考答案参考解析【考点】速算巧算【考点】等差数列 【难度】☆☆ 【答案】C【解析】如右图,AB =2.8-1.4 =1.4 (米),AC =1.4'7 3=0.6 (米)因此,第四高的小树为 2.8-0.6=2.2 (米).3. 春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、下的对话:甲:“丙、丁之中至少有1人捐了款”一、选择题 (每小题10分,满分60分•以下每题的四个选项中,仅有一个是正确的,请将表示正确答案 的英文字母写在每题的圆括号内『9 Il L 131 ———-—20 30 42d 卫56 72120一3 =(A. 42B. 43C.115 3D. 163【答案】Af 1【解析】原式=寸2.如图,有一排间距相同但高度不等的小树,IL 8 9树根成一条直线, 120 3 4 1竺=42 .3树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米, 那么从左向右数第 4棵树的高度是()米.A . 2.6B. 2.4C. 2.2D. 2.0丙、丁 4位同学有如乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是()•A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成绩是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是().A. 94B. 95C. 96D. 97【考点】最值问题【难度】☆☆☆【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.5 6 -99 -76 -98)十3 = 282 “ 3 = 94 (分),故第三位同学的得分至少是94 •仁95 .5.如图,BH是直角梯形ABCD的高,E为梯形对角线AC上一点;如果DEH、•汨EH、厶BCH的面积依次为56、50、40,那么CEH的面积是().A. 32B. 34C. 35D. 36【考点】几何【难度】☆☆☆【答案】B【解析】因为S DEH ' S.AEH =S ABCD ' 2 = S ABC ~ S.BCE ' S AEB 所以S~ S DEH =56 ;所以,S .CEH = S BEH S BCH _ S BCE = 50 40- 56 = 34 .6.—个由边长为1的小正方形n n的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是().A. 3B. 4C. 5D. 6【考点】最值问题【难度】☆☆☆☆【答案】B【解析】假设n =5 ,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的3 1的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的3 1的长方形中,每个至多1个黑格.假设这4个横着的3 1的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而3 1的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格•矛盾!所以n <5.而图6给出了n =4的一种构造•所以,正整数n的最大值是4 .二、填空题(每小题10分,满分40分.)7•在每个格子中填入1〜6中的一个,使得每行、每列及每个 2 3长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是___________ .【考点】数阵图【难度】☆☆☆☆【答案】4123【解析】如下左图,因为A 3为质数且A =4 ,所以A =2 ;因为“月”1为质数且“月”-2、4 ,所以“月” =6 ;从而C=5 ;因为“杯”4为质数且“杯”-1 ,所以“杯” =3 ;从而C =5 ;因为D 3为合数且D =2或6 ,所以D =6 ;从而“华” =2 ;因为“相”3为质数且“相”-2 ,所以“相” -4 ;因为B 4为合数且D =1或5 ,所以B =5 ;从而“约”=1 ;所以,相约华杯=4123(如下中图)•实际上其它格子中的数也能唯一确定(如下右图)&整数n—共有10个约数,这些约数从小到大排列•笫8个是-•那么整数的最大值是3 ----------【考点】数论【难度】☆☆☆【答案】162【解析】n有10个约数,由于第8个是-,而第10个必然是n ,所以第9个只能是-•所以n有质因子2和3 23 •所以n可能是24 3或者34 2 •而最大是34 2 =162 .9•在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是_ 平方厘米,两块阴影部分的周长差是_____________ 厘米.(二取3.14)【考点】几何基本概念【难度】☆☆☆【答案】①15975 :②485 .【解析】①QS阴影ABE -S l影CDE =S扇形ABD S扇形ABC —SE方形ABCD —S半圆AB②因为ABE为等边三角形,所以∙EAB =. E B A=60 ,从而∙DAE =. CBE=30 ;阴影CDE的周长=弧CE 弧DE CD =2二300^12 2 300 =100二300 ;阴影ABE的周长二弧AE •弧BE •弧AB =2二300-:-6 2 • 300-:-2 = 350二;所以,的周长差=350二_(100二300)=250二_300 : 485 .10. A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40% ;当甲追上丙时,甲的速度再次减少40% ;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25% ;如乙追上丙后再行50米,三人同时到D地•已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟________ 米,A、D两地间的路程是 __________ 米.【考点】行程问题【难度】☆☆☆☆【答案】①125 :②1880 .【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;所以丙速为60 (1 -25%)=45(米/分);甲减速一次后的速度为45 “(1 - 40%)=75 (米/分),甲出发时的速度为75 “(1 -40%)=125(米/分).②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:60 =25:12 , 所以AB:BC =25:12 ;设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60: 45=4:3 ,所以BF :CF =4:3 ,从而CF 为12“(4-3) 3=36 份,AF 为25 *36=61 份.因为甲减速一次后与丙的速度比为75: 45 = 5:3 ,而甲原速行AC这25份时,相当于以75米/分行25 60% =15份;所以CE=15"(5-3) 3=22.5 份,从而EF =36-22.5 =13.5 份;而EF是丙9分钟所行的路程,为45 9 =405(米),所以每份405 "13.5 =30(米),从而AF =30 61 H 1830 (米),所以AD =1830 50 -1880 (米).。
第届华杯赛小高决赛B卷解析

第二十届华罗庚金杯少年数学邀请赛决赛试题B (小学高年级组)一、填空题(每小题10份,共80分)1. 计算:8184157.628.814.48012552⨯+⨯-⨯+=________. 【难度】★【考点】计算:提取公因数【答案】1122【解析】2.甲、乙、丙、丁四人共植树60棵.已知,甲植树的棵数是其余三人的二分之一,乙植树的棵数是其余三人的三分之一,丙植树的棵数是其余三人的四分之一,那么丁植树________棵. 【难度】★★【考点】应用题:分数应用题 【答案】13 【解析】甲=总数的三分之一=20,乙=总数的四分之一=15,丙=总数的五分之一=12,所以丁6020151213=---=(棵)3.当时间为5点8分时,钟表面上的时针与分针成________度的角. 【难度】★★【考点】行程:时钟问题 【答案】106 【解析】 5点时,时针分针夹角150度,每分钟追赶60.5 5.5-=度,所以8分钟追赶5.5844⨯=度,所以成15044106-=度4.某个三位数是2的倍数,加1是3的倍数,加2是4的倍数,加3是5的倍数,加4是6的倍数,那么这个数最小为________. 【难度】★★【考点】数论:余数、最小公倍数 【答案】122 【解析】这个三位数减去2得到3、4、5、6的公倍数,取三位数120,所以最小值为122. 5.贝塔星球有七个国家,每个国家恰有四个友国和两个敌国,没有三个国家两两都是敌国.对于一种这样的星球局势,共可以组成________个两两都是友国的三国联盟. 【难度】★★★★【考点】计数:组合计数 【答案】7 【解析】用1234567,,,,,,A A A A A A A 这7个点代表七个国家,用虚线连接表示敌国关系,用实线连接表示友国关系.则每个国家连出2条虚线,4条实线.共7227⨯÷=条虚线,其余为实线.首先说明这7个点必然由7条虚线依次连接为一个闭合回路.2A 必与两个点连接虚线,不妨记为13,A A ,而3A 必然再与一个点连接虚线,记为4A ; 4A 虚线连接5A ,否则剩下3个点互为敌国关系;5A 虚线连接6A ,否则剩下两个点无法由2条虚线连接; 6A 虚线连接7A ,最后7A 只能虚线连接1A . 最终连线图如下.只要选出的三个点没有任何两个相邻则满足条件.有135,136,146,246,247,257,357,这7种.(为了直观我们用1,2,3,4,5,6,7分别代表1234567,,,,,,A A A A A A A )6. 由四个互不相同的非零数字组成的没有重复数字的所有四位数之和为106656,则这些四位数中最大的是________,最小的是________. 【难度】★★★【考点】数论:位值原理 【答案】9421,1249 【解析】设其中最小的四位数为abcd ,一共可组成432124⨯⨯⨯=个不同的四位数,由于每个数字在每位上均出现6次,则24个数和为()61111106656a b c d ⨯+++⨯=,则四个数字之和为16,所以最大和最小的可能为,9421和1249、8521和1258、8431和1348、7621和1267、7531和1357、7432和2347、6541和1456、6532和2356.7. 见右图,三角形ABC 的面积为1,3:1:=OB DO ,5:4:=OA EO ,则三角形DOE 的面积为________. 【难度】★★★★【考点】几何:等积变形【答案】11135【解析】设三角形DOE 的面积为4x ,由比例关系不难得出图中另三块的面积分别为5,12,15x x x ,再设三角形DCE 的面积为y ,则有454121215CE y y x x BE x x x x ++==++,得14411y x =,则三角形DOE 的面积为411144135********=++++.8. 三个大于1000的正整数满足:其中任意两个数之和的个位数字都等于第三个数的个位数字,那么这3个数之积的末尾3位数字有________种可能数值. 【难度】★★★★★【考点】组合:分类讨论数论综合 【答案】4 【解析】设三个数的个位分别为,,a b c⑴ 如果,,a b c 都相等,则只能都为0; ⑵ 如果,,a b c 中有两个相等,①,,a a c 且a c <,必有10c a a +=+,则10c =,与c 为数字矛盾; ②,,a a c 且a c >,则有,10c a a a a c +=+=+,则5,0a c ==;⑶ 如果,,a b c 都不相等,设a b c <<,则10,10c b a c a b +=++=+,则10c =,与c 为数字矛盾;综上三个数的个位分别为0,0,0或0,5,5; ⑴如果都为0,则乘积末尾3位为000; ⑵如果为0,5,5①如果个位为0的数,末尾3位都为0,则乘积末尾3位为000;②如果个位为0的数,末尾2位都为0,则乘积末尾3位为500或000;③如果个位为0的数,末尾1位为0设末尾两位为0c ,设另外两个末尾2位为5,5a b ,则()551005025a b ab a b ⨯=+++,若()a b +为奇数,则乘积末尾3位为75;若()a b +为偶数则乘积为25,在乘上0c ,无论c 为多少,末尾三位只有000,250,500,750这4种.综上,积的末尾3位有000,500,250,750这4种可能.二、解答下列各题(每题10分,共40分,要求写出简要过程)9. 将的某两位数字交换能否得到一个完全平方数?请说明理由.【难度】★★★★【考点】数论:完全平方数 【答案】不能 【解析】原数的数字和为1239101148++++++++=,为3的倍数,而交换数字位置不会改变数字和,所以无论怎么调整得到的数一定为3的倍数;而一个平方数如果为3的倍数,则一定为9的倍数,而48不是9的倍数,所以无法通过交换数字位置得到一个完全平方数.10. 如右图所示,从长、宽、高为15,5,4的长方体中切走一块长、宽、高为,5,y x 的长方体(,x y 为整数),余下部分的体积为120,求x 和y . 【难度】★★★【考点】几何:长方体正方体 【答案】3,12x y == 【解析】解得36xy =;361362183124966=⨯=⨯=⨯=⨯=⨯,因为,x y 为整数,且4,15x y <<, 所以3,12x y ==.11. 圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈.不算起始点旗子位置,则甲正好在旗子位置追上乙多少次? 【难度】★★★★【考点】行程问题:环形跑道 【答案】5次 【解析】设每两面旗子间距离为1,即跑道周长为2015.因为:23:13v v =甲乙,设23v x =甲,13v x =乙,甲要追上乙则需比乙多跑n 圈,()23132015x x t n -=,102015x t n ⨯=,即甲追上乙时所花时间4032n t x =,则甲追上乙时,所走路程为403234032322n x n x ⨯⨯=;要恰好在旗子位置追上,则所走路程一定为整数,即n 为偶数,所以2,4,6,8,10n =(最多多跑10圈);综上所述,甲正好在旗子位置追上乙5次.12. 两人进行乒乓球比赛,三局两胜制,每局比赛中,先得11分且对方少于10分者胜,10平后多得2分者胜.两人的得分总和都是31分,一人赢了第一局并且赢得了比赛,那么第二局的比分共有多少种可能? 【难度】★★★★【考点】组合:体育比赛 【答案】8 【解析】设赢的为甲,输的为乙.甲第一局获胜,如果第二局又胜则直接获胜总分一定比乙多不符合题意,所以甲第二局输第三局赢.甲第一、三局都赢,则一、三局至少会比乙多得4分,所以乙第二局至少赢甲4分及以上,所以只能以11分取胜.所以第二局的比分可以为:0:11,1:11,2:117:11,共8种.(乙在第二局赢了多少分,甲都可以通过一、三局赢回多少分使两人总分相同,所以甲在第二局得分从0~7都可能;例如三局比分分别为20:18、0:11、11:2)三、解答下列各题(每小题15分,共30分,要求写出详细过程)13. 如右图所示,点M 是平行四边形ABCD 的边CD 上的一点,且2:1:=MC DM ,四边形EBFC 为平行四边形,FM 与BC 交于点G .若三角形FCG 的面积与三角形MED 的面积之差为13cm 2,求平行四边形ABCD 的面积. 【难度】★★★★【考点】几何:蝴蝶模型 【答案】60 【解析】 连接BD 令DEM S a =则24CEM BDM CBM S S a S a ===,14. 设“一家之言”、“言扬行举”、“举世皆知”、“知行合一”四个成语中的每个汉字代表11个连续的非零自然数中的一个,相同的汉字代表相同的数,不同的汉字代表不同的数.如果每个成语中四个汉字所代表的数之和都是21,则“行”可以代表的数最大是多少 【难度】★★★★★ 【考点】组合:最值构造 【答案】8【解析】经观察不难发现其中“一”,“言”,“举”,“知”,“行”,各出现两次,其它汉字只有一次.令这五个汉字所代表的数依次为,,,,a b c d e (均为正整数),设11个连续自然数为()()()1,2,,11x x x ++⋅⋅⋅+, 则()()()1211214x x x a b c d e ++++⋅⋅⋅+++++++=⨯,即1118x a b c d e +++++=,则0x =,且123410a b c d +++=+++=时,e 最大为8,11个数为1到11.可构造出“一家之言”、“言扬行举”、“举世皆知”、“知行合一”分别为“3,5,11,2”,“2,10,8,1”,“1,9,7,4”,“4,8,6,3”. 综上,“行”可代表的数最大为8.。
第二十届华杯初赛小学高年级组C卷含解析

第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C卷)(时间:2014年3月14日10:00~11:00)一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.91113151711120203042567234⎛⎫-+-+⨯-÷=⎪⎝⎭( ).A.42B.43C.1153D.21632.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6 B.2.4 C.2.2D.2.03.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下的对话:甲:“丙、丁之中至少有1人捐了款” 乙:“丁、甲之中至多有1人捐了款” 丙:“你们3人中至少有2人捐了款” 丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是( ). A .甲、乙B .丙、丁C .甲、丙D .乙、丁4.六位同学数学考试的平均成缋是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94B . 95C . 96D . 975.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线AC 上一点;如果DEH ∆、BEH ∆、BCH ∆的面积依次为56、50、40,那么CEH ∆的面积是( ).A .32B . 34C . 35D . 366.—个由边长为1的小正方形n n ⨯的方格网,用白色或黑色对每个小正方形涂色,要求满足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是( ). A .3B . 4C . 5D . 6二、填空题(每小题10分,满分40分.)7.在每个格子中填入1~6中的一个,使得每行、每列及每个23⨯长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是 .8.整数n 一共有10个约数,这些约数从小到大排列.笫8个是3n .那么整数的最大值是 .9.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 平方厘米,两块阴影部分的周长差是 厘米.( 取3.14)A10.A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;如乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.第二十届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级C卷)参考答案参考解析一、选择题(每小题10分,满分60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1.91113151711120203042567234⎛⎫-+-+⨯-÷=⎪⎝⎭( ).A.42B.43C.1153D.2163【考点】速算巧算【难度】☆☆【答案】A【解析】原式1111111111412612042 455667788933⎛⎫=+--++--++⨯-==⎪⎝⎭.2.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线.这两条直线成45度角.最高的小树高2.8米,最低的小树高1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6 B.2.4 C.2.2D.2.0【考点】等差数列【难度】☆☆【答案】C【解析】如右图, 2.8 1.4 1.4AB=-= (米), 1.4730.6AC=÷⨯= (米)因此,第四高的小树为2.80.6 2.2-=(米).3.春季开学后,有不少同学都将部分压岁钱捐给山区的贫困学生;事后,甲、乙、丙、丁4位同学有如下的对话:甲:“丙、丁之中至少有1人捐了款”乙:“丁、甲之中至多有1人捐了款”丙:“你们3人中至少有2人捐了款”丁:“你们3人中至多有2人捐了款”己知这4位同学说的都是真话且其中恰有2位同学捐了款,那么这4位同学是( ).A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】逻辑推理【难度】☆☆☆【答案】D【解析】因为恰有2位同学捐了款,据丙所说知甲、乙、丁就至少2人捐款,所以丙没捐款;再据甲所说知丙、丁之中至少有1人捐了款,现在丙没捐款,所以丁一定捐款了;再据乙所说知丁、甲之中至多有1人捐了款,现在丁捐款了,所以甲一定没捐款;恰有2位同学捐了款,即恰有2位同学没捐款,现在甲、丙都没捐款,所以乙、丁都捐款了.4.六位同学数学考试的平均成缋是92.5分,他们的成绩是互不相同的整数,最高的99分,最低的76分,那么按分数从高到低居第三位的同学的分数至少是( ). A .94B . 95C . 96D . 97【考点】最值问题 【难度】☆☆☆ 【答案】B【解析】“至少”的含义是:第三位同学的得分若低于这个分数,不论其它同学得多少分,平均分都不会达到92.5分.要想使第三位同学的得分尽可能的少,应使第二位同学的得分尽可能的多;同时,第四位、第五位的同学得分与第4位同学的得分尽可能的接近.由此,可先求出第三位、第四位、第五位同学的平均分,再对三位同学的分数进行调整即可解决问题.由己知,第三、四、五三位同学的平均分是(92.56997698)3282394⨯---÷=÷= (分),故第三位同学的得分至少是941=95+.5.如图,BH 是直角梯形ABCD 的高,E 为梯形对角线AC 上一点;如果DEH ∆、BEH ∆、BCH ∆的面积依次为56、50、40,那么CEH ∆的面积是( ).A .32B . 34C . 35D . 36【考点】几何【难度】☆☆☆ 【答案】B 【解析】因为2DEHAEH ABCD ABC BCE AEB S S S S S S ∆∆∆∆∆+=÷==+W 所以56BCE DEH S S ∆∆==;所以,50405634CEH BEH BCH BCE S S S S ∆∆∆∆=+-=+-=.6.—个由边长为1的小正方形n n ⨯的方格网,用白色或黑色对每个小正方形涂色,要求满 足在任意矩形的4个用上的小正方形不全同色,那么正整数的最大值是( ). A .3B .4C .5D .6【考点】最值问题 【难度】☆☆☆☆ 【答案】B【解析】假设5n=,笫1行中至少有3个格子颜色相同,不妨设前3格为黑色(如图1).在这3个黑格下方可以分割为4个横着的31⨯的长方形,若其中有一个中有2个黑格(如图2),则存在巷图中的粗线长方形4个角上的小正方形都是黑格;所以这4个横着的31⨯的长方形中,每个至多1个黑格.假设这4个横着的31⨯的长方形中,有两个对应格子颜色都一样(如图3),则一样存在图中的粗线长方形4个角上的小正方形都是白格.而31⨯的长方形中至多1个黑格的只有如图4的这4种.如果这4种都存在的话(如图5),则同样存在图中的粗线长方形4个角上的小正方形都是白格.矛盾!所以5n<.而图6给出了4n=的一种构造.所以,正整数n的最大值是4.二、填空题(每小题10分,满分40分.)7.在每个格子中填入1~6中的一个,使得每行、每列及每个23⨯长方形内(粗线框围成)数字不重复;如果小圆圈两边格子中所填数的和是合数,其它相邻两格所填数的和是质数,那么四位数相约华杯是.【考点】数阵图 【难度】☆☆☆☆ 【答案】4123【解析】如下左图,因为3A +为质数且4A ≠,所以2A =;因为“月”1+为质数且“月” 2≠、4,所以“月”6=;从而5C =; 因为“杯”4+为质数且“杯” 1≠,所以“杯”3=;从而5C =; 因为3D +为合数且2D =或6,所以6D =;从而“华”2=; 因为“相”3+为质数且“相” 2≠,所以“相”4=; 因为4B +为合数且1D =或5,所以5B =;从而“约”1=;所以,相约华杯4123=(如下中图).实际上其它格子中的数也能唯一确定(如下右图).8.整数n 一共有10个约数,这些约数从小到大排列.笫8个是3n .那么整数的最大值是 . 【考点】数论 【难度】☆☆☆ 【答案】162【解析】n 有10个约数,由于第8个是3n ,而第10个必然是n ,所以第9个只能是2n .所以n 有质因子2和3.所以n 可能是423⨯或者432⨯.而最大是432162⨯=.9.在边长为300厘米的正方形中,如图放置了两个直角扇形和一个半圆,那么两块阴影部分的面积差是 平方厘米,两块阴影部分的周长差是 厘米.(π取3.14)【考点】几何基本概念 【难度】☆☆☆【答案】①15975;②485. 【解析】①ABECDE ABCD ABD ABC AB SS S S S S -=--阴影阴影正方形扇形扇形半圆22230042300150233750-9000015975πππ=⨯÷⨯--⨯÷=≈②因为ABE ∆为等边三角形,所以60EAB EBA ∠=∠=︒,从而30DAE CBE ∠=∠=︒; 阴影=2300122300100300CDE CE DE CD ππ++=⨯÷⨯+=+的周长弧弧; 阴影2300623002350ABE AE BE AB ππ=++=⨯÷⨯+÷=的周长弧弧弧; 所以,350(100300)250300485πππ=-+=-≈的周长差.A10.A地、B地、C地依次分布在同一条公路上,甲、乙、丙三人分别从A地、B地、C地同时出发,匀速向D地行进.当甲在C地追上乙时,甲的速度减少40%;当甲追上丙时,甲的速度再次减少40%;甲追上丙后9分钟,乙也追上了丙,这时乙的速度减少25%;如乙追上丙后再行50米,三人同时到D地.已知乙出发时的速度是每分钟60米,那么甲出发时的速度是每分钟米,A、D两地间的路程是米.【考点】行程问题【难度】☆☆☆☆【答案】①125;②1880.【解析】①因为三人同时到D地,所以甲、乙最后的速度和丙相同;⨯-=(米/分);所以丙速为60(125%)45÷-=(米/分),甲减速一次后的速度为45(140%)75÷-=(米/分).甲出发时的速度为75(140%)125②如下图,设甲在E地追上丙,乙在F地追上丙,因为甲、乙出发时的速度比为125:6025:12AB BC=;=,所以:25:12设AC为25份,则BC为12份;因为乙、丙出发时的速度比为60:454:3BF CF=,=,所以:4:3从而CF 为12(43)336÷-⨯=份,AF 为25 3661+=份. 因为甲减速一次后与丙的速度比为75:45 5:3=,而甲原速行AC 这25份时,相当于以75米/分行2560%15⨯=份; 所以15(53)322.5CE =÷-⨯=份,从而36-22.513.5EF ==份; 而EF 是丙9分钟所行的路程,为459405⨯=(米), 所以每份40513.530÷=(米),从而3061 1830 AF =⨯=(米),所以1830501880 AD =+-(米).D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
二、填空题(每小题10分,共40分)
7.计算: 48116265121904201−1843029−1604241−7035655=________.
【答案】60083
【题型】凑整、分数裂项
【解析】
=481265904−184−160−70316121201−(1−301)−(1−421)−(1−561)
=(481265904−184−160−703−1−1−1)(16121201301421561)
=600(12−13)(13−14)(14−15)(15−16)(16−17)(17−18)
=60012−18
=60083
8.过正三角形ABC内一点P,向三边作垂线,垂足依次为D,E,F,连接AP,BP,CP.如果正三角形ABC的面积是2028平方厘米,三角形PAD和三角形PBE的面积都是192平方厘米,则三角形PCF的面积为________平方厘米.
5.一只旧钟的分针和时针每重合一次,需要经过标准时间66分.那么,这只旧钟的
24小时比标准时间的24小时(
).
(A)快12分
(B)快6分
(C)慢6分
(D)慢12分
【答案】D
【题型】时钟问题
【解析】时针速度为每分钟0.5度,分针速度为每分钟6度.分钟每比时针多跑一圈,即多跑360度,
360720
时针分针重合一次.经过6−0.511分钟,旧钟时针分针重合一次,需要经过标准时间66分钟;则
第二十 届华罗 庚金杯 少年数 学邀请 赛
初赛A卷解析(小 学高年级 组)
总分:100分时间:60分钟
一、选择题.(每小题10分,共60分.以下每题的四个选项中,仅有一个
是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)
1.现在从甲、乙、丙、丁四个人中选出两个人参加一项活动.规定:如果甲去,那么乙也去;如果丙不去,那么乙也不去;如果丙去,那么丁不去.最后去参加活动的
9.自然数2015最多可以表示成________个连续奇数的和.
【答案】31
【题型】计算
【解析】
点评:牢记天下无双,个数平方!指从1开始的连续奇数的和,等于奇数个数的平方,
即:1+3+5++(2n−1)=n2.
2015能表示成连续奇数的和,
则2015=1+3+5+
+(2n−1)
−1+3+5+
+(2m−1)
【答案】C
【题型】最值、构造
【解析】4个点,最多可以构造C434个三角形.
如图所示,共有图中四个三角形均为钝角三角形.
3.桌上有编号1至20的20张卡片,小明每次取出2张卡片,要求一张卡片的编号是
另一张卡片的2倍多2,则小明最多取出(片.
1
(A)12(B)14(C)16(D)18
【答案】A
【题型】倍数、枚举
【答案】630
【题型】几何:一半模型
【解析】
A
A
F
①②
F
D
D⑪⑫
③
④
P⑩P⑤
⑨⑧⑦⑥
BCBC
EE
4
过点P作AB,AC,BC的平行线,则S1=S2,S3=S4,S5=S6,S7=S8,S9=S10,S11=S12;
所以S阴影=S白=12S△ABC=122028=1014cm2,则S△PCF=1014−1922=630cm2
四
行除了首尾两个方格外,中间四个方格填入的字母从左
到
右的顺序是(
).
( )E,C,D,F
( )E,D,C,F
(
C
)
A
B
2
D,F,C,E(D)D,C,F,E
【答案】C
【考察知识点】数阵图:数独
【分析】每行每列每个3*2的粗线方格均必有A、B、C、D、E、F各一个,选择一个合适的位置,尝试即可快速得出答案。以下提供一种解法:
=n2
−m2
所以能写成n−m个连续奇数的和,2015=5Байду номын сангаас331=(n+m)(n−m),
把2015表示成2015=6531时,n−m最大为31,所以最多能写成31个连续奇数的和.
10.由单位正方形拼成的15×15网格,以网格的格点为顶点作边长为整数的正方形,则边长大于5的正方形有________个.
题目要求有两个人去,可以使用假设法,若甲去,则乙去,乙去则丙也去.三个人去,矛盾,所以甲不去.若丙不去则乙不去,那么只有丁去,矛盾,所以丙去.丙去则丁不去,由两个人去得到结论,乙要去.所以答案是B,丙和乙去.
2.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.
(A)5(B)2(C)4(D)3
4.足球友谊比赛的票价是50元,赛前一小时还有余票,于是决定降价.结果售出的票增加了三分之一,而票房收入增加了四分之一,那么每张票售价降了( )元.
(A)10
(B)
25
(C)
50
(D)25
2
3
【答案】B
【题型】方程
【解析】设共有x张票,赛前一小时的余票降价y元.
由题意得:14(x50)13[x(50−y)],y252
【解析】由于有2倍多2的关系,所以1、4、10只能取其中两个,2、6、14只能取其中两个,3、8、18只能取其中两个.即这里至少有3个数取不到,而11、13、15、17、19不满足2倍多2的关系,也无法取到.合计至少有8个数取不到,取12个数为最多的情况.列举最多的一种情况:1、4;2、6;3、8;5,12;7,16;9,20.取到了最多的12个数的情况.
(2460)661452
旧钟的24小时,相当于标准时间的720分钟,所以比标准时间24小时对应的11
24601440分钟多了1452-1440=12分钟,即慢了12分钟
6.在右图的6×6方格内,每个方格中只能填
A,B,C,D,E,F中的某个字母,要求每行、每列、每个
标
有粗线的2×3长方形的六个字母均不能重复.那么,第
两个人是().
(A)甲、乙(B)乙、丙(C)甲、丙(D)乙、丁
【答案】B 【题型】逻辑推理、逆否命题 【解析】在逻辑推理中,原命题成立,则逆否命题也成立.
(1)甲去则乙去,逆否命题:乙不去则甲也不去(2)丙不去则乙不去,逆否命题:乙去则丙去(3)丙去则丁不愿意去,逆否命题:丁去则丙不去从(2)出发可以看出答案为B.