平面解析几何(圆的方程)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何——圆的方程
圆的定义与方程
【知识拓展】
1.确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;
(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 2.点与圆的位置关系 点和圆的位置关系有三种.
圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2 判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ ) (2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2) = 0.( √ ) (3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ ) (4)方程x 2+2ax +y 2=0一定表示圆.( × ) (5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ ) 1.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0 D .x -y +3=0 答案 C 解析 圆心是(1,2),所以将圆心坐标代入检验选项C 满足. 2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A .7 B .6 C .5 D .4 答案 B 解析 根据题意,画出示意图,如图所示, 则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=1 2|AB |=m . 要求m 的最大值, 即求圆C 上的点P 到原点O 的最大距离. 因为|OC |=32+42=5, 所以|OP |max =|OC |+r =6, 即m 的最大值为6. 3.(2015·北京)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 答案 D 解析 圆的半径r =12+12=2,∴圆的方程为(x -1)2+(y -1)2=2. 4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |, 即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0), 半径|CA |=(2+1)2+1=10, ∴圆C 的方程为(x -2)2+y 2=10. 5.(2016·浙 江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________. 答案 (-2,-4) 5 解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1. 当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆. 题型一 求圆的方程 例 1 (1)(2016· 天 津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为45 5,则圆C 的方程为________________. (2)(2015· 课 标 全 国 Ⅰ)一个圆经过椭圆 x216 + y24 =1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________. 答案 (1)(x -2)2+y 2=9 (2)⎝⎛⎭⎫x -322+y 2=254 解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d = 2a 5 =45 5, 解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9. (2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为 y +1=-2(x -2), 令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为5 2 . 思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法 ①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值; ②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.