卧式油气分离器的设计计算

合集下载

油气分离器设计计算【范本模板】

油气分离器设计计算【范本模板】

摘要为了满足油气井产品计量、矿场加工、储存和管道输送的需要,气、液混合物要进行气液分离.本文是某低温集气站中分离器的设计与计算,选用立式分离器与旋风式两种。

立式分离器是重力式分离器的一种,其作用原理是利用生产介质和被分离物质的密度差来实现基本分离.旋风式分离器的分离原理是由于气、液质量不同,两相在分离器筒内所产生的离心力不同,液滴被抛向筒壁聚集成较大液滴,在重力作用下沿筒壁向下流动,从而完成气液两相分离。

分离器的尺寸设计根据气液混合物的压力﹑温度以及混合物本身的性质计算确定。

最后确定分离器的直径、高度、进出口直径。

关键词:立式两相分离器旋风式分离器直径高度进出口直径广安1#低温集气站的基本资料:出站压力:6MPa 天然气露点:5C<-︒气体组成(%):C1=85.33C2=2.2C3=1。

7C4=1.56C5=1.23C6=0。

9H 2S=6.3 CO2=0。

78凝析油含量:320/g m0.78lS=1.压缩因子的计算①天然气的相对分子质量∑=iMiMϕ式中 M-—天然气的相对分子质量; i ϕ—-组分i 的体积分数; Mi-—组分i 的相对分子质量。

则计算得, M=20.1104② 天然气的相对密度天然气的相对密度用S 表示,则有:S=空天M M 式中 M 天、M 空分别为天然气的相对分子质量。

已知:M 空=28。

97 所以,天然气相对密度S=空天M M =20.1104/28。

97=0。

694 ③ 天然气的拟临界参数和拟对比参数 对于凝析气藏气:当 0.7S < 时,拟临界参数:4.7780.248106.1152.21pc pc P S T S =-=+ 计算得,4.6211.7pc pc P T ==天然气的拟对比参数:pr pcpr pcP P P T T T ==a .1、2号分离器:1110;287a P MP T K == 110 2.174.6pr P ==; 12871.36211.7pr T == b 。

气液分离罐计算(卧式)

气液分离罐计算(卧式)

D1(m)按安全分离速度 D2(m)按最大分离速度 分离器直径(m) 设计压力(MPa) 分离器计算厚度(mm) 分离器实际厚度(mm) 分离器规格 气体管径(mm) 液体管径(mm)
0.68 0.48 2.6 0.8 16.91 24 Φi2600*24 125.54 440.71
液相体积百分比 液相潜热占总热负荷的比例 安全分离速度(m/s) 分离最大速度(m/s) 假设的气体速度(m/s)
60 6.35 27170.60 16302.36 452.8432544 271.7059526 35 1.7 4 238 8.667716616 3 15 2 90 28.24823998 1.5
设计压力(MPa) 翅片 有效宽度 mm 按最小夹带速度的流通面积1mm2 按安全夹带速度的流通面积2mm2 每层所需的流通面积1 mm2 每层所需的流通面积2 mm2 翅片宽度 mm 翅片流通面积 mm2/mm.层 * 每层的实际液体流通面积 mm2 液体速度 m/s 每层小孔面积 mm 2 流体穿过小孔的速度 m/s
106.007151 mm
Vt 沉降速度 d 液滴直径 m Cw μG 气相粘度 Pa*s Re
0.72361168 0.0002 3.1
0.000007574 19.59519471
取初值Cw=1,计算Vt,然后计算 Re',查图得到Cw,重新计算 Re,直到Re'=Re,此时Vt为最终 值。要达到分离效果,容器中气 体流速u必须小于浮动流速Vt。
气液分离设计计算书
项目代号
编号
流体参数
CASE1
物流代号
气液分离器结构设计
总流量 Kg/HR 气体重量流量Kg/HR 液体重量流量Kg/HR 气体密度 kg/m3 液体密度 kg/m3 总体积流量 kg/m3 液体体积流量m3/HR 气体体积流量m3/HR 气相体积百分比

两相卧式分离器的标定和量油计算方法探讨

两相卧式分离器的标定和量油计算方法探讨

两相卧式分离器的标定和量油计算方法探讨
二相卧式分离器是液体和气体分离的力学装置,具有排放及空气清洁等作用,应用范围较广。

为正确使用并获得更好的效果,必须对其进行正确的标定和量油计算。

1. 二相卧式分离器的标定
(1)二相卧式分离器的标定要求,根据不同的清洁度要求制备空调水进行测试,并按照美标及标准样本例行测试;
(2)在标定时要求使用一定流量(一般是3m3/min)进行标定,测试油与水搅拌物料要按照表3a-3c中的要求来调整;
(3)进行标定前需要先将二相卧式分离器安装完毕,然后将进气口调节为满流,再调节出口,使之恰好为下送流量;
(4)二相卧式分离器标定时,可使用均变压差计、流量计、水油分离器等仪器仪表测试,并做记录。

2. 二相卧式分离器的量油计算
(1)基于二相卧式分离器的安装及测试结果,可以得出分离器的安装比率和下送比率;
(2)结合分离器的安装比率和下送比率,可根据公式确定不同出口离心强度,并结合实际组合表计算出具体离心强度;
(3)设置二相卧式分离器的参数,计算出拢力系数,根据拢力系数,计算出最小分裂阻力和最大分裂阻力;
(4)根据空气动力学公式,将一定入口压力值转换成恒定流量,通过将最小分裂阻力和最大分裂阻力代入公式,最终得到准确的量油量;(5)根据实际情况还要对量油量进行调整,以确保二相卧式分离器在正常情况下能够正常工作,达到预期效果。

综上所述,要正确标定和进行量油计算,必须熟知二相卧式分离器的安装及拢力系数等实际参数的计算,结合实际情况做出合理的调整,充分利用二相卧式分离器的特性,使其更加准确和高效地工作,以达到最优的效果。

油气分离器规格系列及设计步骤

油气分离器规格系列及设计步骤

3.球形分离器规格和设计压力4.分离器设计依据资料根据油气分离器处理能力的影响因素及根据石油行业标准,在分离器的工艺设计前,首先应收集、计算和了解有关液体介质、气体介质资料和设计条件,用作为设计依据。

(1)液体介质资料A.原油处理量: m3/d;B.原油密度: kg/m3;C.原油含水量: % (质量比)D.水密度: kg/m3;E.原油发泡程度:(有、无);F.操作条件下原油动力粘度: Pa.s;G.操作条件下水的动力粘度: Pa.s;S: mg/L;H.水中含H2: mg/L;I.水中含CO2J.水中含氧量: mg/L;K.是否有断塞流:(有、无);L.原油含蜡量: % (质量比);M.原油含砂量: % (体积比);(2)气体介质资料A.气体处理量: m3/d;B.标准状态下气体密度: kg/m3;C.操作条件下气体动力粘度: Pa.s;含量: %(体积比);D.气体中CO2S含量: %(体积比);E.气体中H2(3)设计条件A.操作温度:℃;B.操作压力: MPa;C.分离器型式:(立式、卧式、球形);D .分离器功能:(两相、三相) ;E .分离后允许原油含水量: %(质量比);F .水中含油量: mg/L ;G .缓冲时间: min ;H .分离后气体带液量是否需要检测: (需、不); I .分离器是否设有排液泵: (设、不); J .控制仪表类型: (电动或气动)。

5.分离器工艺计算步骤分离器工作时应同时满足从气体中分出油滴和从原油中分出气泡的要求,对缓冲分离器尚需满足缓冲时间的要求。

因此,计算和选择油气分离器时,应对照下述步骤进行。

根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器的类型。

(1)根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器的类型。

(2)按照从原油中分出气体的要求,由原油性质和操作经验确定原油在分离器内的停留时间,对缓冲分离器尚需考虑缓冲时间,据此初步确定分离器尺寸。

重力式分离器计算书(卧立式)

重力式分离器计算书(卧立式)

一、工艺委托参数(编号:集-01)工作压力P :2.4MPa(绝)工作温度:30℃处理液量:25m3/d 轻烃组分: C 1 C 2 C 3 iC 4 nC 4 iC 590.28 4.040.210.060.080.06nC 5 C 6 C 7 N 2 CO 2 H 2O0.080.192.121.980.650.26二、基本参数的确定:19.086083.天然气相对密度△g :0.6589594.临界压力Pc:4.572505Mpa5.临界温度T'c :-68.191℃ =204.809K6.对比压力Pr :Pr=P/Pc=0.5248767.对比温度Tr :Tr=T/T'c=1.479427卧式分离器工艺计算程序制-027M=∑y i m i =△g=M/28.964=Pc=∑Pc i y i =T'c=∑y i Tc i=8.压缩因子Z:Z=1+(0.34Tr-0.6)Pr=0.949099.1大气压下定压比热C0p:C0p i=∑y i Cp i=0.511623(卡/克.℃)C0p=C0p i M=9.764885(卡/克.℃)10.工程标准状态下气体密度ρgs:ρgs=1.205△g=0.794045kg/m311.分离条件下气体密度ρg:ρg=ρgs PT s/(P S TZ)=17.85911kg/m312.分离条件下气体动力粘度μg:x=2.57+0.2781△g+1063.6/T= 6.263487y=1.11+0.04x=1.360539c=2.415(7.77+0.1844△g)T1.5x10-4/(122.4+377.58△g+1.8T)=0.010966μg=cexp[x(ρg/1000)y]=0.011257mPa.s13.阿基米德准数Ar:Ar=d3(ρ1-ρg)gρg/μg2=1011.12414.油滴沉降状态处于过渡区,雷诺数Re:Re=0.153Ar0.714=21.3856215.液面高度与容器直径之比η:η=h/D=0.516.油滴匀速沉降速度ω0:ω0=μg Re/dρg=0.134803m/s17.容器长度与直径之比K1:3~518.分离器允许气体流速ωgh:ωgh=0.49(3~5)ω0/η=0.396321~0.660535m/s三、分离器外形尺寸的确定:1.处理液量Q1:25m3/d2.载荷波动系数β(1~2):13.集液面积与横截面积之比n2:n2=[(2η-1)(1-(2η-1)2)1/2+arcsin(2η-1)]/π+1/2=0.54.出油口高度与容器直径之比:0.15.出油口以下弓形面积与横截面积之比n1:0.0520446.油在分离器中的停留时间t:30min7.分离器直径D:D=[(Q1tβ)/(360πK1(n2-n1))]1/2=0.702467~0.544129m5.分离器实际外形尺寸:直径D= 1.2m长度L= 5.6m。

气液分离器设计计算

气液分离器设计计算

Y = 8. 411 - 2. 243X +
0. 273X2 - 1. 865E -
2X3 + 5. 201E - 4X4
X
=
ln
0. 95
+ 8ρV DP ( μV2
ρL

ρV )
1. 3 基本概念
在进行分离器计算前还需定义以下概念: ( 1) 停留时间: 在没有物料补充和出口流率 恒定的条件下,气液分离器从正常液位 ( NLL) 降 到低液位 ( LLL) 时所经历的时间。 ( 2) 缓冲时间: 在没有物料流出和入口流率 恒定的条件下,气液分离器从正常液位 ( NLL) 升 到最高液位时 ( HLL) 时所经历的时间。 一些手册的缓冲时间是以低液位 ( LLL) 和高 液位 ( HLL) 之间的体积为基础考虑的。停留时间 是从保持较好的控制和下游设备操作安全的要求 考虑的。缓冲时间是基于上游物流或下游物流的 改变而导致液体积累考虑的,最常见的物流变化
< 300psia
> 300psia
15
6
15
6
15
6
6
6
6
6
6
6
卧式分离器 LLL ( in)
9 10 11 12 13 15
( 5) 计算从低液位到正常液位的高度:
HH
=

VH π /4)
DV 2
( ft)
最小取 1ft。
( 6) 计算从正常液位到高液位 ( 或高液位报
警) 的高度:
HS
=

VS π /4)
计算总横截面积:
AT = πD2 /4
2011,21( 5)
冯 宇 气液分离器设计计算

气液分离罐计算(卧式)

气液分离罐计算(卧式)

=(2.12*VL*t/C/A)^(1/3),m 4.02856476
=LT/DT
1.85
m3/HR
549.15
min
8
=ATOT-(Aa+Ab), %
77
%
20
%
3
m
4.05
m
7.45284481
7.5
r b cosθ θ Ab/Atot
2.025 0.279 0.862222222 0.531155754 0.030068205
气液分离设计计算书
项目代号
编号
流体参数
CASE1
物流代号
气液分离器结构设计
总流量 Kg/HR 气体重量流量Kg/HR 液体重量流量Kg/HR 气体密度 kg/m3 液体密度 kg/m3 总体积流量 kg/m3 液体体积流量m3/HR 气体体积流量m3/HR 气相体积百分比
350451.6204 456.9563664 349994.664 1.025508632 637.3438045 994.74 549.15 445.59 0.45
650.00
L5-进气管的外径 mm
450.00
L6-分离器的总高度 mm
20230.00
注液翅片结构
通道数 封条高度 mm 按最小夹带速度的流通面积1mm2 按安全夹带速度的流通面积2mm2 每层所需的流通面积1 mm2 每层所需的流通面积2 mm2 气槽数目 气槽深度 mm 气槽宽度 mm 每层的实际气槽流通面积 mm2 每层实际气槽中气体速度 液槽深度 mm 液槽宽度 mm 每层中封条的根数(双进输2) 每层的实际液槽流通面积 mm2 实际液槽中液体速度 m/s 小孔直径 mm
D1(m)按安全分离速度 D2(m)按最大分离速度 分离器直径(m) 设计压力(MPa) 分离器计算厚度(mm) 分离器实际厚度(mm) 分离器规格 气体管径(mm) 液体管径(mm)

石化卧式丝网气液分离器设计说明书

石化卧式丝网气液分离器设计说明书

扬州石化卧式丝网气液分离器设计说明书1 已知数据已知数据如表2-1表1-1 已知数据表2计算直径的计算采用常数K G 的计算方式,运用公式1/32.12()L T V t D CA ⨯= 式中,C=L T /D T =2~4(参考SY/T0515-2007分离器规范,取C=3)L T 、D T :圆柱部份的长度和直径,m;V L :液体体积流量,m 3/ht:停留时刻,min;A:可变的液体面积,%,即A=A TOT -(A a +A b )其中,A TOT :总横截面积,%A a :气体部份横截面积,%A b :气体部份横截面积,%停留时刻,按照本设计的情形,选取停留时刻为30min ,先假设A=,A a =,A b =计算可得,1/31/32.12 2.120.23730()()0.39730.8L T V t D m CA ⨯⨯⨯===⨯由D T =,A a =查《工艺系统工程设计技术规定》气液分离器HG/T 中图得出的空间高度a=<(气体最小空间高度)从头假设A=,A a =,A b =,代入计算可得,1/31/32.12 2.120.23730()()0.73830.4L T V t D m CA ⨯⨯⨯===⨯又由Aa=,查图得a=>,取值成功。

依据SYT 0515-2007 分离器规范取D T =,从头查图得a=>,也符合要求。

则进出口接管距离L N ≈L T =C*D T =3×=接管的计算接管距离的计算运用公式()20.50.524'[/]G N T L G G a V L D Aa R ⨯⨯=-⨯ρρρ 式中,L N ’、D T 、a :别离为进出口接管距离、卧式容器直径和气体空间高度,m ;V G :气体体积流量,m 3/h 。

ρG 、ρL :别离为液体密度、气体密度,m 3/h;对于d*=200μm ,利用R=()20.520.50.5240.5240.4430'0.807[/]0.7620.4[(1000 1.088)/1.088]0.127G N T L G Ga V L m D Aa R ⨯⨯⨯⨯==-⨯⨯⨯-=⨯ρρρ 故L N ≈L T >L N ’ 知足要求接管直径的计算入口接管直径的计算两相混合物的入口接管的直径应符合下式要求:21000GL u <G ρ式中,ρG :气相密度,m/s ;u GL :接管内两相流速,kg/m 3。

油气集输工程设计重力分离器的计算公式

油气集输工程设计重力分离器的计算公式

油气集输工程设计重力分离器的计算公式3基本规定3.0.1油气集输工程设计应依据批准的油田开发方案和设计委托书或设计合同规定的内容、范围和要求进行。

3.0.2油气集输工程设计应与油藏工程、钻井工程、采油工程紧密结合,根据油田开发分阶段的具体要求,统一论证,综合优化,总体规划,分期实施。

3.0.3油气集输工程总体布局应根据油田开发方式、生产井分布及自然条件等情况,并应统筹考虑注入、采出水处理、给排水及消防、供配电、通信、道路等公用工程,经技术经济分析确定。

各种管道、电力线、通信线等宜与道路平行敷设,形成线路走廊带。

3.0.4油气集输工艺流程应根据油藏工程和采油工程方案、油气物理性质及化学组成、产品方案、地面自然条件等,通过技术经济分析确定,并应符合下列规定:1工艺流程宜密闭;2应充分收集与利用油井产出物,生产符合产品标准的原油、天然气、液化石油气、稳定轻烃等产品;3应合理利用油井流体的压力能,适当提高集输系统压力,优化设计集输半径,减少油气中间接转,降低集输能耗;4应合理利用热能,做好设备和管道保温,降低油气处理和输送温度,减少热耗;5应结合实际情况简化工艺流程,选用高效设备。

3.0.5油气集输工程分期建设的规模,应根据开发方案提供的不低于10年的开发指标预测资料确定,工程适应期不宜少于10年。

相关设施在按所确定规模统筹考虑的基础上,可根据具体情况分阶段配置。

3.0.6实施滚动勘探开发的油田,工程分期和设备配置应兼顾近期和远期的需求,早期生产系统应先建设简易设施再酌情完善配套。

3.0.7沙漠、戈壁地区油气集输工程设计应适合沙漠、戈壁地区恶劣的环境条件,站场、线路等的设计应采取有效的防沙措施。

应充分利用沙漠地区的太阳能、风力等天然资源,并进行综合规划、有效利用。

3.0.8滩海陆采油田的开发建设应充分依托陆上油田已有设施,简化滩海陆采平台油气生产及配套设施。

3.0.9低渗透低产油田的开发建设,应简化地面设施,采用短流程、小装置,降低工程投资。

分离器计算

分离器计算

油量Qo 7.14
m3/min 水量Qw m3/min 气量Qg
0.5m3/min 选择水在分离器内停留时间tw
5min
选择油在分离器内停留时间to 1min
分离器长径比 b=L/D 3液体横截面占筒体截面的比例a
0.8分离器内液体占有体积V L =Qo×to+Qw×tw
7.14
m3
1.5590945m T/T长度 L
4.6772835
m
选取直径 D 1.6m 选取T/T长度 L 4.8m 气相有效长度Le=L-D 3.2m 液相有效长度Le=0.75L
2.4
m
三相分离器计算
第一步 初选分离器尺寸
1、给出油气水体积流量,单位m3/min 卧式罐通常为3~5,立式通常为3.5~5
3、选定分离器尺寸视气量决定,气量大可选0.5,气量小可选0.8通常相等
2、由VL=(πD 2/4)×a×bD=Qo×to+Qw×tw反推直径D
1.2、1.4、1.6、1.8、
2.0、2.2、2.4、2.6、2.8、
3.0、3.2、3.4、3.6、3.8、
4.0、),圆筒长度范围1.8-16.8m,增量0.8m(即1.8、2.6、3.4、4.2、
5.0、5.8、
6.6、
7.4、
8.2、
9.0、9.8、10.6、11.4、12.2、13.0、13.8、14.6、15.4、16.2、16.8)
3
4L V D a b π
⨯=∙∙
第二步 按各相所需面积选分离器尺寸。

油气集输课程设计——分离器设计计算(两相及旋风式)

油气集输课程设计——分离器设计计算(两相及旋风式)

油气集输课程设计——分离器设计计算(两相及旋风式)重庆科技学院《油气集输工程》课程设计报告学院:石油与天然气工程学院专业班级:学生姓名:学号:设计地点(单位)重庆科技学院石油科技大楼设计题目:某低温集气站的工艺设计——分离器设计计算(两相及旋风式)完成日期: 年月日指导教师评语:成绩(五级记分制):指导教师(签字):摘要天然气是清洁、高效、方便的能源。

天然气按在地下存在的相态可分为游离态、溶解态、吸附态和固态水合物。

只有游离态的天然气经聚集形成天然气藏,才可开发利用。

它的使用在发展世界经济和提高环境质量中起着重要作用。

因此,天然气在国民经济中占据重要地位。

天然气也同原油一样埋藏在地下封闭的地质构造之中,有些和原油储藏在同一层位,有些单独存在。

对于和原油储藏在同一层位的天然气,会伴随原油一起开采出来。

天然气分别通过开采、处理、集输、配气等工艺输送到用户,每一环节都是不可或缺的一部分。

天然气是从气井采出时均含有液体(水和液烃)和固体物质。

这将对集输管线和设备产生了极大的磨蚀危害,且可能堵塞管道和仪表管线及设备等,因而影响集输系统的运行。

气田集输的目的就是收集天然气和用机械方法尽可能除去天然气中所罕有的液体和固体物质。

本文主要讲述天然气的集输工艺中的低温集输工艺中的分离器的工艺计算。

本次课程设计我们组的课程任务是——某低温集气站的工艺设计。

每一组中又分为了若干个小组,我所在小组的任务是——低温集气站分离器计算。

在设计之前要查低温两相分离器设计的相应规范,以及注意事项,通过给的数据资料,确定在设计过程中需要使用公式,查询图表。

然后计算出天然气、液烃的密度,天然气的温度、压缩因子、粘度、阻力系数、颗粒沉降速度,卧式、立式两相分离器的直径,进出管口直径,以及高度和长度。

把设计的结果与同组的其他设备连接起来,组成一个完整的工艺流程。

关键字:低温立式分离器压缩因子目录摘要 (1)1.设计说明书 (4)1.1 概述 (4)1.1.1 设计任务 (4)1.1.2 设计内容及要求 (4)1.1.3 设计依据以及遵循的主要规范和标准 (4)1.2 工艺设计说明 (4)1.2.1 工艺方法选择 (4)1.2.2 课题总工艺流程简介 (5)2.计算说明书 (5)2.1 设计的基本参数 (5)2.2 需要计算的参数 (5)3.立式两相分离器的工艺设计 (6)3.1 天然气的相对分子质量 (6)3.2 天然气的相对密度 (6)3.3 压缩因子的计算 (6)3.4 天然气流量的计算 (9)3.5液滴沉降速度 (10)3.5.1天然气密度的计算 (10)3.5.2临界温度、压力的计算 (11)3.5.3天然气粘度的计算 (11)3.5.4 天然气沉降速度的计算 (13)3.6 立式两相分离器的计算 (14)3.6.1 立式两相分离器直径的计算 (14)3.6.2 立式两相分离器高度的计算 (15)3.6.3 立式两相分离器进出口直径的计算 (15)3.7 管径确定 (16)3.8 壁厚的确定 (16)3.9 丝网捕雾器 (17)3.10 设备选型 (17)4.旋风分离器的工艺设计 (18)4.1.1根据进、出口速度检验K值及最后结果 (19)4.2 压力降的计算 (21)结论 (23)参考文献 (24)1 设计说明书遵循设计任务的要求,完成某低温集气站的工艺设计——分离器计算(两相及旋风)。

卧式三相分离器工艺设计计算

卧式三相分离器工艺设计计算

卧式三相分离器⼯艺设计计算⼀、⼯艺委托参数:⼯作压⼒P'w:1.661Mpa ⼯作温度:18.5℃处理⽓量:352m 3/d原油密度:894.9kg/m 3油处理量:40m 3/d 停留时间:10min 含⽔率:10%⽔的密度:1013kg/m 3液体加热温度:℃⼊⼝:18.5 进⼝:18.5天然⽓组分:(Vi%) C 1C 2 C 3 iC 4 nC 4 iC 50.2850.1410.1580.0530.141 4.49 nC 5C 6 C 7 N 2 CO 2 H 2O 0.03440.07030.053000.065⼆、基本参数的确定:3.6603563.天然⽓相对密度△g:0.1263764.临界压⼒Pc:0.280427Mpa5.临界温度T'c:9.274789 ℃ =282.2748K 6.⼯作温度:t=18.5℃三相分离器⼯艺计算书M=∑y i m i =△g=M/28.964=Pc=∑Pc i y i =T'c=∑y i Tc i =Tw= t+273=291.5K7.⼯作压⼒Pw:P'w= 1.661MPaPw=P'w+0.1= 1.761Mpa(绝)8.对⽐压⼒Pr:Pr=Pw/Pc= 6.2797029.对⽐温度Tr:Tr=Tw/T'c= 1.03268210.压缩因⼦Z:(0≤Pr≤2;1.25≤Tr≤1.6)Z=1+(0.34Tr-0.6)Pr=-0.5629411.1⼤⽓压下定压⽐热C0p:C0p i=∑y i Cp i=0.021887(卡/克.℃)C0p=C0p i M=0.080113(卡/克.℃)12.标准状态下⼤⽓压Ps:Ps=0.1MPa13.标准状态下温度Ts:(To= 20℃或 0℃)To=0℃Ts=To+273=273K14.标准状态下空⽓密度ρa(Ts=20 ℃时取1.205;Ts=0 ℃时取1.293):ρa= 1.293kg/m315.标准状态下⽓体密度ρgs:ρgs=ρa△g=0.163404kg/m316.分离条件下⽓体密度ρg:ρg=ρgs PwT s/(P S TwZ)=-4.7872kg/m317.分离条件下⽓体动⼒粘度µg:x=2.57+0.2781△g+1063.6/Tw= 6.253859y=1.11+0.04x= 1.360154c=2.415(7.77+0.1844△g)Tw1.5x10-4/(122.4+377.58△g+1.8Tw)=0.01348112µg=cexp[x(ρg/1000)y]=#NUM!mPa.s 18.原油20℃时的密度ρ20:ρ20=894.9kg/m319.原油⼯作温度下的密度ρo:(0~50℃)§=1.828-0.00132ρ20=0.646732ρo=ρ20-§(t-20)=895.8701kg/m320.原油15℃时的密度ρ15:ρ15=ρ20-§(t-20)=898.1337kg/m321.阿基⽶德准数Ar:Ar=d3(ρo-ρg)gρg/µg2=#NUM!22.油滴沉降状态处于过渡区,雷诺数Re:Re=0.153Ar0.714=#NUM!23.液相截⾯⾼度与容器直径之⽐η:η=h/D=0.624.油滴匀速沉降速度ω0:ω0=µg Re/dρg=#NUM!m/s25.容器长度与直径之⽐L/D:3~526.分离器允许⽓体流速ωgh:ωgh=0.49(3~5)ω0/(1-η)=#NUM!~#NUM!m/s三、分离器外形尺⼨的确定:1.油处理量Qo:40m3/d2.原油含⽔率ηi:10%3.⽔的密度ρw:ρw=1013kg/m34.液体综合密度ρl:ρl=ρwηi+ρo(1-ηi)=907.5831kg/m35.液体处理量Q:Q=Q oρ20/(1000(1-ηi))=39.77333(t/d) /ρl=43.82335m3/d6.⽔处理量Qw:Q w=ηiQ=3.977333(t/d)/ ρw= 3.926292m3/d7.载荷波动系数β: 1.28.液相所占截⾯积与分离器横截⾯积之⽐n2:n2=[(2η-1)(1-(2η-1)2)1/2+arcsin(2η-1)]/π+1/2=0.626479.出油⼝⾼度与分离器直径之⽐η1:η1=0.110.出油⼝以下⼸形截⾯积与分离器横截⾯积之⽐n1:n1=[(2η1-1)(1-(2η1-1)2)1/2+arcsin(2η1-1)]/π+1/2=0.0520440111.液体在分离器中的停留时间t: t=10min12.分离器直径D:D=[(Qtβ)/(360π(L/D)(n2-n1))]1/3=0.646189~0.54501711m 13.分离器实际外形尺⼨:直径D= 1.4m长度L= 5.6m四、⽓体处理量核算:1.容器长度与直径之⽐K1:K1= L/D=42.分离器允许⽓体流速ωgh:ωgh= 0.49K1ω0/(1-η)=#NUM!3.分离器实际处理能⼒Q'gsQ'gs=67858D2(1-n2)ωghPwTs/(PsTwZ)=#NUM! >352m3/d 结论:满⾜要求五、⽹垫除雾器计算:1.⽓体处理量Qgs: Qgs=352m3/d2.分离条件下⽓体的实际处理量Q g:Q g=Q gs TwP s Z/(PwT s)=-12.015m3/d3.⽹垫除雾器的⽓体流速ωg:ωg=K[(ρo-ρg)/ρg]0.5=#NUM!m3/s4.⽹垫⾯积A:A=Q g/(86400ωg)=#NUM!m25.丝⽹单丝直径D0:0.00015m6.斯托克斯准数S t:S t=d2ρoωg/(18µg D0)=#NUM!7.单丝的捕集效率η:查图3-27η=0.788.捕雾效率E:0.989.⽹垫⽐表⾯积a:590m2/m310.除雾器⽹垫厚度H:H=-3πln(1-E)/(2aη)=0.040059m11.丝⽹除雾器直径 Ds:Ds=(4A/π)1/2=#NUM!m实际取值:Ds=m六、分离器进出⼝管确定:1.流动状态下⽓液混合体密度ρM:ρM=(ρ1Q+ρgQg)/(Q+Qg)=1252.214kg/m3 =78.1730091lb/ft32.常数C(⽆固体杂质为100,含有沙⼦为50~75):503.进⼝管流体冲刷腐蚀速度V e:Ve=C/ρm1/2= 1.72368m/s4.出⽓管⽓体流速V2: V2=15m/s5.出油⼝液体流速Vo Vo=1m/s6.出⽔⼝液体流速V w Vw=1m/s7.进⼝管直径确定d1:d1=103[4Qg/(πVe)]1/2=#NUM!mm8.出⽓管直径确定d2:d2=103[4Qg/(πV2)]1/2=#NUM!mm9.出油⼝直径确定do:do=103[4Qo/(πVo)]1/2=24.27885mm10.出⽔⼝直径确定d w:dw=103[4Qw/(πVw)]1/2=7.60658mm进⼝管径实际取值: DN=mm出⽓管径实际取值: DN=mm出液管径实际取值: DN=mm七、安全阀的计算:1.安全阀的安全泄放量W s:W s=Q gρg/24= 2.396596kg/h2.分离器设计压⼒P: P=0.4MPa3.安全阀出⼝侧压⼒(绝)P0:P0=0.1Mpa4.安全阀开启压⼒P z:Pz=P=0.4Mpa5.安全阀排放压⼒(绝)P d:Pd=1.1P+0.1=0.54Mpa6.⽓体绝热系数k:C pi0=∑y i C pi=0.021887C p0=C pi0M=0.080113查图2-27△C p=0.07C p=C p0+△C p=0.150113查图2-29C p-C v=2C v=C p-5=-1.84989k=C p/C v =-0.081157.临界条件:P0/P d=0.185185<(2/(k+1))k/(k-1)=1.06011458 条件判别:属于:临界状态8.⽓体特性系数C:C=520[k(2/(k+1))(k+1)/(k-1)]1/2=#NUM!9.安全阀额定泄放系数K:K=0.6510.安全阀排放⾯积A:A=W S/(7.6x10-2CKP d(M/ZTw)1/2=#NUM!mm211.安全阀数量 N:1个12.安全阀喉径d0:d0=(4A/(N*π))1/2=#NUM!mm结论:安全阀选⽤ A44Y-16C 公称直径 DN100 数量:1个⼋、热负荷确定:1.原油⼊⼝温度:18.5℃2.原油出⼝温度:18.5℃3.被加热原油质量流量W o:W o=ρoQo=1493.117kg/h4.被加热原油含⽔率η1:η1=30%5.被加热⽔的质量流量Ww:W W=W oη1/(1-η1)=639.9072kg/h6.原油⽐热C O(按出⼝温度t2计算):Co=(1.687+3.39x10-3t2)/[4.1868(ρ15)1/2]=0.440976kcal/kg*℃7.⽔的⽐热C w: C w=1kcal/kg*℃8.加热所需的热负荷QR:Q R=(C W W w+C o W o)(t2-t1)=0kcal/h=0kw实际取值: Q R=kw。

分离器计算步骤

分离器计算步骤

分离器计算根据《油气集输设计规范》P29卧式重力分离器直径D 按照下式进行计算0423310350.0Pw K K TZq K D v -⨯=式中: q v —标准参比条件下气体流量,m 3/h (P 0=0.101325MPa T 0=293K 条件下);2K —气体空间占有的面积分率,2K 取0.53K —气体空间占有的高度分率,3K 取0.54K —分离器长径比,K 4=L/D ;P ≤1.8MPa 时:K 4=3.0;1.8<P ≤3.5MPa 时:K 4=4.0;P >3.5MPa 时:K 4=5.0Z —气体压缩系数(压缩因子);T —操作温度,K ;P —操作压力(绝压),MPa ;D —分离器内径,m ;W 0—液滴沉降速度,(m/s );液滴直径68010m L d -=⨯;重力加速度2/8.9s m g = 4 4.0K =在操作条件下,由HYSYS 软件得知,压缩因子Z=0.9140气体的密度327.51/g kg m ρ=液体的密度3846.7/L kg m ρ=气体粘度51.22110Pa g μ-=⨯⋅标况下(P=101.325KPa,T=293K ),气体流量43q 1.33910/v m h =⨯处理装置考虑120%的弹性范围,气体流量43q 1.606810/v m h =⨯ 根据《油气集输设计规范》SY/T0010-96 第29页6.2.6-1式()f gd wg g L L ρρρ340-=0w -液滴在分离器中的沉降速度,m/s;L d -液滴直径,取60⨯10-6 ~100⨯10-6 mL ρ-液体的密度,3/kg mg ρ-气体在操作条件下的密度,3/kg mf-阻力系数,用下式计算阻力系数()()()()()63222549.88010846.727.5127.514Re 1011.297633 1.22110L L g gg gd f ρρρμ--⨯⨯⨯⨯-⨯-⋅===⨯⨯式中: Re —流体相对运动的雷诺数;μg —气体在操作条件下的粘度,Pa ·S得出2(Re )f 再查油气集输设计规范附录B 可得f 值,即 2.49f = ()()-660449.88010846.727.510.11183327.51 2.2L L g g gd w f ρρρ--⨯⨯⨯⨯-===⨯⨯m/s 分离器直径4-333v 2400.5 1.339103030.91400.350100.350100.50000.54 3.50.1296K q TZ D m K K Pw -⨯⨯⨯⨯=⨯=⨯⨯=⨯⨯⨯分离器长 40.50004 2.000L D K m =⨯=⨯=。

关于卧式三相分离器尺寸计算的探讨

关于卧式三相分离器尺寸计算的探讨

允许 流 速 ; 气 体 允许 流速 的计算 方 法 主要 有 油 滴沉
降 速 度 法 和经 验 系 数 法 , 其 中经 验 系 数 法 主 要 有
AP I 1 2 J计 算 法 , GP S A 计 算 法 和 国 外设 计 公 司 常 用 计算 方法 。 油水 分离 时需 要 一定 的停 留时问 , 这个 时 间通 常 是 5 ~3 0分 钟 , 一 般 通 过原 油脱 水 实 验来 确定, 如果 没 有 实验 数 据则 使用 AP I 1 2 J的推 荐 时 间; 除此 之外 , 分 离 器 的尺 寸还要 考 虑 油品 的特殊性 质 以及分 离器在 整 个系 统 中受上 下 游 的影响 因素 。
气 相 除液 时 , 分 离器 中气 相 流 速不 能 超 过 气体
曲一 D ( I -h D )
L e 一重 力沉 降 区的有 效长 度 , m; v g h 一气体 在 流通截 面 积上 的平均 流速 , m/ s ; Vd 一油 滴沉 降速 度 , m/ s ;
D一分 离器直 径 , I T I ;
矿 场 加 工研 究 方 向 。
2 0 1 4 年第 1 o 期
张婷婷等 关于卧式三相分离器尺寸计算的探讨
5 3
1 . 2 . 1 根据 AP I 1 2 J ( 2 0 0 8 ) [ 。
V :K
天然气 5 . 2 k g /m。 , 原油 9 5 2 k g / m。 , 水9 8 3 k g /
以上设计 方 法 的计 算结 果 并做 简要 分析 , 发 现 GP S A 计 算 法和 国外 设计 公 司常用计 算 方 法计 算结果 比
较接 近且 较为合 理 。其 次 , 对 于决定 卧 式三相 分 离器尺 寸的重要 因素一 液体 的停 留 时间进行 分析 , 探 讨

卧式三相分离器工艺设计计算讲解学习

卧式三相分离器工艺设计计算讲解学习

一、工艺委托参数:工作压力P'w: 1.661Mpa 工作温度:18.5℃处理气量:352m3/d 原油密度:894.9kg/m3油处理量:40m3/d 停留时间:10min含水率:10%水的密度:1013kg/m3液体加热温度:℃ 入口:18.5 进口:18.5天然气组分:(Vi%)C1 C2 C3 iC4 nC4 iC50.2850.1410.1580.0530.141 4.49nC5 C6 C7 N2 CO2 H2O0.03440.07030.053000.065二、基本参数的确定:1.天然气组分数三相分离器工艺计算书分子量M:3.6603563.天然气相对密度△g:0.1263764.临界压力Pc:0.280427Mpa 5.临界温度T'c:9.274789 ℃=282.2748K6.工作温度:t=18.5℃Tw= t+273=291.5K7.工作压力Pw:P'w= 1.661MPaPw=P'w+0.1= 1.761Mpa(绝)8.对比压力Pr:Pr=Pw/Pc= 6.2797029.对比温度Tr:Tr=Tw/T'c= 1.03268210.压缩因子Z:(0≤Pr≤2;1.25≤Tr≤1.6)Z=1+(0.34Tr-0.6)Pr=-0.5629411.1大气压下定压比热C0p:C0p i=∑y i Cp i=0.021887(卡/克.℃)M=∑y i m i=△g=M/28.964= Pc=∑Pc i y i= T'c=∑y i Tc i=C0p=C0p i M=0.080113(卡/克.℃)12.标准状态下大气压Ps:Ps=0.1MPa 13.标准状态下温度Ts:(To=20℃ 或0℃)To=0℃Ts=To+273=273K 14.标准状态下空气密度ρa(Ts=20℃时取1.205;Ts=0 ℃时取1.293):ρa= 1.293kg/m3 15.标准状态下气体密度ρgs:ρgs=ρa△g=0.163404kg/m3 16.分离条件下气体密度ρg:ρg=ρgsPwT s/(PSTwZ)=-4.7872kg/m3 17.分离条件下气体动力粘度μg:x=2.57+0.2781△+1063.6/gTw= 6.253859y=1.11+0.04x= 1.360154c=2.415(7.77+0.1844△)Tw1.5x1g0-4/(122.4+377.58△+1.8Tw)g=0.01348112μ=cexp[x(gρ/1000)y]g=#NUM!mPa.s18.原油20℃时的密度ρ:20ρ20=894.9kg/m319.原油工作温度下的密度ρo:(0~50℃) §=1.828-0.646732ρo=ρ20-§(t-20)=895.8701kg/m320.原油15℃时的密度ρ:15ρ15=ρ-§(t-2020)=898.1337kg/m321.阿基米德准数Ar:Ar=d3(ρ-ρg)gρo/μg2=#NUM!g22.油滴沉降状态处于过渡区,雷诺数Re:Re=0.153Ar0.714=#NUM!23.液相截面高度与容器直径之比η:η=h/D=0.624.油滴匀速沉降速度ω0:ω0=μRe/dρg=#NUM!m/sg25.容器长度与直径之比L/D:3~526.分离器允许气体流速ω:ghω=0.49(3gh~5)ω/(1-η)=#NUM!~#NUM!m/s三、分离器外形尺寸的确定:1.油处理量Qo:40m3/d2.原油含水率ηi:10%3.水的密度ρw: ρw=1013kg/m34.液体综合密度ρl:ρl=ρwηi+ρo(1-ηi)=907.5831kg/m35.液体处理量Q:Q=Q oρ20/(1000(1-ηi))=39.77333(t/d) /ρl=43.82335m3/d 6.水处理量Qw:Q w=ηiQ= 3.977333(t/d)/ρw= 3.926292m3/d 7.载荷波动系数β: 1.28.液相所占截面积与分离器横截面积之比n2:n2=[(2η-1)(1-(2η-1)2)1/2+arcsin(2η-1)]/π+1/2=0.626479.出油口高度与分离器直径之比η1:η1=0.110.出油口以下弓形截面积与分离器横截面积之比n1:n1=[(2η1-1)(1-(2η1-1)2)1/2+arcsin(2η1-1)]/π+1/2=0.05204401 11.液体在分离器中的停留时间t:t=10min12.分离器直径D:D=[(Qtβ)/(360π(L/D)(n2-n1))]1/3=0.646189~0.54501711m 13.分离器实际外形尺寸:直径D= 1.4m长度L= 5.6m四、气体处理量核算:1.容器长度与直径之比K1:K1= L/D=42.分离器允许气体流速ωgh:ωgh=0.49K1ω0/(1-η)=#NUM!3.分离器实际处理能力Q'gsQ'gs=67858D2(1-n2)ωghPwTs/(PsTwZ)=#NUM! >352m3/d结论:满足要求五、网垫除雾器计算:1.气体处理量Qgs: Qgs=352m3/d2.分离条件下气体的实际处理量Q g:Q g=Q gs TwPsZ/(PwT s)=-12.015m3/d3.网垫除雾器的气体流速ωg:ω=K[(ρo-gρg)/ρ]0.5=#NUM!m3/sg4.网垫面积A:A=Q g/(86400ωg)=#NUM!m25.丝网单丝直径D0:0.00015m6.斯托克斯准数S t:S t=d2ρoωg/(18μg D0)=#NUM!7.单丝的捕集效率η:查图3-27η=0.788.捕雾效率E:0.989.网垫比表面积a:590m2/m310.除雾器网垫厚度H:H=-3πln(1-E)/(2aη)=0.040059m11.丝网除雾器直径 Ds:Ds=(4A/π)1/2=#NUM!m实际取值:Ds=m六、分离器进出口管确定:1.流动状态下气液混合体密度ρM:ρ=(ρ1Q+MρgQg)/(Q+Qg)=1252.214kg/m3 =78.1730091lb/ft3 2.常数C(无固体杂质为100,含有沙子为50~75):503.进口管流体冲刷腐蚀速度V e:Ve=C/ρ1/2= 1.72368m/sm4.出气管气体流速V2:V2=15m/s5.出油口液体流速Vo Vo=1m/s6.出水口液体流速Vw=1m/s7.进口管直径确定d1:d1=103[4Qg/(πVe)]1/2=#NUM!mm8.出气管直径确定d2:d2=103[4Qg/(πV2)]1/2=#NUM!mm直径确定do:do=103[4Qo/(πVo)]1/2=24.27885mm10.出水口直径确定d w:dw=103[4Qw/(πVw)]1/2=7.60658mm进口管径实际取值:DN=mm出气管径实际取值:DN=mm出液管径实际取值:DN=mm 七、安全阀的计算:1.安全阀的安全泄放量W s:W s=Q gρ/24= 2.396596kg/hg2.分离器设计压力P:P=0.4MPa3.安全阀出口侧压力(绝)P0:P0=0.1Mpa开启压力P z:Pz=P=0.4Mpa 5.安全阀排放压力(绝)P d:Pd=1.1P+0.1=0.54Mpa6.气体绝热系数k:C pi0=∑y i C pi=0.021887C p0=C pi0M=0.080113查图2-27△C p=0.07C p=C p0+△C p=0.150113查图2-29C p-C v=2C v=C p-5=-1.84989k=C p/C v =-0.081157.临界条件:P0/P d=0.185185<(2/(k+1))k/(k-1)=1.06011458条件判别: 属于:临界状态8.气体特性系数C:C=520[k(2/(k+1))(k+1)/(k-1)]1/2=#NUM!9.安全阀额定泄放系数K:K=0.6510.安全阀排放面积A:A=W S/(7.6x10-2CKPd(M/ZTw)1/2=#NUM!mm2阀数量N:N=1个12.安全阀喉径d0:d0=(4A/(N*π))1/2=#NUM!mm结论:安全阀选用 A44Y-16C 公称直径DN100 数量:1个八、热负荷确定:1.原油入口温度:t1=18.5℃2.原油出口温度:t2=18.5℃3.被加热原油质量流量W o:W o=ρoQo=1493.117kg/h4.被加热原油含水率η1:η1=30%5.被加热水的质量流量Ww:W W=W oη1/(1-η1)=639.9072kg/h6.原油比热C O(按出口温度t2计算):Co=(1.687+3.39x10-3t2)/[4.1868(ρ15)1/2]=0.440976kcal/kg*℃7.水的比热C w: C w=1kcal/kg*℃8.加热所需的热负荷QR:Q R=(C W W w+C o W o)(t2-t1)=0kcal/h=0kw实际取值: Q R=kw。

分离器结构尺寸计算设计

分离器结构尺寸计算设计

目录一、课程设计的基本任务 (2)(一)设计的目的、意义 (2)(二)设计要求 (2)(三)工艺计算步骤 (2)二、课程设计理论基础 (2)(一)分离器综述 (2)(二)油气分离器原理 (2)(三)从气泡中分离出油滴的计算 (3)(四)气体的允许速度 (5)(五)分离器结构尺寸计算 (6)三、实例计算 (7)(一)基础数据 (7)(二)计算分离器的结构尺寸 (8)四、结束语 (19)附录计算程序 (20)一、课程设计的基本任务(一)设计的目的、意义目的:在老师指导下,根据给定的原油组成、分离条件、停留时间等基础数据,按规范要求独立地完成分离器结构尺寸设计。

意义:为了满足计量、储存的需要,油井产品从井口出来后,首先要进行分离,分离的场所即油气分离器。

分离后所得油、气的数量和质量除了与油气的组成、分离压力、分离温度有关外,也与油气在分离器内停留的时间有关,当油气的组成、分离压力、分离温度及处理量一定时,分离效果由分离器的尺寸决定,合理的设计或选择分离器的尺寸对改善分离效果非常必要。

(二)设计要求1.初分离段应能将气液混合物中液体大部分分离出来2.储液段要有足够的容积,以缓冲来油管线的液量波动和油气自然分离3.有足够的长度和高度,是直径100um以上的油滴靠重力沉降4.在分离器的主体部分应有减少紊流的措施,保证液滴沉降5.要有捕集的器除雾,以捕捉二次分离后气体中更小的液滴6.要有压力和液面控制(三)工艺计算步骤1.根据油气平衡计算中所确定的气液处理量、物性、分离压力、分离温度等基础资料,并参照现场具体情况选择分离器类型。

2.按照从原油中分出气体的要求,由原油性质和操作经验确定原油在分离器内的停留时间,对缓冲分离器需考虑缓冲时间,据此初步确定分离器尺寸。

3.按照从气体中分出油滴的要求,计算100微米的油滴在气相中的匀速沉降速度Wo ,分离器允许的气体流速wg ,分离器直径D,长度l (或高度H)等尺寸。

分离器设计计算

分离器设计计算

分离器设计题:气量110万方/日,压力为8MPa (表),温度270C ,相对密度为0.6,要求尽可能分离掉大量的固体颗粒(300um )和少量液滴,经查图确定颗粒的沉降速度为0.38m/s 。

试分别设计立式、卧式及旋风分离器。

解:已知:Q g =110万m 3/d P=8MPa T=27℃ S=0.6 ω=0.38m /s 由s=0.6<0.7可得,P pc =4.778-0.248s=4.778-0.248×0.6=4.629MPaT pc =106.1+152.21×0.6=197.4KP pr =P/ P pc =8/4.629=1.7T pr =T/ T pc =300/197.4=1.5根据P pr 和T pr 的值查表2-1可得Z=0.83取η =0.77则ν=ηω=0.77×0.38=0.29m/s实用流量:Q 1=86400g Q ×P 101325.0×293TZ =864001100000×8101325.0×293300×0.83=0.137m 3/s1、立式分离器筒体直径:D=(νπ14Q )1/2=0.78m高度:H=3.3D=3.3×0.78=2.57m进口直径:D 1=(15785.0137.0⨯)1/2=0.11m出口直径:D 2=(10785.0137.0⨯)1/2=0.13m 2、卧式分离器取A=3.3,77.0=η筒体直径:D=(AQ πηω14)1/2=0.43m 长度L=3.3×0.43=1.42m进口直径:D 1=(15785.0137.0⨯)1/2=0.11m 出口直径:D 2=(10785.0137.0⨯)1/2=0.13m 3、旋风分离器取k=1,筒体直径:D=3.39×10-5×(P TZQ g )1/2×K=3.39×10-5×(8110000083.0300⨯⨯)1/2 ×1=0.20m 进口直径:D 1=0.47D=0.47×0.20=0.09m 出口直径:D 2=0.67D=0.67×0.20=0.13m 进口流速:V 1=5.096×10-9×21g PD TZQ =5.096×10-9×2)09.0(8110000083.0300⨯⨯⨯=21.5m/s 出口流速:V 2=5.096×10-9×22g PD TZQ =5.096×10-9×2)13.0(8110000083.0300⨯⨯⨯=10.3m/s筒体流速:V=5.096×10-9×2g PD TZQ =5.096×10-9×2)20.0(8110000083.0300⨯⨯⨯=4.36m/s 因为15m/s<V 1<25m/s,5m/s<V 2<15m/s,2.45m/s<V<4.43m/s,所以K 的取值符合要求,就按照上面计算出来的D ,D 1,D 2设计旋风分离器。

气液卧式重力分离器设计分析

气液卧式重力分离器设计分析

气液卧式重力分离器设计分析摘要:重力式气液分离器在大型化工装置中被广泛使用。

气液分离器按空间布置分为立式和卧式,按是否有丝网分为丝网式与重力式,卧式重力式的计算是其中最复杂的。

因此本文结合工程实例,对气液卧式重力分离器的设计要求和关键参数的工艺计算做了详细介绍,为后续分离器设计奠定了一定的基础。

关键词:卧式,气液分离器,回流罐1概述气液分离器是石油化工领域的重要设备,对于气液分离起关键作用,如压缩机吸入罐、精馏塔回流罐、进料闪蒸罐等。

它适用于液滴直径大于 200 m 的气液分离。

气液重力分离器主要由三部分组成:初级分离区、重力分离区和液体收集区。

在初级分离区,依靠进料分布器,吸收动量和改变流向,从而将大部分液体从气体中分离下来,也使得气体在分离器中更好地分布。

在重力分离区,剩余液滴靠重力沉降作用从气相中分离下来。

液体收集区,主要是收集分离下来的液体,同时通过一定的停留时间,将其中的气泡分离出去。

图1-1 卧式重力分离器通常,按空间布置可分为立式和卧式两种型式,按是否有丝网可分为丝网式和重力式。

气液重力式分离器通常分为立式和卧式两种型式。

立式分离器通常用于气液比较大的工况,或者可用布置空间较小的工况。

气液经过初级分离区后,液体向下运动,气体向上运动,经过重力分离区分离出液滴,然后由顶部出容器。

卧式分离器通常用于液相量较大的情况,或者三相分离的工况,气体和已经分离下来的液体均水平运动,同时液滴垂直运动,这种运动方式能够更有效地将液滴从气相中分离出来。

2工艺计设计要求2.1气液分离要求对于卧式重力分离器,液滴沉降时间等于气体从入口到出口的停留时间。

规范HG/T 20570中有如下要求:(2-1) 式中:-液滴垂直沉降时间,s-气体由入口至出口的停留时间,s对于350μm的液滴,取R=0.167,对于200μm的液滴,取R=0.127。

液滴垂直运动时间是由气相空间高度和液滴沉降速度共同决定,液滴沉降速度可由公式2-2求得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档