专升本高数公式大全93484
专升本高数公式大全
专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。
11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。
成人高考专升本高等数学公式大全
成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。
专升本高数公式大全
导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
专升本高等数学公式全集
专升本高等数学公式全集高等数学是专升本考试中的重要科目,掌握好相关公式对于解题和取得好成绩至关重要。
下面为大家整理了一份较为全面的专升本高等数学公式。
一、函数与极限1、函数的基本性质奇偶性:若 f(x) = f(x),则函数 f(x) 为偶函数;若 f(x) = f(x),则函数 f(x) 为奇函数。
周期性:若存在非零常数 T,使得对于任意 x,都有 f(x + T) =f(x),则函数 f(x) 为周期函数,T 为其周期。
2、极限的定义与性质定义:对于数列{an},若当 n 无限增大时,an 无限趋近于一个常数 A,则称 A 为数列{an} 的极限,记作lim(n→∞) an = A。
性质:唯一性、有界性、保号性。
3、极限的运算四则运算:若lim(n→∞) an = A,lim(n→∞) bn = B,则lim(n→∞)(an ± bn) = A ± B,lim(n→∞)(an × bn) = A × B,lim(n→∞)(an / bn) = A / B(B ≠ 0)。
两个重要极限:lim(x→0) (sin x / x) = 1,lim(x→∞)(1 + 1 / x)^x = e。
4、无穷小与无穷大无穷小:以零为极限的变量称为无穷小。
无穷大:当变量在某个变化过程中绝对值无限增大,则称该变量为无穷大。
无穷小的性质:有限个无穷小的和、差、积仍是无穷小;无穷小与有界函数的乘积是无穷小。
二、导数与微分1、导数的定义函数 y = f(x) 在 x0 处的导数定义为:f'(x0) =lim(Δx→0) f(x0 +Δx) f(x0) /Δx。
2、导数的基本公式(C)'= 0(C 为常数)(x^n)'= nx^(n 1)(sin x)'= cos x(cos x)'= sin x(tan x)'= sec^2 x(cot x)'= csc^2 x(e^x)'= e^x(ln x)'= 1 / x3、导数的四则运算(u ± v)'= u' ± v'(uv)'= u'v + uv'(u / v)'=(u'v uv')/ v^2 (v ≠ 0)4、复合函数的求导法则若 y = f(u),u =φ(x),则 dy / dx = dy / du × du / dx5、隐函数的求导法则对于方程 F(x, y) = 0 确定的隐函数 y = y(x),两边对 x 求导,然后解出 y'。
(完整版)专升本高数公式大全
高等数学公式求导公式表:(为常数); (为实数);()0C '=C 1()x x ααα-'=α;;()ln (0,1)x x a a aa a '=>≠()x x e e '=; ;1(log )(0,1)ln x a a a x a'=>≠1(ln )x x '=;;(sin )cos x x '=(cos )sin x x '=-; ;12(tan )sec 2cos x x x'==(sec )sec tan x x x '=⋅; ;12(cot )csc 2sin x x x'=-=-(csc )csc cot x x x '=-⋅(arcsin )x '(arccos )x '; .1(arctan )21x x '=+1(arccot )21x x '=-+基本积分表:(k 为常数).特别地,当时,.d k x kx C=+⎰0k =0d x C =⎰11d 1x x C ααα+=++⎰(1)α≠-1d ln ||x x Cx =+⎰ .d ln x xa a x C a=+⎰(0,1)a a >≠.d x xe x e C =+⎰.sin d cos x x x C=-+⎰.cos d sin x x x C=+⎰.22d sec d tan cos xx x x C x==+⎰⎰.22d csc d cot sin xx x x C x==-+⎰⎰.sec tan d sec x x x x C =+⎰.csc cot d csc x x x x C=-+⎰h i narcsin x x C=+.arccos x C '=-+21d arctan 1x x Cx =++⎰.cot arc x C '=-+.tan d ln cos x x x C =-+⎰.cot d ln sin x x x C=+⎰.sec d ln sec tan x x x x C =++⎰.csc d ln csc cot x x x x C =-+. 1arctan xC a a+.1ln 2x aCa x a -++.arcsin (0)xx C a a =+>.x .21arcsin 22a x x C a =+31sec d sec tan ln sec tan 2x x x x x x C ⎡⎤=+++⎣⎦⎰三角函数的有理式积分:2222212sin cos tan1121u u xdu x x u dx u u u -====+++, , , 一些初等函数:()(0,1)log (0,1)sin ,cos ,tan ,cot ,sec ,csc arcsin ,arccos ,arctan ,arccot x a y x y a a a y x a a y x y x y x y x y x y xy x y x y x y xμμ==>≠=>≠==========幂函数:为实数指数函数:对数函数:三角函数:反三角函数::2:2:x xx xx xx xe e shx e e chx shx e e thx chx e e -----=+=-==+双曲正弦双曲余弦双曲正切ln(ln(11ln21arshx x archx x x arthx x=+=±++=-两个重要极限:sin lim 1x x x =→()11lim 1lim 10x xx e x x x ⎛⎫+=+= ⎪→∞→⎝⎭等价无穷小量替换当时,0x →~sin ~tan ~arcsin ~arctan x x x x x,~ln(1)~x +1xe -,121cos ~2x x -2~sin 2~tan 2x x x 11~2x-三角函数公式:·诱导公式:函数角A sin cos Tan cot-α-sinαcosα-tanα-cotα90°-αcosαsinαCotαtanα90°+αcosα-sinα-cotα-tanα180°-αsinα-cosα-tanα-cotα180°+α-sinα-cosαTanαcotα270°-α-cosα-sinαCotαtanα270°+α-cosαsinα-cotα-tanα360°-α-sinαcosα-tanα-cotα360°+αsinαcosαTanαcotα·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβαβαβαβαβαβαβαβαββα±=±±=±±=⋅⋅±=±Al l g si rga ·倍角公式:·半角公式:sincos 221cos sin 1cos sin tancot 2sin 1cos 2sin 1cos αααααααααααα==-+======+- ·正弦定理:·余弦定理:R CcB b A a 2sin sin sin ===C ab b a c cos 2222-+=·反三角函数性质:arcsin arccos arctan cot 22x x x arc xππ=-=- 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u vu C uv +++--++''-+'+==---=-∑ 中值定理与导数应用:()0()()()()()()()()()()F()f f b f a f b a f b f a f F b F a F x xξξξξ'='-=-'-='-=罗尔中值定理:拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。
专升本高数公式大全总结
专升本高数公式大全总结以下是一些常用的高数公式总结:1. 导数公式:- 基本公式:$(c)^n = ncx^{n-1}$,其中c为常数,n为指数,x为变量。
- 基本函数的导数:$sinx' = cosx, cosx' = -sinx, tanx' = sec^2x, cotx' = -csc^2x, secx' = secxtanx, cscx' = -cscxcotx$。
2. 积分公式:- 基本公式:$\int f'(x)dx = f(x) + C$,其中C为常数。
- 基本函数的不定积分:$\int sinxdx = -cosx + C, \int cosxdx = sinx + C, \int tanxdx = -ln|cosx| + C$。
3. 三角函数公式:- 正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R$,其中a、b、c为三角形的边长,A、B、C为对应角,R为外接圆半径。
- 余弦定理:$c^2=a^2+b^2-2abcosC$。
- 正弦二倍角公式:$sin2x=2sinxcosx$。
- 余弦二倍角公式:$cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x$。
4. 极限公式:- 基本公式:$\lim_{x\to c}f(x) = f(c)$,其中c为常数。
- 乘法法则:$\lim_{x\to c}[f(x)g(x)] = \lim_{x\to c}f(x) \cdot\lim_{x\to c}g(x)$。
- 除法法则:$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c}g(x)}$,其中$\lim_{x\to c}g(x) \neq 0$。
5. 级数公式:- 等比数列求和公式:$S_n = \frac{a(1-q^n)}{1-q}$,其中S_n为前n项和,a为首项,q为公比。
专升本同学必备的高等数学公式大全.
高等数学公式高等数学公式导数公式:(tgx)'=sec2x(ctgx)'=-csc2x(secx)'=secx⋅tgx(cscx)'=-cscx⋅ctgx(ax)'=axlna(logax)'=1xlna(arcsinx)'=1-x21(arccosx)'=--x21(arctgx)'=1+x21(arcctgx)'=-1+x基本积分表:三角函数的有理式积分:⎰tgxdx=-lncosx+C⎰ctgxdx=lnsinx+C⎰secxdx=lnsecx+tgx+C⎰cscxdx=lncscx-ctgx+Cdx1x=arctg+C⎰a2+x2aadx1x-a=ln⎰x2-a22ax+a+Cdx1a+x=ln⎰a2-x22aa-x+Cdxx=arcsin+C⎰a2-x2aπ2ndx2=sec⎰cos2x⎰xdx=tgx+Cdx2⎰sin2x=⎰cscxdx=-ctgx+C⎰secx⋅tgxdx=secx+C⎰cscx⋅ctgxdx=-cscx+Cax⎰adx=lna+Cx⎰shxdx=chx+C⎰chxdx=shx+C⎰dxx2±a2=ln(x+x2±a2)+Cπ2 In=⎰sinxdx=⎰cosnxdx=00n-1In-2n⎰⎰⎰xa222x+adx=x+a+ln(x+x2+a2)+C22xa22222x-adx=x-a-lnx+x2-a2+C22xa2x2222a-xdx=a-x+arcsin+C22a222u1-u2x2dusinx=,cosx=,u=tg,dx=2221+u1+u1+u2一些初等函数:两个重要极限:1 / 12高等数学公式ex-e-x双曲正弦:shx=2ex+e-x双曲余弦:chx=shxex-e-x双曲正切:thx==chxex+e-xarshx=ln(x+x+1)archx=±ln(x+x2-1)11+xarthx=ln21-x三角函数公式: ·诱导公式:limsinx=1x→0x1lim(1+)x=e=2.718281828459045...x→∞x·和差角公式: ·和差化积公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ sinαsinβtg(α±β)= tgα±tgβ1 tgα⋅tgβctgα⋅ctgβ 1ctg(α±β)=ctgβ±ctgαsinα+sinβ=2sinα+β22α+βα-βsinα-sinβ=2cossin22α+βα-βcosα+cosβ=2coscos22α+βα-βcosα-cosβ=2sinsin22cosα-β2 / 12高等数学公式 ·倍角公式:sin2α=2sinαcosαcos2α=2cos2α-1=1-2sin2α=cos2α-sin2αctg2α-1ctg2α=2ctgα2tgαtg2α=1-tg2α·半角公式:sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tgα-tg3αtg3α=1-3tg2αsintgα2=±=±-cosαα+cosαcos=±222-cosα1-cosαsinαα1+cosα1+cosαsinα==ctg=±==1+cosαsinα1+cosα21-cosαsinα1-cosαα2 ·正弦定理:abc===2R ·余弦定理:c2=a2+b2-2abcosC sinAsinBsinCarcsinx=·反三角函数性质:π2-arccosx arctgx=π2-arcctgx高阶导数公式——莱布尼兹(Leibniz)公式:(uv)(n)k(n-k)(k)=∑Cnuvk=0n=u(n)v+nu(n-1)v'+中值定理与导数应用: n(n-1)(n-2)n(n-1) (n-k+1)(n-k)(k)uv''+ +uv+ +uv(n)2!k!拉格朗日中值定理:f(b)-f(a)=f'(ξ)(b-a)f(b)-f(a)f'(ξ)=F(b)-F(a)F'(ξ)曲率:当F(x)=x时,柯西中值定理就是拉格朗日中值定理。
专升本数学公式汇总
专升本数学公式汇总在专升本的数学学习中,掌握各类公式是解题的关键。
下面为大家汇总了一些重要的数学公式,希望能对大家的学习有所帮助。
一、函数部分1、幂函数:$y = x^a$ ($a$为常数)2、指数函数:$y = a^x$ ($a > 0$且$a ≠ 1$)指数运算法则:$a^m × a^n = a^{m + n}$$(a^m)^n = a^{mn}$$a^{m} =\frac{1}{a^m}$3、对数函数:$y =\log_a x$ ($a > 0$且$a ≠ 1$)对数运算法则:$\log_a (MN) =\log_a M +\log_a N$$\log_a \frac{M}{N} =\log_a M \log_a N$$\log_a M^n = n\log_a M$换底公式:$\log_a b =\frac{\log_c b}{\log_c a}$二、三角函数部分1、基本关系$\sin^2\alpha +\cos^2\alpha = 1$$\tan\alpha =\frac{\sin\alpha}{\cos\alpha}$2、诱导公式$\sin (\alpha) =\sin\alpha$$\cos (\alpha) =\cos\alpha$$\sin (\pi \alpha) =\sin\alpha$$\cos (\pi \alpha) =\cos\alpha$$\sin (\pi +\alpha) =\sin\alpha$$\cos (\pi +\alpha) =\cos\alpha$3、和差公式$\sin (\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta$$\sin (\alpha \beta) =\sin\alpha\cos\beta \cos\alpha\sin\beta$$\cos (\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta$$\cos (\alpha \beta) =\cos\alpha\cos\beta +\sin\alpha\sin\beta$4、二倍角公式$\sin 2\alpha = 2\sin\alpha\cos\alpha$$\cos 2\alpha =\cos^2\alpha \sin^2\alpha = 2\cos^2\alpha 1 = 1 2\sin^2\alpha$$\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}$5、半角公式$\sin^2\frac{\alpha}{2} =\frac{1 \cos\alpha}{2}$$\cos^2\frac{\alpha}{2} =\frac{1 +\cos\alpha}{2}$$\tan\frac{\alpha}{2} =\frac{1 \cos\alpha}{\sin\alpha} =\frac{\sin\alpha}{1 +\cos\alpha}$三、导数部分1、基本导数公式$(x^n)'= nx^{n 1}$$(\sin x)'=\cos x$$(\cos x)'=\sin x$$(\ln x)'=\frac{1}{x}$$(e^x)'= e^x$2、导数的四则运算$(u ± v)'= u' ± v'$$(uv)'= u'v + uv'$$\left(\frac{u}{v}\right)'=\frac{u'v uv'}{v^2}$($v ≠ 0$)3、复合函数求导法则设$y = f(u)$,$u = g(x)$,则复合函数$y = fg(x)$的导数为:$y' = f'g(x) \cdot g'(x)$四、积分部分1、基本积分公式$\int x^n dx =\frac{1}{n + 1}x^{n + 1} + C$ ($n ≠ -1$)$\int \sin x dx =\cos x + C$$\int \cos x dx =\sin x + C$$\int \frac{1}{x} dx =\ln |x| + C$$\int e^x dx = e^x + C$2、定积分的性质$\int_a^b kf(x) dx = k\int_a^b f(x) dx$ ($k$为常数)$\int_a^b f(x) ± g(x) dx =\int_a^b f(x) dx ±\int_a^b g(x) dx$$\int_a^b f(x) dx =\int_a^c f(x) dx +\int_c^b f(x) dx$五、向量部分1、向量的加减法:$\overrightarrow{a} ±\overrightarrow{b} =(x_1 ± x_2, y_1 ± y_2)$($\overrightarrow{a} =(x_1, y_1)$,$\overrightarrow{b} =(x_2, y_2)$)2、向量的数量积:$\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = x_1x_2 + y_1y_2$ ($\theta$为两向量的夹角)六、立体几何部分1、长方体体积:$V = abc$ ($a$、$b$、$c$分别为长方体的长、宽、高)2、正方体体积:$V = a^3$ ($a$为正方体的棱长)3、圆柱体体积:$V =\pi r^2h$ ($r$为底面半径,$h$为高)4、圆锥体体积:$V =\frac{1}{3}\pi r^2h$ ($r$为底面半径,$h$为高)七、概率部分1、古典概型概率:$P(A) =\frac{m}{n}$($A$为事件,$m$为事件$A$包含的基本事件个数,$n$为基本事件总数)2、条件概率:$P(B|A) =\frac{P(AB)}{P(A)}$($P(AB)$为事件$A$和事件$B$同时发生的概率)以上只是专升本数学中的一部分重要公式,大家在学习过程中要理解公式的推导过程,多做练习,熟练掌握这些公式的应用。
专升本高等数学公式大全
专升本高等数学公式大全1.极限公式:- $\lim\limits_{x\to a}(c)=c$,常数函数的极限等于常数c- $\lim\limits_{x\to a}(x)=a$,自变量x的极限等于自变量x的值a- $\lim\limits_{x\to a}(x^n)=a^n$,幂函数的极限等于它的自变量的值的n次幂- $\lim\limits_{x\to a}(c\cdot f(x))=c\cdot\lim\limits_{x\to a}(f(x))$,常数与函数的乘积的极限等于常数与函数极限的乘积- $\lim\limits_{x\to a}(f(x)+g(x))=\lim\limits_{x\toa}(f(x))+\lim\limits_{x\to a}(g(x))$,函数和的极限等于函数极限的和- $\lim\limits_{x\to a}(f(x)-g(x))=\lim\limits_{x\toa}(f(x))-\lim\limits_{x\to a}(g(x))$,函数差的极限等于函数极限的差- $\lim\limits_{x\to a}(f(x)\cdot g(x))=\lim\limits_{x\to a}(f(x))\cdot \lim\limits_{x\to a}(g(x))$,函数积的极限等于函数极限的积- $\lim\limits_{x\toa}(\frac{f(x)}{g(x)})=\frac{\lim\limits_{x\toa}(f(x))}{\lim\limits_{x\to a}(g(x))}$,函数商的极限等于函数极限的商(如果分母函数不等于0)2.微分和导数公式:- $y=f(x)$,则$dy=f'(x)\cdot dx$,微分形式为微分=导数乘以微小增量-$(c)'=0$,常数的导数等于0- $(x^n)'=nx^{n-1}$,幂函数的导数等于自变量的幂次减1再乘以原来的幂次-$(e^x)'=e^x$,指数函数的导数等于指数函数本身- $(\ln x)'=\frac{1}{x}$,自然对数函数的导数等于1除以自变量3.积分公式:- $\int c\,dx=cx$- $\int x^n\,dx=\frac{x^{n+1}}{n+1}+C$,幂函数的不定积分等于自变量的幂次加1再除以幂次加1再加上常数C- $\int e^x\,dx=e^x+C$,指数函数的不定积分等于自身再加上常数C- $\int \frac{1}{x}\,dx=\ln,x,+C$,自然对数函数的不定积分等于自然对数绝对值再加上常数C。
专升本高数公式大全
专升本高数公式大全1.初等函数的性质- 一次函数的表达式:y = kx + b,其中k为斜率,b为截距。
- 二次函数的表达式:y = ax² + bx + c,其中a、b、c为常数。
-绝对值函数的表达式:y=,x。
2.导数与微分的基本公式- 函数极限的定义:lim(x→a) f(x) = L。
- 导数的定义:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx。
-基本导数公式:- (1) 若f(x) = xⁿ,则f'(x) = nxⁿ⁻¹。
-(2)若f(x)=eˣ,则f'(x)=eˣ。
- (3) 若f(x) = sin(x),则f'(x) = cos(x)。
- (4) 若f(x) = cos(x),则f'(x) = -sin(x)。
- (5) 若f(x) = ln(x),则f'(x) = 1/x。
3.极限的基本性质-极限的四则运算:- (1) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)±g(x)] = A±B。
- (2) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B,则lim(x→a) [f(x)g(x)] = AB。
- (3) 若lim(x→a) f(x) = A,lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x)/g(x)] = A/B。
- (4) 若lim(x→a) f(x) = A,则lim(x→a) [c·f(x)] = c·A。
4.函数的极值与最值-函数的极值:设f(x)在x₀处有定义,称f(x)在x₀处有极小值,如果存在εₒ>0,使得当0<,x-x₀,<εₒ时,恒有f(x)≥f(x₀)。
-函数的最值:设f(x)在区间I上有定义,x₀∈I,如果对于任意x∈I,恒有f(x)≥f(x₀),则称f(x)在x₀处有最小值。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:2)1(32111112nn n q q q q q nn +=++++--=++++- 等差数列:等比数列: 常见数列的前n 项和:)1(21321+=++++n n n2)12(531n n =-++++ )14(31)12(53122222-=-++++n n n)12)(1(613212222++=++++n n n n )2)(1(31)1(433221++=+++⋅+⋅+⋅n n n n n111)1(1431321211+-=+++⋅+⋅+⋅n n n'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+1.导数公式:x x 2sec )(tan ='x x 2c s c )(c o t -=' x x x c o t c s c )(c s c -=' x x x t a n s e c )(s e c =' x x a a a ∙='ln )( x x e e =')( a x x a ln 1)(log ='211)(a r c s i n x x -=' 211)(a r c c o s x x --=' 211)(arctan x x +=' 211)c o t (x x a r c +-=' x x f x x f x f x ∆'-∆+'=''→)()(l i m)(0基本积分表:三角函数的有理式积分:两个重要极限:常用三角函数公式:x x 22sec tan 1=+x x 22c s c c o t 1=+x xx 2tan 1tan 22tan -=2cos 12sin 2x x -=2c o s 12c o s 2x x +=x x x s i n c o s 12t a n -=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ...590457182818284.2)11(lim 1sin lim==+=∞→→e xx xx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。
专升本高等数学公式全集
专升本高等数学公式全集高等数学是专升本考试中的重要科目,而掌握各种公式是学好高等数学的关键。
以下为大家整理了一份较为全面的专升本高等数学公式,希望能对大家的学习有所帮助。
一、函数与极限1、函数的定义:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个数 x ∈ D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,那么就称 y 是 x 的函数,记作 y = f(x),x ∈ D。
2、基本初等函数:包括幂函数、指数函数、对数函数、三角函数和反三角函数。
幂函数:y =x^α(α 为常数)指数函数:y = a^x(a > 0 且a ≠ 1)对数函数:y =logₐx(a > 0 且a ≠ 1)三角函数:正弦函数 y = sin x,余弦函数 y = cos x,正切函数 y= tan x 等反三角函数:反正弦函数 y = arcsin x,反余弦函数 y = arccos x,反正切函数 y = arctan x 等3、极限的定义:设函数 f(x) 在点 x₀的某一去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正数δ ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x) 都满足|f(x) A| <ε ,那么常数 A 就叫做函数 f(x) 当x → x₀时的极限,记作lim(x → x₀) f(x) = A 。
4、极限的运算法则:若lim(x → x₀) f(x) = A,lim(x → x₀) g(x) = B,则lim(x → x₀) f(x) ± g(x) = A ± Blim(x → x₀) f(x) · g(x) = A · Blim(x → x₀) f(x) / g(x) = A / B (B ≠ 0)5、两个重要极限:lim(x → 0) (sin x / x) = 1lim(x → ∞)(1 + 1 / x)^x = e二、导数与微分1、导数的定义:设函数 y = f(x) 在点 x₀的某个邻域内有定义,当自变量 x 在 x₀处取得增量Δx (点 x₀+Δx 仍在该邻域内)时,相应地函数取得增量Δy = f(x₀+Δx) f(x₀);如果Δy 与Δx 之比当Δx → 0 时的极限存在,则称函数 y = f(x) 在点 x₀处可导,并称这个极限为函数 y = f(x) 在点 x₀处的导数,记作 f'(x₀) ,即 f'(x₀) =lim(Δx → 0) Δy /Δx 。
专升本高等数学必备公式(修订版)
(3)
1 x2
dx
1 x
C
(5)
1dx x
ln
x
C
指数函数:(6)
a
x dx
ax ln a
C
1)
(4) x 1 2x
(6) (e x ) e x (8) (ln x) 1
x (10) (cos x) sin x
(12) (cot x) csc2 x
(14) (csc x) csc x cot x
(6)1 tan 2 x sec2 x
(7) 1 cot 2 x csc2 x
(8) sin x 1 csc x
(10) tan x 1 cot x
(9) cos x 1 sec x
4、等价无穷小(11 个):
当 0时: sin~
arcsin~
tan~
e 1 ~
ln(1) ~
1 cos~ 2 2
(16) sec xdx ln sec x tan x C
(17) csc xdx ln csc x cot x C
(18) 1 dx arcsin x C
1 x2
(20)
1
1 x
2
dx
arctan
x
C
(19)
1 dx arcsin x C
a2 x2
a
(21)
a2
1
x2 dx
1 a
arctan
x a
C
(22)
1 dx ln x x2 a2 C x2 a2
(23)
1 dx ln x x2 a2 C x2 a2
(24)
x2
1
a2
dx
1 ln 2a
专升本高等数学公式大全
专升本高等数学公式大全函数的导数公式:1.常数函数的导数为0:(k)'=0;2. 幂函数的导数公式:(x^n)' = nx^(n-1);3. 指数函数的导数公式:(a^x)' = a^x * ln(a);4. 对数函数的导数公式:(loga^x)' = 1/(x * ln(a));5.三角函数的导数公式:- (sinx)' = cosx;- (cosx)' = -sinx;- (tanx)' = sec^2(x);- (cotx)' = -csc^2(x);- (secx)' = secx * tanx;- (cscx)' = -cscx * cotx;极限公式:1. 常数的极限是它本身:lim (c) = c;2.极限的线性性质:- lim (f(x) ± g(x)) = lim (f(x)) ± lim (g(x));- lim (k * f(x)) = k * lim (f(x));3.极限的乘法法则:- lim (f(x) * g(x)) = lim (f(x)) * lim (g(x));4.极限的除法法则:- lim (f(x) / g(x)) = lim (f(x)) / lim (g(x));5.无穷的极限:- lim (x -> ±∞) (1/x) = 0;- lim (x -> ±∞) (a^x) = 0 (a > 1);- lim (x -> ±∞) (ln(x)) = ±∞;- lim (x -> ±∞) (e^x) = ±∞;一元函数的微分公式:1.常数函数的微分为0:d(c)=0;2. 幂函数的微分公式:d(x^n) = nx^(n-1)dx;3. 指数函数的微分公式:d(a^x) = a^xdx * ln(a);4. 对数函数的微分公式:d(loga^x) = (1/x)dx / ln(a);5.三角函数的微分公式:- d(sinx) = cosxdx;- d(cosx) = -sinxdx;- d(tanx) = sec^2(x)dx;- d(cotx) = -csc^2(x)dx;- d(secx) = secxtanxdx;- d(cscx) = -cscxcotxdx;不定积分的公式:1. 幂函数的不定积分:∫x^n dx = (x^(n+1))/(n+1) + C;2. 指数函数的不定积分:∫a^x dx = (a^x)/ln(a) + C;3. 对数函数的不定积分:∫(1/x) dx = ln,x, + C;4.三角函数的不定积分:- ∫sinx dx = -cosx + C;- ∫cosx dx = sinx + C;- ∫tanx dx = -ln,cosx, + C;- ∫cotx dx = ln,sinx, + C;- ∫secx dx = ln,secx + tanx, + C;- ∫cscx dx = ln,cscx - cotx, + C;以上仅是高等数学中的一部分公式,通过掌握和运用这些公式,可以更好地应对专升本考试中的数学相关题目。
专升本高等数学公式全集
专升本高等数学公式全集1.极限与连续- 极限的定义:对于函数f(x),当x趋于无穷大时,如果存在常数L,使得对于任意给定的正数ε,总存在正数δ,当,x-a,<δ时,有,f(x)-L,<ε,则称函数f(x)在点a处极限为L,记为lim(x→a)f(x)=L。
- 极限运算法则:设lim(x→a)f(x)=A,lim(x→a)g(x)=B,则lim(x→a)(f(x)±g(x))=A±B,lim(x→a)f(x)g(x)=A·B,lim(x→a)f(x)/g(x)=A/B(其中B≠0)。
- 无穷小量:若lim(x→∞)f(x)=0,则称函数f(x)为当x趋于无穷大时的无穷小量。
- 利用洛必达法则可以求解极限:“若lim(x→a)f(x)=0,lim(x→a)g(x)=0,且lim(x→a)f'(x)/g'(x)存在(或为∞),则lim(x→a)f(x)/g(x)=lim(x→a)f'(x)/g'(x)”。
2.微分学- 导数定义:函数f(x)在点x=a处的导数定义为:lim(h→0)(f(a+h)-f(a))/h,记为f'(a),也可表示为dy/dx或y'。
- 基本导数法则:(1)(c)'=0,其中c为常数;(2)(x^n)'=nx^(n-1),其中n为任意实数;(3)(e^x)'=e^x,(a^x)'=a^xlna,其中a>0且a≠1;(4)(lnx)'=1/x,(log_a(x))'=1/(xlna),其中a>0且a≠1-高阶导数:函数f(x)的n阶导数记作f^(n)(x),其中n为正整数,可从一阶导数f'(x)重复求导得到。
- 隐函数求导:对于方程F(x,y)=0,若能求出y',则有dy/dx=-F_x/F_y(其中F_x和F_y分别表示F关于x、y的偏导数)。